SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 1
8
DEFORMACIONES EN LA
FLEXIÓN
8.1 ANALISIS DE DEFORMACIONES
8.1.1 Generalidades
Las piezas flexadas sufren desplazamientos o deflexiones, cuyo control es tan importante para
garantizar el buen comportamiento estructural como la verificación de la resistencia.
Cuando la estructura presenta deformaciones excesivas, la percepción de las mismas por parte
de los usuarios genera en éstos una sensación de alto riesgo. No sólo esto es muy significativo sino
que también pueden aparecer problemas colaterales tales como fisuración en tabiques de mampostería
que apoyen sobre la estructura y en cielorrasos.
Los elementos de máquinas, debido a grandes deflexiones pueden presentar desgastes prematu-
ros u originar efectos vibratorios inadecuados.
El conocimiento de las deformaciones resulta también sumamente importante desde el punto
de vista constructivo. En efecto, si se conoce por ejemplo, la flecha máxima que tendrá una viga de
hormigón armado sometida a las cargas permanentes, cuando se la construye puede contraflecharse el
encofrado de manera tal de compensar esa deformación, de modo que la pieza quede para ese estado
de cargas sin deformación aparente.
Por otro lado, no es posible conocer las características dinámicas y vibratorias de un elemento
estructural sino se analizan deformaciones. Así mismo, y atendiendo a lo que hemos demostrado en el
artículo 3.2, el análisis de las deflexiones resulta imprescindible para la resolución estática de piezas
flexadas hiperestáticas.
Todo esto ha motivado la existencia de numerosos métodos de cálculo de deformaciones, algu-
nos aplicables a cualquier tipo de estructuras y otros solamente a estructuras lineales. A continuación
analizaremos algunos de estos métodos.
8.1.2 Línea elástica
8.1.2.1 Ecuación
Llamaremos “Línea elástica” a la forma que adopta el eje de una viga al producirse la defor-
mación de la misma por acción de las cargas exteriores.
Para deducir la ecuación de la elástica vamos a suponer que las deformaciones son pequeñas.
Además solo consideramos las deformaciones debidas a los momentos flectores. (ver art. 7.8)
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 2
El ángulo que forma la tangente a la elástica en un pun-
to con respecto a la horizontal, es el mismo que habrá girado la
sección recta en dicho punto con respecto a la vertical.
Si consideramos otra sección ubicada a una distancia dz
con respecto a la anterior, entre ambas habrá un giro relativo
dθ.
ds
d
1
d
ds
θ
=
ρ
→
θ
ρ
= (8.1)
dz
d
1
dz
ds
θ
=
ρ
→
=
≅
Por ser θ un ángulo pequeño:
ρ
=
=
θ
→
=
θ
≅
θ
1
dz
dy
dz
d
dz
dy
tg 2
2
(8.2)
Para los ejes coordenados elegidos vemos que a valores
crecientes de z corresponden valores decrecientes de θ. En
consecuencia, en la ecuación 8.2 debemos afectar al primer tér-
mino de un signo menos.
EI
M
1
dz
dy
2
2
=
ρ
=
− (8.3)
EI
M
´´
y
(z)
−
= Ecuación diferencial de la línea Elástica (8.4)
Cuando la barra es muy flexible y los desplazamientos no son pequeños debe utilizarse para la
curvatura la expresión rigurosa:
2
3
2
2
2
dz
dy
1
dz
dy
1














+
−
=
ρ
(8.5)
Conocida en cada caso la función que define la variación del momento flector, por integración
de la ecuación diferencial 8.4 se determina la correspondiente ecuación de la línea elástica, la que
permite obtener el corrimiento máximo o “flecha”.
En la práctica usualmente se acotan los valores relativos flecha – luz (f/L). Cuando las vigas
tienen luces muy grandes y cargas de poca consideración, son frecuentemente determinantes en el
dimensionamiento las condiciones relativas a las flechas.
500
1
a
300
1
l
f
max
=






(8.6)
Fig. 8.2
cc
θ
d
c
ρ
θ
θ
dz
dy
ds
P
z
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 3
Para la deducción de la ecuación de la elástica, en algunas circunstancias resulta mas práctico
partir de la ecuación del corte o de la carga. Eso no es ningún inconveniente ya que conocemos la si-
guiente relación:
)
z
(
q
dz
Q
d
z
d
M
d
2
2
−
=
= (8.7)
luego:
EI
M
y
(z)
ll
−
=
EI
Q
y
(z)
lll
−
= (8.8)
EI
q
y
(z)
lV
=
8.1.2.2. Ejemplos de aplicación
a) Elástica de una viga simplemente apoyada sometida a una carga uniformemente repartida.
1
3
2
l
(z)
ll
2
(z)
C
6
z
q
4
qLz
y
EI
M
y
EI
2
z
q
z
2
qL
M
+
−
=
−
=
−
=
2
1
4
3
C
z
C
24
z
q
12
qLz
y
EI +
+
+
−
=
Para encontrar las constantes de integración debemos considerar las siguientes condiciones de
borde:














+






−






−
=






+
+
−
=
=
→
=
+
+
−
→
=
=
→
=
=
=
L
z
L
z
2
L
z
EI
24
qL
y
z
24
qL
24
z
q
z
12
qL
EI
1
y
24
L
q
C
0
L
C
24
L
q
12
qL
0
y
0
C
0
y
3
4
4
)
z
(
3
4
3
)
z
(
3
1
1
4
4
)
L
z
(
2
)
0
z
(
(8.9)
Fig. 8.3
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 4
Por razones de simetría la flecha máxima se produce para z = L/2
EI
qL
384
5
f
EI
qL
384
5
2
1
4
1
16
1
EI
24
qL
f
4
4
4
=
=






+
−
=
(8.10)
b) Elástica de una ménsula con carga uniformemente repartida
2
1
4
1
3
l
2
ll
2
)
z
(
C
z
C
24
z
q
y
EI
C
6
z
q
y
EI
2
z
q
y
EI
2
z
q
M
+
+
=
+
=
=
−
=
8
L
q
C
0
C
6
L
q
24
L
q
0
y
6
L
q
C
0
´
y
L
z
4
2
2
4
4
3
1
=
→
=
+
−
→
=
−
=
→
=
→
=






+






−






=






+
−
=
1
L
z
3
4
L
z
3
1
8EI
qL
y
8
L
q
z
6
L
q
24
z
q
EI
1
y
4
4
)
z
(
4
3
4
)
z
(
(8.11)
EI
8
L
q
f
4
= (8.12)
c) Elástica de una viga simplemente apoyada sometida a una carga concentrada
( )
( )
a
z
P
z
L
Pb
´´
y
EI
L
z
a
z
L
Pb
´´
y
EI
a
z
a
z
P
z
L
Pb
M
L
z
a
z
L
Pb
M
a
z
)
z
(
)
z
(
−
+
−
=
≤
<
−
=
≤
−
−
=
≤
<
=
≤
Fig. 8.4
q
z
L
fmax
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 5
Dado que la función momento no queda
expresada mediante una única ley debemos inte-
grar en dos campos distintos.
( )
( )
4
2
2
3
d
3
1
3
i
2
2
2
d
1
2
i
C
z
C
2
a
z
P
z
L
6
Pb
y
EI
C
z
C
z
L
6
Pb
y
EI
C
2
a
z
P
z
L
2
Pb
´
y
EI
C
z
L
2
Pb
´
y
EI
+
+
−
+
−
=
+
+
−
=
+
−
+
−
=
+
−
=
( ) 1
2
2
2
2
3
2
d
4
3
i
4
3
d
i
2
1
d
i
C
b
L
L
6
Pb
C
0
L
C
6
Pb
6
PbL
0
y
L
z
0
C
0
C
0
y
0
z
C
C
y
y
C
C
´
y
´
y
a
z
=
−
=
=
+
+
−
→
=
→
=
=
⇒
=
→
=
→
=
=
→
=
=
→
=
→
=
( )
[ ]
( ) ( )





 −
+
−
+
−
=
≤
<
−
+
−
=
≤
z
L
b
L
b
a
z
L
bz
EI
6
P
y
L
z
a
z
b
L
z
EI
L
6
Pb
y
a
z
2
2
3
3
)
z
(
2
2
3
)
z
(
(8.13)
En el caso particular en que la carga se encuentra en la mitad de la luz:
EI
48
L
P
f
3
= (8.14)
8.1.3 Método del área del diagrama de momentos
8.1.3.1 Teoremas del área del diagrama de momentos reducidos
Si relacionamos las ecuaciones 8.1 y 8.3 analizadas precedentemente llegamos a la siguiente
expresión:
EI
M
ds
d
=
θ
(8.15)
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 6
y siendo ds ≅ dz obtenemos:
dz
EI
M
d =
θ (8.16)
Consideremos una porción de línea elástica
comprendida entre dos puntos cualesquiera A y B, tal
como se indica en la figura 8.6. Las tangentes a la línea
elástica en los puntos extremos, indicadas a través de
las segmentos AB´ y A´B, forman entre si un ángulo θ
que suponemos pequeño.
Supongamos que el diagrama entre los puntos
A1 y B1 es el diagrama de momentos flectores dividido
por EI correspondiente a la estructura que presenta la
elástica supuesta. A este diagrama lo denominaremos
“diagrama de momentos reducidos”.
Si consideramos dos secciones de la elástica
muy próximas, separadas entre si ds, ambas secciones
presentan un giro relativo dθ. En virtud de la ecuación
8.16 ese valor re-
sulta ser igual al área de la franja rayada del diagrama
de momentos reducidos. Luego, si integramos la ecua-
ción 8.16 obtenemos el ángulo θ que forman las tangen-
tes externas.
∫
=
θ
B
A
dz
EI
M
(8.17)
El resultado de la integral dada por la ecuación 8.17 no es sino el área del diagrama de mo-
mentos reducidos, con lo cual puede enunciarse el siguiente teorema:
TEOREMA I: El ángulo θ comprendido entre dos tangentes en dos puntos cualesquiera A y B de la lí-
nea elástica, es igual al área total del trozo correspondiente del diagrama de momentos reducidos.
Consideramos nuevamente la figura 8.6 y observemos el segmento BB’. Podemos apreciar
que cada segmento ds de la elástica contribuye a la longitud f en una cantidad z*dθ. Luego, integran-
do estas distancias podemos obtener el valor de f.
∫
∫ =
θ
=
B
A
B
A
dz
z
EI
M
d
z
f (8.18)
Dado que el producto dz
EI
M
es el área de la franja rayada del diagrama de momentos reduci-
dos, la integral de la ecuación 8.18 resulta ser el momento estático con respecto a B del área del dia-
grama de momentos reducidos. Esto último permite enunciar el siguiente teorema:
TEOREMA II: Dado dos puntos A y B pertenecientes a una línea elástica, la ordenada de B respecto a
la tangente en A es igual al momento estático con respecto a B del área de momentos reducidos com-
prendida entre A y B.
Fig. 8.6
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 7
El momento estático recientemente mencionado puede calcularse en forma muy simple multi-
plicando el área total del diagrama de momentos reducidos comprendida entre A y B por la distancia
a su centro de gravedad. Por otro lado,si la figura que representa el diagrama puede descomponerse
en figuras elementales tales como rectángulos, triángulos, parábolas, etc., el momento estático total
resultara ser la suma de los correspondientes a cada una de las figuras elementales.
Una observación muy importante en cuanto a la aplicación de los teoremas anteriores es que
cuando la elástica tiene un punto de inflexión el diagrama de momentos reducidos cambia de signo,
en ese caso cada parte del diagrama debe tratarse con su propio signo.
Usualmente los dos teoremas anteriores se conocen como Teoremas de Mohr, sin embargo és-
tos fueron presentados por Green en 1873, Mohr había presentado en 1868 un artículo donde desarro-
llaba las bases del método conocido como “Método de la viga conjugada”, el que veremos luego.
8.1.3.2 Aplicaciones
a) Ejemplo 1
En este caso vamos a determinar la flecha δ
y el ángulo θ en el borde libre de la estructura en
voladizo de la figura 8.7.
Dado que la tangente a la elástica en B co-
incide con el eje no flexado de la viga, la flecha δ
resulta ser el desplazamiento de A respecto a la
tangente en B. Aplicando entonces el teorema II
tenemos:
EI
3
PL
L
3
2
2
L
EI
PL 3
=
=
δ (8.18)
Idénticamente, la pendiente en A es el án-
gulo
que forma las tangentes en A y B, por lo que según
el teorema I tenemos:
EI
2
PL
2
L
EI
PL 2
=
=
θ (8.19)
b) Ejemplo 2
A continuación vamos a determinar el valor de
la flecha máxima que se produce en la viga simplemen-
te apoyada de la figura 8.8.
La flecha máxima tiene lugar en el punto C
donde la tangente a la elástica es horizontal. El ángulo
entre las tangentes en A y C resulta igual a θA. Este án-
gulo podemos calcularlo de la siguiente manera:
Aplicando el teorema II podemos calcular la
distancia BB’.
Fig. 8.7
L
P
B
G´
θ
EI=cte.
A
δ
PL
EI
2
3
L
Fig. 8.8
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 8
( )
b
L
6EI
Pab
'
BB
b
3
2
2
b
L
EI
Pab
b
3
a
2
a
L
EI
Pab
'
BB
+
=
+






+
=
La distancia anterior también puede calcularse como:
L
'
BB A
θ
=
Con lo que tenemos:
( )
L
6
b
L
ab
EI
P
A
+
=
θ (8.20)
Por otro lado, el área rayada en el diagrama de momentos reducidos también debe darnos el
valor de θA. Siendo que ya conocemos el valor de este ángulo podemos calcular z, que es la distancia
desde A hasta el punto donde la flecha es máxima.
( ) ( )
3
b
L
a
z
L
6
b
L
ab
EI
P
2
z
z
L
EI
Pb
A
+
=
→
+
=
=
θ (8.21)
Si aplicamos el teorema II podemos determinar la distancia CC’, a partir de la cual determi-
namos δmax.
( ) 3
A
max
3
z
L
EI
6
Pb
z
L
6
b
L
ab
EI
P
'
CC
z
L
EI
6
z
Pb
3
z
2
z
z
L
EI
Pb
'
CC
−
+
=
−
θ
=
δ
=
=
( )3
3
max b
L
a
L
3
9
Pb
+
=
δ (8.22)
c) Ejemplo 3
En este ejemplo vamos a determinar el descenso del punto D de la viga Gerber de la figura
8.9.
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 9
( )
( )
B
'
B
3
1
C
'
C
3
4
'
D
'
'
'
D
B
'
B
B
'
B
C
'
C
a
3
a
4
'
D
'
'
'
D
a
3
B
'
B
C
'
C
a
3
B
'
B
a
3
C
'
C
a
4
'
'
D
'
'
'
D
B
'
B
D
'
'
D
D
'
'
D
'
'
D
'
'
'
D
'
D
'
'
'
D
'
DD
D
D
1
2
3
3
D
+
−
=
δ
−
−
−
=
δ
−
=
−
=
θ
−
θ
=
θ
θ
=
=
−
−
=
=
δ
B
'
B
3
1
C
'
C
3
4
'
D
'
'
'
D
D
+
−
=
δ (8.23)
Las distancias D’’’D’, C’C y B’B pueden calculase utilizando el teorema II. La distancia
D’’’D’ resulta ser igual al momento estático respecto del punto D del diagrama de momentos reduci-
dos comprendido entre los puntos B1 Y D1, la distancia C’C puede calcularse como el momento está-
tica respecto del punto C del diagrama de momentos reducidos comprendido entre los puntos B1 y C1,
y la distancia B’B se calcula como el momento estático respecto del punto B de la parte del diagrama
de momentos reducidos comprendidos entre los puntos A1 y B1.
Fig. 8.9
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 10
EI
Pa
2
3
a
2
a
3
EI
Pa
C
'
C
EI
Pa
3
10
a
3
2
2
a
EI
Pa
a
2
a
2
3
EI
Pa
'
D
'
'
'
D
3
3
=
=
=
+
=
EI
Pa
27
37
EI
Pa
27
1
EI
Pa
2
EI
Pa
3
10
EI
9
Pa
a
3
2
2
a
EI
3
Pa
B
'
B
3
3
3
3
D
3
=
+
−
=
δ
=
=
EI
Pa
27
37 3
D =
δ (8.24)
8.1.4. Método de la viga conjugada
Recordemos dos ecuaciones diferenciales ya conocidas:
q
z
d
M
d
2
2
−
= (8.25)
EI
M
z
d
y
d
2
2
−
= (8.26)
Como ya sabemos, la ecuación 8.25 relaciona el momento flector con la carga aplicada, mien-
tras que la ecuación 8.26 da la relación existente entre la elástica y el momento flector reducido, tal
como denominamos a la relación M/(EI) en el ítem anterior.
Si consideramos al diagrama de momentos reducidos o diagrama de curvaturas, como un dia-
grama de cargas ficticias q*
= M/(EI) aplicado sobre una viga también ficticia y que llamaremos “viga
conjugada”, de la identidad formal entre las dos ecuaciones anteriores surge que la línea elástica de
una viga coincide con el diagrama de momentos ficticios M*
producido en todas las secciones de su
viga conjugada cargada con la carga q*
. En otras palabras:
*
M
y = (8.27)
Esta última conclusión se conoce como Teorema de Mohr sobre la linea elástica, y al diagra-
ma de momentos reducidos utilizando como carga se lo denomina “carga elástica”.
Si la viga es homogénea y de sección constante (EI= cte), la viga conjugada puede cargarse di-
rectamente con el diagrama de momentos, siempre que luego los resultados sean divididos por EI.
Si derivamos la ecuación 8.27 obtenemos:
∗
=
=
θ
= Q
dz
M
d
tg
'
y
*
(8.28)
siendo Q*
el esfuerzo de corte ficticio originado en la viga conjugada por la carga q*
.
La ecuación 8.28 nos muestra que el diagrama de esfuerzos de corte Q*
nos da, para cualquier
sección de la viga real, el valor de la tangente de la línea elástica. Dado que el esfuerzo de corte Q*
en
los extremos de la viga conjugada se corresponde con las reacciones de vínculo, éstas representan
numéricamente los giros de la elástica de la viga real en correspondencia con sus apoyos.
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 11
B
B
A
A
R
R θ
=
θ
= ∗
∗
(8.29)
En cuanto a las características de la viga conjugada, dado que al cargarse ésta con las cargas
elásticas su diagrama de momentos flectores debe representar exactamente la elástica de la viga real,
sus vínculos deben elegirse de manera tal que se respeten estas premisas.
Consideremos el ejemplo de la figura 8.10. En el punto A no tenemos flecha ni pendiente, en
el punto B hay un descenso y además la pendiente a la derecha es distinta que a la izquierda, en el
punto C no hay descenso pero sí existe un giro, y en el punto D tenemos flecha y pendiente.
( ) libre
extremo
un
tener
debe
conjugada
viga
La
0
Q
pendiente
hay
No
0
M
flecha
hay
No
A





=
→
=
→
∗
∗
( ) intermedio
móvil
apoyo
un
tener
debe
conjugada
viga
La
izquierda
0
Q
a
que
derecha
a
distinta
0
Q
resulta
y
pendiente
Hay
0
M
flecha
Hay
B
d
i









≠
≠
→
≠
→
∗
∗
∗
( ) simple
ón
articulaci
una
tener
debe
conjugada
viga
La
izquierda
0
Q
Q
a
que
derecha
a
igual
resulta
y
pendiente
Hay
0
M
flecha
hay
No
C
d
i









≠
=
→
=
→
∗
∗
∗
Fig. 8.10
Fig. 8.10
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 12
( ) nto
empotramie
un
tener
debe
conjugada
viga
La
0
Q
pendiente
Hay
0
M
flecha
Hay
D





≠
→
≠
→
∗
∗
Las conclusiones que hemos obtenido apoyándonos en el ejemplo citado pueden generalizarse
de la siguiente manera:
En algunos casos, en especial cuando las estructuras son estáticamente indeterminadas, la viga
conjugada puede resultar inestable. Este inconveniente queda resuelto cuando se carga a la misma, ya
que el propio estado de cargas le confiere estabilidad.
8.2 VIGAS ESTATICAMENTE INDETERMINADA
8.2.1 Resolución por superposición
Consideremos la estructura de la figura
8.11, que consiste en una viga sustentada en A
mediante un apoyo fijo y en B y C mediante dos
apoyos móviles. Debido a las cargas actuantes,
en los vínculos mencionados aparecen reaccio-
nes. Si realizamos el diagrama de cuerpo libre y
planteamos las condiciones de equilibrio pode-
mos ver que por tratarse de una chapa plana, só-
lo pueden formularse tres ecuaciones de equili-
brio linealmente independientes, mientras que
tenemos cuatro incógnitas.
∑ ∑
∑ =
=
= 0
M
0
Y
0
X (8.30)
VIGA REAL VIGACONJUGADA
Fig. 8.11
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 13
Dado que las ecuaciones 8.30 no son suficientes para determinar las cuatro reacciones, deci-
mos que la viga resulta “estáticamente indeterminada” o “hiperestática”. En lo que respecta a la Está-
tica, no hay manera alguna de determinar las reacciones en los apoyos tratando al cuerpo como rígi-
do; éstas solamente pueden calcularse si analizamos las deformaciones de la estructura.
Una forma de resolver estáticamente la
estructura planteada es la siguiente:
a- En primera instancia quitamos el apoyo en B. Dado que a pesar
de ello la estructura sigue siendo estable, decimos que este
apoyo es “superabundante”. Algo semejante hubiese ocurrido
si en lugar de eliminar el apoyo en B hubiésemos quitado el
apoyo en C.
b- A continuación estudiamos la estructura simplemente apoyada
que nos queda, la cual se denomina “sistema primario o fun-
damental”.
Este sistema se deforma, y su elástica presenta un corrimiento
vertical δ’B en correspondencia con el apoyo eliminado. Si su-
ponemos la existencia de una carga concentrada RB, ésta ac-
tuando independiente
produce una elástica que genera en correspondencia
con B un desplazamiento
'
'
B
δ .
c- Finalmente, dado que el desplazamiento δB = 0 tenemos:
0
'
'
B
'
B
B
=
δ
−
δ
=
δ (8.31)
Esta ultima ecuación nos permite obtener el valor de RB, y conociendo su valor, con las ecua-
ciones de la Estática determinamos las reacciones faltantes.
Para clarificar estas ideas a continuación vamos a resolver el ejemplo de la figura 8.13.
En el sistema primario, bajo la acción de la carga repartida tenemos:
( )
EI
L
2
q
384
5
4
'
B =
δ (ver ec. 8.10)
Bajo la acción de RB tenemos:
( )
EI
L
2
48
R 3
B
'
'
B =
δ (ver ec. 8.14)
( ) ( )
( ) qL
4
5
L
2
q
8
5
R
EI
L
2
q
384
5
EI
L
2
48
R
B
4
3
B
'
B
'
'
B
=
=
=
→
δ
=
δ
Por simetría:
qL
8
3
R
V
qL
4
5
L
2
q
2
1
R
V
C
A
C
A
=
=






−
=
=
Fig. 8.12
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 14
Para resolver este tipo de viga nos basamos en el Método o Principio de superposición”.
8.2.2 Vigas hiperestáticas de un solo tramo
En lo que sigue resolveremos algunos ejemplos de las vigas hiperestáticas de un solo tramo,
aplicando el método de superposición.
a) Viga empotrada – empotrada sometida a una carga concentrada
Elegimos como sistema primario la viga simplemente apoya-
da indicada en la figura 8.14 En este caso tenemos dos incógnitas
hiperestáticas por calcular, MA y MB, ya que al no existir cargas
horizontales las reacciones HA y HB son nulas.
Los giros en los extremos A y B pueden determinarse por su-
perposición de efectos de la siguiente manera:
0
0
2
B
1
B
Bo
B
2
A
1
A
Ao
A
=
θ
+
θ
+
θ
=
θ
=
θ
+
θ
+
θ
=
θ
El ángulo θAo ya fue determinado en el art. 8.1.3.2 (ver ec.
8.20)
( )
L
6
b
L
ab
EI
P
Ao
+
=
θ
En forma semejante a lo realizado oportunamente, puede
demostrarse que:
( )
L
6
a
L
ab
EI
P
Bo
+
−
=
θ
Fig. 8.13
A B
C
P
A
a b
P
M B
M
L
P
Ao
θ Bo
θ
L
P ab
θA1
B1
θ
A
M
A
M
A2
B
M
θ B2
θ
B
M
C
M
A
M
R
A B
R
Fig. 8.14
ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN
/2005 15
Los ángulos θA1 y θB1 pueden ser calculados aplicando el teorema II del área del diagrama de
momentos reducidos.
6EI
L
M
3
L
2
L
EI
M
L
3EI
L
M
L
3
2
2
L
EI
M
L
A
1
B
A
1
B
A
1
A
A
1
A
−
=
θ
−
=
θ
=
θ
=
θ
En forma idéntica obtenemos los giros θA2 y θB2
3EI
L
M
6EI
L
M
B
2
B
B
2
A
−
=
θ
=
θ
Luego resolviendo el siguiente sistema de ecuaciones podemos determinar los valores de las
incógnitas hiperestáticas.
( )
( )
L
6
a
L
ab
EI
P
M
3EI
L
M
6EI
L
L
6
b
L
ab
EI
P
M
6EI
L
M
3EI
L
B
A
B
A
+
−
=
+
+
−
=
+
2
2
A
L
ab
P
M −
= (8.32)
2
2
B
L
b
a
P
M −
= (8.33)
Una vez conocidos los valores correspondientes a MA y
MB es muy simple calcular las reacciones verticales y si inter-
esa, el momento máximo MC.
b) Viga empotrada – articulada sometida a una carga concen-
trada
Este caso es semejante al anterior pero mucho más
simple ya que tenemos sólo una incógnita hiperestática por de-
terminar.
( )
0
3EI
L
M
L
6
b
L
ab
EI
P
1
A
Ao
A
A
1
A
Ao
=
θ
+
θ
=
θ
=
θ
+
=
θ
( )
2
A
L
2
b
L
Pab
M
+
−
= (8.34)
A
M
A
L
θAo
P
P
C B
b
a
P
A1
θ
A
M
Fig. 8.15

Más contenido relacionado

La actualidad más candente

Metrado de cargas sobre vigas y columnas
Metrado de cargas sobre vigas y columnasMetrado de cargas sobre vigas y columnas
Metrado de cargas sobre vigas y columnaskatterin2012
 
Cálculo matricial de estructuras método directo de la rigidez
Cálculo matricial de estructuras   método directo de la rigidezCálculo matricial de estructuras   método directo de la rigidez
Cálculo matricial de estructuras método directo de la rigidezJean Becerra
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelomatias diaz
 
Diagrama momento curvatura aproximado
Diagrama momento   curvatura aproximadoDiagrama momento   curvatura aproximado
Diagrama momento curvatura aproximadoErly Enriquez Quispe
 
Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1MIKYRoll
 
Longitud de desarrollo y anclaje
Longitud de desarrollo y anclajeLongitud de desarrollo y anclaje
Longitud de desarrollo y anclajeAntonio Zr
 
Capitulo 3 parte 1 (1)
Capitulo 3 parte 1 (1)Capitulo 3 parte 1 (1)
Capitulo 3 parte 1 (1)Nestorin Rodri
 
consolidacion de suelos
consolidacion de suelosconsolidacion de suelos
consolidacion de suelosERICK CORDOVA
 
Ejercicios resueltos analisis estructural
Ejercicios resueltos analisis estructuralEjercicios resueltos analisis estructural
Ejercicios resueltos analisis estructuralJhonny Horna
 
Solucionario mecánica-de-fluidos-e-Hidráulica 01
Solucionario  mecánica-de-fluidos-e-Hidráulica 01Solucionario  mecánica-de-fluidos-e-Hidráulica 01
Solucionario mecánica-de-fluidos-e-Hidráulica 01sap200
 
mecánica de suelos 2-Esfuerzos transmitidos
mecánica de suelos 2-Esfuerzos transmitidosmecánica de suelos 2-Esfuerzos transmitidos
mecánica de suelos 2-Esfuerzos transmitidosEricArturoTorresRoza
 

La actualidad más candente (20)

Metrado de cargas sobre vigas y columnas
Metrado de cargas sobre vigas y columnasMetrado de cargas sobre vigas y columnas
Metrado de cargas sobre vigas y columnas
 
Momento de empotramiento perfecto
Momento de empotramiento perfectoMomento de empotramiento perfecto
Momento de empotramiento perfecto
 
Cálculo matricial de estructuras método directo de la rigidez
Cálculo matricial de estructuras   método directo de la rigidezCálculo matricial de estructuras   método directo de la rigidez
Cálculo matricial de estructuras método directo de la rigidez
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo
 
Diagrama momento curvatura aproximado
Diagrama momento   curvatura aproximadoDiagrama momento   curvatura aproximado
Diagrama momento curvatura aproximado
 
Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1
 
Longitud de desarrollo y anclaje
Longitud de desarrollo y anclajeLongitud de desarrollo y anclaje
Longitud de desarrollo y anclaje
 
ALBAÑILERÍA CONFINADA DE SAN BARTOLOME
ALBAÑILERÍA CONFINADA DE SAN BARTOLOMEALBAÑILERÍA CONFINADA DE SAN BARTOLOME
ALBAÑILERÍA CONFINADA DE SAN BARTOLOME
 
Cinetica del solido pdf
Cinetica del solido pdfCinetica del solido pdf
Cinetica del solido pdf
 
Clase 04 teorema de castigliano
Clase 04   teorema de castiglianoClase 04   teorema de castigliano
Clase 04 teorema de castigliano
 
Capitulo 3 parte 1 (1)
Capitulo 3 parte 1 (1)Capitulo 3 parte 1 (1)
Capitulo 3 parte 1 (1)
 
DICEÑO DE VIGAS
DICEÑO DE VIGASDICEÑO DE VIGAS
DICEÑO DE VIGAS
 
Manejo software ftool
Manejo software ftoolManejo software ftool
Manejo software ftool
 
consolidacion de suelos
consolidacion de suelosconsolidacion de suelos
consolidacion de suelos
 
Ejercicios resueltos analisis estructural
Ejercicios resueltos analisis estructuralEjercicios resueltos analisis estructural
Ejercicios resueltos analisis estructural
 
Solucionario mecánica-de-fluidos-e-Hidráulica 01
Solucionario  mecánica-de-fluidos-e-Hidráulica 01Solucionario  mecánica-de-fluidos-e-Hidráulica 01
Solucionario mecánica-de-fluidos-e-Hidráulica 01
 
Asentamiento elastico.docx resumen
Asentamiento elastico.docx resumenAsentamiento elastico.docx resumen
Asentamiento elastico.docx resumen
 
mecánica de suelos 2-Esfuerzos transmitidos
mecánica de suelos 2-Esfuerzos transmitidosmecánica de suelos 2-Esfuerzos transmitidos
mecánica de suelos 2-Esfuerzos transmitidos
 
deformaciones angulares - vigas conjugadas
deformaciones angulares -  vigas conjugadasdeformaciones angulares -  vigas conjugadas
deformaciones angulares - vigas conjugadas
 
Tablas para metodo superposición
Tablas para metodo superposiciónTablas para metodo superposición
Tablas para metodo superposición
 

Similar a Método de Doble Integración

Módulo 2 y 3
Módulo 2 y 3Módulo 2 y 3
Módulo 2 y 3kjcampos
 
Resistencia ii 1er corte 10pct - robin gomez 9799075
Resistencia ii   1er corte 10pct - robin gomez 9799075Resistencia ii   1er corte 10pct - robin gomez 9799075
Resistencia ii 1er corte 10pct - robin gomez 9799075Robin Gomez Peña
 
Ecuación diferencial de la elástica
Ecuación diferencial de la elásticaEcuación diferencial de la elástica
Ecuación diferencial de la elásticaSistemadeEstudiosMed
 
48099781 vigas-curvas
48099781 vigas-curvas48099781 vigas-curvas
48099781 vigas-curvasSCR3AMYVK
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)LuiggiArtola1
 
Sesion 1 1.1 fuerzas internas diagramas
Sesion 1   1.1 fuerzas internas diagramasSesion 1   1.1 fuerzas internas diagramas
Sesion 1 1.1 fuerzas internas diagramasJulian La Torre
 
Cap 09 vigas-curvas-153-168_v7
Cap 09 vigas-curvas-153-168_v7Cap 09 vigas-curvas-153-168_v7
Cap 09 vigas-curvas-153-168_v7MARCO MUÑIZ
 
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...josefasapi
 
20 DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx
20  DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx20  DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx
20 DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptxManuel Carrion Andamayo
 
Flexocompresion muy completo
Flexocompresion muy completoFlexocompresion muy completo
Flexocompresion muy completoeduardo labarta
 
Deformación debida a la Flexión
Deformación debida a la FlexiónDeformación debida a la Flexión
Deformación debida a la FlexiónGabriel Pujol
 
Deformaci n en_vigas (1)
Deformaci n en_vigas (1)Deformaci n en_vigas (1)
Deformaci n en_vigas (1)Karlos Coba
 

Similar a Método de Doble Integración (20)

Capitulo08 a05
Capitulo08 a05Capitulo08 a05
Capitulo08 a05
 
Módulo 2 y 3
Módulo 2 y 3Módulo 2 y 3
Módulo 2 y 3
 
Resistencia ii 1er corte 10pct - robin gomez 9799075
Resistencia ii   1er corte 10pct - robin gomez 9799075Resistencia ii   1er corte 10pct - robin gomez 9799075
Resistencia ii 1er corte 10pct - robin gomez 9799075
 
Ecuación diferencial de la elástica
Ecuación diferencial de la elásticaEcuación diferencial de la elástica
Ecuación diferencial de la elástica
 
48099781 vigas-curvas
48099781 vigas-curvas48099781 vigas-curvas
48099781 vigas-curvas
 
Deflexión
Deflexión Deflexión
Deflexión
 
Analisis estructural 2
Analisis estructural 2Analisis estructural 2
Analisis estructural 2
 
1 156 179_107_1479
1 156 179_107_14791 156 179_107_1479
1 156 179_107_1479
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)
 
Sesion 1 1.1 fuerzas internas diagramas
Sesion 1   1.1 fuerzas internas diagramasSesion 1   1.1 fuerzas internas diagramas
Sesion 1 1.1 fuerzas internas diagramas
 
Cap 09 vigas-curvas-153-168_v7
Cap 09 vigas-curvas-153-168_v7Cap 09 vigas-curvas-153-168_v7
Cap 09 vigas-curvas-153-168_v7
 
Deflexion en vigas 2
Deflexion en vigas 2Deflexion en vigas 2
Deflexion en vigas 2
 
18840535 tipos-de-apoyos
18840535 tipos-de-apoyos18840535 tipos-de-apoyos
18840535 tipos-de-apoyos
 
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...
PPT ANALISIS APROXIMADO DE ESTRUCTURAS HIPERESTÁTICAS CONFORMADAS POR ELEMENT...
 
20 DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx
20  DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx20  DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx
20 DISEÑO DE COLUMNAS FLEXION Y CORTANTE.pptx
 
Flexocompresion muy completo
Flexocompresion muy completoFlexocompresion muy completo
Flexocompresion muy completo
 
Ficha 3
Ficha 3Ficha 3
Ficha 3
 
Deformación debida a la Flexión
Deformación debida a la FlexiónDeformación debida a la Flexión
Deformación debida a la Flexión
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
Deformaci n en_vigas (1)
Deformaci n en_vigas (1)Deformaci n en_vigas (1)
Deformaci n en_vigas (1)
 

Más de SistemadeEstudiosMed

Metodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfMetodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfSistemadeEstudiosMed
 
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfDE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfSistemadeEstudiosMed
 
Clase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxClase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxSistemadeEstudiosMed
 
nociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfnociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfSistemadeEstudiosMed
 
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptUNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptSistemadeEstudiosMed
 
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptUnidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptSistemadeEstudiosMed
 
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfLineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfSistemadeEstudiosMed
 

Más de SistemadeEstudiosMed (20)

Metodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfMetodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdf
 
DE-04-COMPRESORES-2022.pdf
DE-04-COMPRESORES-2022.pdfDE-04-COMPRESORES-2022.pdf
DE-04-COMPRESORES-2022.pdf
 
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfDE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
 
DE-02-FLUJO DE FLUIDOS-2022.pdf
DE-02-FLUJO DE FLUIDOS-2022.pdfDE-02-FLUJO DE FLUIDOS-2022.pdf
DE-02-FLUJO DE FLUIDOS-2022.pdf
 
DE-01-INTRODUCCION-2022.pdf
DE-01-INTRODUCCION-2022.pdfDE-01-INTRODUCCION-2022.pdf
DE-01-INTRODUCCION-2022.pdf
 
Clase 3 Correlación.ppt
Clase 3 Correlación.pptClase 3 Correlación.ppt
Clase 3 Correlación.ppt
 
Clase 2 Medidas Estadisticas.ppt
Clase 2 Medidas Estadisticas.pptClase 2 Medidas Estadisticas.ppt
Clase 2 Medidas Estadisticas.ppt
 
Clase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxClase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptx
 
nociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfnociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdf
 
¿Cómo elaborar un Mapa Mental?
¿Cómo  elaborar un  Mapa Mental?¿Cómo  elaborar un  Mapa Mental?
¿Cómo elaborar un Mapa Mental?
 
Unidad 1 Planificación Docente
Unidad 1 Planificación Docente Unidad 1 Planificación Docente
Unidad 1 Planificación Docente
 
hablemos_pp2_inf.pptx
hablemos_pp2_inf.pptxhablemos_pp2_inf.pptx
hablemos_pp2_inf.pptx
 
UNIDAD 3 FASE METODOLOGICA.pptx
UNIDAD 3 FASE METODOLOGICA.pptxUNIDAD 3 FASE METODOLOGICA.pptx
UNIDAD 3 FASE METODOLOGICA.pptx
 
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptUNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
 
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptUnidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
 
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfLineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
 
unidad quirurgica.pdf
unidad quirurgica.pdfunidad quirurgica.pdf
unidad quirurgica.pdf
 
Cuidados preoperatorios.pdf
Cuidados preoperatorios.pdfCuidados preoperatorios.pdf
Cuidados preoperatorios.pdf
 
Cirugía..pdf
Cirugía..pdfCirugía..pdf
Cirugía..pdf
 
Cirugía Ambulatoria2.pdf
Cirugía Ambulatoria2.pdfCirugía Ambulatoria2.pdf
Cirugía Ambulatoria2.pdf
 

Último

La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
UNIDAD DPCC. 2DO. DE SECUNDARIA DEL 2024
UNIDAD DPCC. 2DO. DE  SECUNDARIA DEL 2024UNIDAD DPCC. 2DO. DE  SECUNDARIA DEL 2024
UNIDAD DPCC. 2DO. DE SECUNDARIA DEL 2024AndreRiva2
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 

Último (20)

La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
UNIDAD DPCC. 2DO. DE SECUNDARIA DEL 2024
UNIDAD DPCC. 2DO. DE  SECUNDARIA DEL 2024UNIDAD DPCC. 2DO. DE  SECUNDARIA DEL 2024
UNIDAD DPCC. 2DO. DE SECUNDARIA DEL 2024
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 

Método de Doble Integración

  • 1. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 1 8 DEFORMACIONES EN LA FLEXIÓN 8.1 ANALISIS DE DEFORMACIONES 8.1.1 Generalidades Las piezas flexadas sufren desplazamientos o deflexiones, cuyo control es tan importante para garantizar el buen comportamiento estructural como la verificación de la resistencia. Cuando la estructura presenta deformaciones excesivas, la percepción de las mismas por parte de los usuarios genera en éstos una sensación de alto riesgo. No sólo esto es muy significativo sino que también pueden aparecer problemas colaterales tales como fisuración en tabiques de mampostería que apoyen sobre la estructura y en cielorrasos. Los elementos de máquinas, debido a grandes deflexiones pueden presentar desgastes prematu- ros u originar efectos vibratorios inadecuados. El conocimiento de las deformaciones resulta también sumamente importante desde el punto de vista constructivo. En efecto, si se conoce por ejemplo, la flecha máxima que tendrá una viga de hormigón armado sometida a las cargas permanentes, cuando se la construye puede contraflecharse el encofrado de manera tal de compensar esa deformación, de modo que la pieza quede para ese estado de cargas sin deformación aparente. Por otro lado, no es posible conocer las características dinámicas y vibratorias de un elemento estructural sino se analizan deformaciones. Así mismo, y atendiendo a lo que hemos demostrado en el artículo 3.2, el análisis de las deflexiones resulta imprescindible para la resolución estática de piezas flexadas hiperestáticas. Todo esto ha motivado la existencia de numerosos métodos de cálculo de deformaciones, algu- nos aplicables a cualquier tipo de estructuras y otros solamente a estructuras lineales. A continuación analizaremos algunos de estos métodos. 8.1.2 Línea elástica 8.1.2.1 Ecuación Llamaremos “Línea elástica” a la forma que adopta el eje de una viga al producirse la defor- mación de la misma por acción de las cargas exteriores. Para deducir la ecuación de la elástica vamos a suponer que las deformaciones son pequeñas. Además solo consideramos las deformaciones debidas a los momentos flectores. (ver art. 7.8)
  • 2. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 2 El ángulo que forma la tangente a la elástica en un pun- to con respecto a la horizontal, es el mismo que habrá girado la sección recta en dicho punto con respecto a la vertical. Si consideramos otra sección ubicada a una distancia dz con respecto a la anterior, entre ambas habrá un giro relativo dθ. ds d 1 d ds θ = ρ → θ ρ = (8.1) dz d 1 dz ds θ = ρ → = ≅ Por ser θ un ángulo pequeño: ρ = = θ → = θ ≅ θ 1 dz dy dz d dz dy tg 2 2 (8.2) Para los ejes coordenados elegidos vemos que a valores crecientes de z corresponden valores decrecientes de θ. En consecuencia, en la ecuación 8.2 debemos afectar al primer tér- mino de un signo menos. EI M 1 dz dy 2 2 = ρ = − (8.3) EI M ´´ y (z) − = Ecuación diferencial de la línea Elástica (8.4) Cuando la barra es muy flexible y los desplazamientos no son pequeños debe utilizarse para la curvatura la expresión rigurosa: 2 3 2 2 2 dz dy 1 dz dy 1               + − = ρ (8.5) Conocida en cada caso la función que define la variación del momento flector, por integración de la ecuación diferencial 8.4 se determina la correspondiente ecuación de la línea elástica, la que permite obtener el corrimiento máximo o “flecha”. En la práctica usualmente se acotan los valores relativos flecha – luz (f/L). Cuando las vigas tienen luces muy grandes y cargas de poca consideración, son frecuentemente determinantes en el dimensionamiento las condiciones relativas a las flechas. 500 1 a 300 1 l f max =       (8.6) Fig. 8.2 cc θ d c ρ θ θ dz dy ds P z
  • 3. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 3 Para la deducción de la ecuación de la elástica, en algunas circunstancias resulta mas práctico partir de la ecuación del corte o de la carga. Eso no es ningún inconveniente ya que conocemos la si- guiente relación: ) z ( q dz Q d z d M d 2 2 − = = (8.7) luego: EI M y (z) ll − = EI Q y (z) lll − = (8.8) EI q y (z) lV = 8.1.2.2. Ejemplos de aplicación a) Elástica de una viga simplemente apoyada sometida a una carga uniformemente repartida. 1 3 2 l (z) ll 2 (z) C 6 z q 4 qLz y EI M y EI 2 z q z 2 qL M + − = − = − = 2 1 4 3 C z C 24 z q 12 qLz y EI + + + − = Para encontrar las constantes de integración debemos considerar las siguientes condiciones de borde:               +       −       − =       + + − = = → = + + − → = = → = = = L z L z 2 L z EI 24 qL y z 24 qL 24 z q z 12 qL EI 1 y 24 L q C 0 L C 24 L q 12 qL 0 y 0 C 0 y 3 4 4 ) z ( 3 4 3 ) z ( 3 1 1 4 4 ) L z ( 2 ) 0 z ( (8.9) Fig. 8.3
  • 4. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 4 Por razones de simetría la flecha máxima se produce para z = L/2 EI qL 384 5 f EI qL 384 5 2 1 4 1 16 1 EI 24 qL f 4 4 4 = =       + − = (8.10) b) Elástica de una ménsula con carga uniformemente repartida 2 1 4 1 3 l 2 ll 2 ) z ( C z C 24 z q y EI C 6 z q y EI 2 z q y EI 2 z q M + + = + = = − = 8 L q C 0 C 6 L q 24 L q 0 y 6 L q C 0 ´ y L z 4 2 2 4 4 3 1 = → = + − → = − = → = → =       +       −       =       + − = 1 L z 3 4 L z 3 1 8EI qL y 8 L q z 6 L q 24 z q EI 1 y 4 4 ) z ( 4 3 4 ) z ( (8.11) EI 8 L q f 4 = (8.12) c) Elástica de una viga simplemente apoyada sometida a una carga concentrada ( ) ( ) a z P z L Pb ´´ y EI L z a z L Pb ´´ y EI a z a z P z L Pb M L z a z L Pb M a z ) z ( ) z ( − + − = ≤ < − = ≤ − − = ≤ < = ≤ Fig. 8.4 q z L fmax
  • 5. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 5 Dado que la función momento no queda expresada mediante una única ley debemos inte- grar en dos campos distintos. ( ) ( ) 4 2 2 3 d 3 1 3 i 2 2 2 d 1 2 i C z C 2 a z P z L 6 Pb y EI C z C z L 6 Pb y EI C 2 a z P z L 2 Pb ´ y EI C z L 2 Pb ´ y EI + + − + − = + + − = + − + − = + − = ( ) 1 2 2 2 2 3 2 d 4 3 i 4 3 d i 2 1 d i C b L L 6 Pb C 0 L C 6 Pb 6 PbL 0 y L z 0 C 0 C 0 y 0 z C C y y C C ´ y ´ y a z = − = = + + − → = → = = ⇒ = → = → = = → = = → = → = ( ) [ ] ( ) ( )       − + − + − = ≤ < − + − = ≤ z L b L b a z L bz EI 6 P y L z a z b L z EI L 6 Pb y a z 2 2 3 3 ) z ( 2 2 3 ) z ( (8.13) En el caso particular en que la carga se encuentra en la mitad de la luz: EI 48 L P f 3 = (8.14) 8.1.3 Método del área del diagrama de momentos 8.1.3.1 Teoremas del área del diagrama de momentos reducidos Si relacionamos las ecuaciones 8.1 y 8.3 analizadas precedentemente llegamos a la siguiente expresión: EI M ds d = θ (8.15)
  • 6. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 6 y siendo ds ≅ dz obtenemos: dz EI M d = θ (8.16) Consideremos una porción de línea elástica comprendida entre dos puntos cualesquiera A y B, tal como se indica en la figura 8.6. Las tangentes a la línea elástica en los puntos extremos, indicadas a través de las segmentos AB´ y A´B, forman entre si un ángulo θ que suponemos pequeño. Supongamos que el diagrama entre los puntos A1 y B1 es el diagrama de momentos flectores dividido por EI correspondiente a la estructura que presenta la elástica supuesta. A este diagrama lo denominaremos “diagrama de momentos reducidos”. Si consideramos dos secciones de la elástica muy próximas, separadas entre si ds, ambas secciones presentan un giro relativo dθ. En virtud de la ecuación 8.16 ese valor re- sulta ser igual al área de la franja rayada del diagrama de momentos reducidos. Luego, si integramos la ecua- ción 8.16 obtenemos el ángulo θ que forman las tangen- tes externas. ∫ = θ B A dz EI M (8.17) El resultado de la integral dada por la ecuación 8.17 no es sino el área del diagrama de mo- mentos reducidos, con lo cual puede enunciarse el siguiente teorema: TEOREMA I: El ángulo θ comprendido entre dos tangentes en dos puntos cualesquiera A y B de la lí- nea elástica, es igual al área total del trozo correspondiente del diagrama de momentos reducidos. Consideramos nuevamente la figura 8.6 y observemos el segmento BB’. Podemos apreciar que cada segmento ds de la elástica contribuye a la longitud f en una cantidad z*dθ. Luego, integran- do estas distancias podemos obtener el valor de f. ∫ ∫ = θ = B A B A dz z EI M d z f (8.18) Dado que el producto dz EI M es el área de la franja rayada del diagrama de momentos reduci- dos, la integral de la ecuación 8.18 resulta ser el momento estático con respecto a B del área del dia- grama de momentos reducidos. Esto último permite enunciar el siguiente teorema: TEOREMA II: Dado dos puntos A y B pertenecientes a una línea elástica, la ordenada de B respecto a la tangente en A es igual al momento estático con respecto a B del área de momentos reducidos com- prendida entre A y B. Fig. 8.6
  • 7. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 7 El momento estático recientemente mencionado puede calcularse en forma muy simple multi- plicando el área total del diagrama de momentos reducidos comprendida entre A y B por la distancia a su centro de gravedad. Por otro lado,si la figura que representa el diagrama puede descomponerse en figuras elementales tales como rectángulos, triángulos, parábolas, etc., el momento estático total resultara ser la suma de los correspondientes a cada una de las figuras elementales. Una observación muy importante en cuanto a la aplicación de los teoremas anteriores es que cuando la elástica tiene un punto de inflexión el diagrama de momentos reducidos cambia de signo, en ese caso cada parte del diagrama debe tratarse con su propio signo. Usualmente los dos teoremas anteriores se conocen como Teoremas de Mohr, sin embargo és- tos fueron presentados por Green en 1873, Mohr había presentado en 1868 un artículo donde desarro- llaba las bases del método conocido como “Método de la viga conjugada”, el que veremos luego. 8.1.3.2 Aplicaciones a) Ejemplo 1 En este caso vamos a determinar la flecha δ y el ángulo θ en el borde libre de la estructura en voladizo de la figura 8.7. Dado que la tangente a la elástica en B co- incide con el eje no flexado de la viga, la flecha δ resulta ser el desplazamiento de A respecto a la tangente en B. Aplicando entonces el teorema II tenemos: EI 3 PL L 3 2 2 L EI PL 3 = = δ (8.18) Idénticamente, la pendiente en A es el án- gulo que forma las tangentes en A y B, por lo que según el teorema I tenemos: EI 2 PL 2 L EI PL 2 = = θ (8.19) b) Ejemplo 2 A continuación vamos a determinar el valor de la flecha máxima que se produce en la viga simplemen- te apoyada de la figura 8.8. La flecha máxima tiene lugar en el punto C donde la tangente a la elástica es horizontal. El ángulo entre las tangentes en A y C resulta igual a θA. Este án- gulo podemos calcularlo de la siguiente manera: Aplicando el teorema II podemos calcular la distancia BB’. Fig. 8.7 L P B G´ θ EI=cte. A δ PL EI 2 3 L Fig. 8.8
  • 8. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 8 ( ) b L 6EI Pab ' BB b 3 2 2 b L EI Pab b 3 a 2 a L EI Pab ' BB + = +       + = La distancia anterior también puede calcularse como: L ' BB A θ = Con lo que tenemos: ( ) L 6 b L ab EI P A + = θ (8.20) Por otro lado, el área rayada en el diagrama de momentos reducidos también debe darnos el valor de θA. Siendo que ya conocemos el valor de este ángulo podemos calcular z, que es la distancia desde A hasta el punto donde la flecha es máxima. ( ) ( ) 3 b L a z L 6 b L ab EI P 2 z z L EI Pb A + = → + = = θ (8.21) Si aplicamos el teorema II podemos determinar la distancia CC’, a partir de la cual determi- namos δmax. ( ) 3 A max 3 z L EI 6 Pb z L 6 b L ab EI P ' CC z L EI 6 z Pb 3 z 2 z z L EI Pb ' CC − + = − θ = δ = = ( )3 3 max b L a L 3 9 Pb + = δ (8.22) c) Ejemplo 3 En este ejemplo vamos a determinar el descenso del punto D de la viga Gerber de la figura 8.9.
  • 9. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 9 ( ) ( ) B ' B 3 1 C ' C 3 4 ' D ' ' ' D B ' B B ' B C ' C a 3 a 4 ' D ' ' ' D a 3 B ' B C ' C a 3 B ' B a 3 C ' C a 4 ' ' D ' ' ' D B ' B D ' ' D D ' ' D ' ' D ' ' ' D ' D ' ' ' D ' DD D D 1 2 3 3 D + − = δ − − − = δ − = − = θ − θ = θ θ = = − − = = δ B ' B 3 1 C ' C 3 4 ' D ' ' ' D D + − = δ (8.23) Las distancias D’’’D’, C’C y B’B pueden calculase utilizando el teorema II. La distancia D’’’D’ resulta ser igual al momento estático respecto del punto D del diagrama de momentos reduci- dos comprendido entre los puntos B1 Y D1, la distancia C’C puede calcularse como el momento está- tica respecto del punto C del diagrama de momentos reducidos comprendido entre los puntos B1 y C1, y la distancia B’B se calcula como el momento estático respecto del punto B de la parte del diagrama de momentos reducidos comprendidos entre los puntos A1 y B1. Fig. 8.9
  • 10. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 10 EI Pa 2 3 a 2 a 3 EI Pa C ' C EI Pa 3 10 a 3 2 2 a EI Pa a 2 a 2 3 EI Pa ' D ' ' ' D 3 3 = = = + = EI Pa 27 37 EI Pa 27 1 EI Pa 2 EI Pa 3 10 EI 9 Pa a 3 2 2 a EI 3 Pa B ' B 3 3 3 3 D 3 = + − = δ = = EI Pa 27 37 3 D = δ (8.24) 8.1.4. Método de la viga conjugada Recordemos dos ecuaciones diferenciales ya conocidas: q z d M d 2 2 − = (8.25) EI M z d y d 2 2 − = (8.26) Como ya sabemos, la ecuación 8.25 relaciona el momento flector con la carga aplicada, mien- tras que la ecuación 8.26 da la relación existente entre la elástica y el momento flector reducido, tal como denominamos a la relación M/(EI) en el ítem anterior. Si consideramos al diagrama de momentos reducidos o diagrama de curvaturas, como un dia- grama de cargas ficticias q* = M/(EI) aplicado sobre una viga también ficticia y que llamaremos “viga conjugada”, de la identidad formal entre las dos ecuaciones anteriores surge que la línea elástica de una viga coincide con el diagrama de momentos ficticios M* producido en todas las secciones de su viga conjugada cargada con la carga q* . En otras palabras: * M y = (8.27) Esta última conclusión se conoce como Teorema de Mohr sobre la linea elástica, y al diagra- ma de momentos reducidos utilizando como carga se lo denomina “carga elástica”. Si la viga es homogénea y de sección constante (EI= cte), la viga conjugada puede cargarse di- rectamente con el diagrama de momentos, siempre que luego los resultados sean divididos por EI. Si derivamos la ecuación 8.27 obtenemos: ∗ = = θ = Q dz M d tg ' y * (8.28) siendo Q* el esfuerzo de corte ficticio originado en la viga conjugada por la carga q* . La ecuación 8.28 nos muestra que el diagrama de esfuerzos de corte Q* nos da, para cualquier sección de la viga real, el valor de la tangente de la línea elástica. Dado que el esfuerzo de corte Q* en los extremos de la viga conjugada se corresponde con las reacciones de vínculo, éstas representan numéricamente los giros de la elástica de la viga real en correspondencia con sus apoyos.
  • 11. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 11 B B A A R R θ = θ = ∗ ∗ (8.29) En cuanto a las características de la viga conjugada, dado que al cargarse ésta con las cargas elásticas su diagrama de momentos flectores debe representar exactamente la elástica de la viga real, sus vínculos deben elegirse de manera tal que se respeten estas premisas. Consideremos el ejemplo de la figura 8.10. En el punto A no tenemos flecha ni pendiente, en el punto B hay un descenso y además la pendiente a la derecha es distinta que a la izquierda, en el punto C no hay descenso pero sí existe un giro, y en el punto D tenemos flecha y pendiente. ( ) libre extremo un tener debe conjugada viga La 0 Q pendiente hay No 0 M flecha hay No A      = → = → ∗ ∗ ( ) intermedio móvil apoyo un tener debe conjugada viga La izquierda 0 Q a que derecha a distinta 0 Q resulta y pendiente Hay 0 M flecha Hay B d i          ≠ ≠ → ≠ → ∗ ∗ ∗ ( ) simple ón articulaci una tener debe conjugada viga La izquierda 0 Q Q a que derecha a igual resulta y pendiente Hay 0 M flecha hay No C d i          ≠ = → = → ∗ ∗ ∗ Fig. 8.10 Fig. 8.10
  • 12. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 12 ( ) nto empotramie un tener debe conjugada viga La 0 Q pendiente Hay 0 M flecha Hay D      ≠ → ≠ → ∗ ∗ Las conclusiones que hemos obtenido apoyándonos en el ejemplo citado pueden generalizarse de la siguiente manera: En algunos casos, en especial cuando las estructuras son estáticamente indeterminadas, la viga conjugada puede resultar inestable. Este inconveniente queda resuelto cuando se carga a la misma, ya que el propio estado de cargas le confiere estabilidad. 8.2 VIGAS ESTATICAMENTE INDETERMINADA 8.2.1 Resolución por superposición Consideremos la estructura de la figura 8.11, que consiste en una viga sustentada en A mediante un apoyo fijo y en B y C mediante dos apoyos móviles. Debido a las cargas actuantes, en los vínculos mencionados aparecen reaccio- nes. Si realizamos el diagrama de cuerpo libre y planteamos las condiciones de equilibrio pode- mos ver que por tratarse de una chapa plana, só- lo pueden formularse tres ecuaciones de equili- brio linealmente independientes, mientras que tenemos cuatro incógnitas. ∑ ∑ ∑ = = = 0 M 0 Y 0 X (8.30) VIGA REAL VIGACONJUGADA Fig. 8.11
  • 13. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 13 Dado que las ecuaciones 8.30 no son suficientes para determinar las cuatro reacciones, deci- mos que la viga resulta “estáticamente indeterminada” o “hiperestática”. En lo que respecta a la Está- tica, no hay manera alguna de determinar las reacciones en los apoyos tratando al cuerpo como rígi- do; éstas solamente pueden calcularse si analizamos las deformaciones de la estructura. Una forma de resolver estáticamente la estructura planteada es la siguiente: a- En primera instancia quitamos el apoyo en B. Dado que a pesar de ello la estructura sigue siendo estable, decimos que este apoyo es “superabundante”. Algo semejante hubiese ocurrido si en lugar de eliminar el apoyo en B hubiésemos quitado el apoyo en C. b- A continuación estudiamos la estructura simplemente apoyada que nos queda, la cual se denomina “sistema primario o fun- damental”. Este sistema se deforma, y su elástica presenta un corrimiento vertical δ’B en correspondencia con el apoyo eliminado. Si su- ponemos la existencia de una carga concentrada RB, ésta ac- tuando independiente produce una elástica que genera en correspondencia con B un desplazamiento ' ' B δ . c- Finalmente, dado que el desplazamiento δB = 0 tenemos: 0 ' ' B ' B B = δ − δ = δ (8.31) Esta ultima ecuación nos permite obtener el valor de RB, y conociendo su valor, con las ecua- ciones de la Estática determinamos las reacciones faltantes. Para clarificar estas ideas a continuación vamos a resolver el ejemplo de la figura 8.13. En el sistema primario, bajo la acción de la carga repartida tenemos: ( ) EI L 2 q 384 5 4 ' B = δ (ver ec. 8.10) Bajo la acción de RB tenemos: ( ) EI L 2 48 R 3 B ' ' B = δ (ver ec. 8.14) ( ) ( ) ( ) qL 4 5 L 2 q 8 5 R EI L 2 q 384 5 EI L 2 48 R B 4 3 B ' B ' ' B = = = → δ = δ Por simetría: qL 8 3 R V qL 4 5 L 2 q 2 1 R V C A C A = =       − = = Fig. 8.12
  • 14. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 14 Para resolver este tipo de viga nos basamos en el Método o Principio de superposición”. 8.2.2 Vigas hiperestáticas de un solo tramo En lo que sigue resolveremos algunos ejemplos de las vigas hiperestáticas de un solo tramo, aplicando el método de superposición. a) Viga empotrada – empotrada sometida a una carga concentrada Elegimos como sistema primario la viga simplemente apoya- da indicada en la figura 8.14 En este caso tenemos dos incógnitas hiperestáticas por calcular, MA y MB, ya que al no existir cargas horizontales las reacciones HA y HB son nulas. Los giros en los extremos A y B pueden determinarse por su- perposición de efectos de la siguiente manera: 0 0 2 B 1 B Bo B 2 A 1 A Ao A = θ + θ + θ = θ = θ + θ + θ = θ El ángulo θAo ya fue determinado en el art. 8.1.3.2 (ver ec. 8.20) ( ) L 6 b L ab EI P Ao + = θ En forma semejante a lo realizado oportunamente, puede demostrarse que: ( ) L 6 a L ab EI P Bo + − = θ Fig. 8.13 A B C P A a b P M B M L P Ao θ Bo θ L P ab θA1 B1 θ A M A M A2 B M θ B2 θ B M C M A M R A B R Fig. 8.14
  • 15. ESTABILIDAD II CAPITULO VIII: DEFORMACIONES EN LA FLEXIÓN /2005 15 Los ángulos θA1 y θB1 pueden ser calculados aplicando el teorema II del área del diagrama de momentos reducidos. 6EI L M 3 L 2 L EI M L 3EI L M L 3 2 2 L EI M L A 1 B A 1 B A 1 A A 1 A − = θ − = θ = θ = θ En forma idéntica obtenemos los giros θA2 y θB2 3EI L M 6EI L M B 2 B B 2 A − = θ = θ Luego resolviendo el siguiente sistema de ecuaciones podemos determinar los valores de las incógnitas hiperestáticas. ( ) ( ) L 6 a L ab EI P M 3EI L M 6EI L L 6 b L ab EI P M 6EI L M 3EI L B A B A + − = + + − = + 2 2 A L ab P M − = (8.32) 2 2 B L b a P M − = (8.33) Una vez conocidos los valores correspondientes a MA y MB es muy simple calcular las reacciones verticales y si inter- esa, el momento máximo MC. b) Viga empotrada – articulada sometida a una carga concen- trada Este caso es semejante al anterior pero mucho más simple ya que tenemos sólo una incógnita hiperestática por de- terminar. ( ) 0 3EI L M L 6 b L ab EI P 1 A Ao A A 1 A Ao = θ + θ = θ = θ + = θ ( ) 2 A L 2 b L Pab M + − = (8.34) A M A L θAo P P C B b a P A1 θ A M Fig. 8.15