SlideShare una empresa de Scribd logo
TRANSFERENCIA
DE CALOR
GUIA 2.
2. Conducción-convección en
estado estable, unidimensional
Resistencias térmicas para paredes
compuestas, cilindros y esferas
Resistencia Térmica
La resistencia térmica de un material representa la capacidad del
material de oponerse al flujo del calor. En el caso de materiales
homogéneos es la razón entre el espesor y la conductividad térmica del
material; en materiales no homogéneos la resistencia es el inverso de la
conductancia térmica.
Rterm =
𝒆
𝑲
*
Donde; “e” es el espesor (m) y “K” la conductividad térmica del
material (W/m-OC) por lo que las unidades de la resistencia térmica
serán (m2-OC/W).
(*): También llamada resistencia térmica por área.
Analogías Termo-eléctrica
Variables de Transferencia de
calor
1. Velocidad de transferencia de
calor (Q-punto)
2. Temperaturas (T)
3. Resistencia Térmica (Rth)
Variables de Electricidad
1. Intensidad de Corriente (I)
2. Tensión (V)
3. Resistencia eléctrica (R)
Calor en función a la resistencia
térmica
El flujo de calor que atraviesa un elemento, que dispone una
configuración de una o más resistencia térmicas, estará dada por la
expresión:
q =
Δ𝑇
Σ𝑅𝑡𝑒𝑟𝑚
Donde “ΔT” es la diferencia de las temperaturas involucradas (OC), en el
estudio y “ΣRterm” es la sumatoria de todas las resistencias térmicas
(OC/W) que hay en el sistema.
Resistencias térmicas según el
sistema en estudio
1. Paredes compuestas
Rterm =
𝑒
𝑘𝐴
Donde:
e = Espesor (m)
K = Conductividad térmica (W/m-OC)
A = Área perpendicular al flujo del calor (m2)
2. Cilindros Compuestos
Rterm =
Ln 𝑟𝑒/𝑟𝑖
2𝜋𝐿𝐾
Donde:
re = radio externo del cilindro (m).
ri = radio interno del cilindro (m).
L = longitud del cilindro (m).
K = Conductividad térmica del material (W/m-OC)
ri
re
3. Esferas Compuestas
Rterm =
𝑟𝑒−𝑟𝑖
𝑟𝑒·𝑟𝑖
4𝜋𝐾
Donde:
re = radio externo de la esfera (m).
ri = radio interno de la esfera (m).
K = Conductividad térmica del material (W/m-OC)
Resistencia térmica, de la convección
O De igual forma que el calor por conducción tiene sus respectivas
resistencias térmicas, según el sistema en estudio, también la
convección tiene una resistencia térmica particular:
Rh =
1
ℎ𝐴
O Donde:
h = coeficiente de convección (W/m2-OC).
A = Área perpendicular al flujo de calor (m2).
Representación de circuitos
termo-eléctricos
Ejercicios
La pared exterior de una casa puede aproximarse a una capa de
20cm de ladrillo corriente para fachada, seguida por una capa de
lana mineral y finalmente una capa de yeso de 4cm. ¿Qué espesor
de lana mineral debe añadirse para reducir en un 80% la pérdida de
calor, a través de la pared?
Solución
Primero debemos considerar la siguiente relación
𝑞 (𝑐𝑜𝑛 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜)
𝑞 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜)
= 0,20 =
Σ𝑅𝑡𝑒𝑟𝑚 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜)
Σ𝑅𝑡𝑒𝑟𝑚 (𝑐𝑜𝑛 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜)
Por tablas A.3 (pags 6 y 7) hallamos las conductividades térmicas del
ladrillo para fachada, el yeso y la lama mineral, respectivamente:
KL = 1, 32W/m- OC KY = 0,48W/m- OC Klm = 0,040W/m- OC
Determinamos las resistencias térmicas para el ladrillo y para el yeso:
RL =
𝑒
𝐾
=
0,20m
1, 32W/m− OC = 0,1515 m2-OC/W
Ahora la resistencia del yeso:
RY =
𝑒
𝐾
=
0,04m
0,48W/m− OC = 0,0833 m2-OC/W
De modo que la sumatoria de resistencias térmicas, sin aislante se:
Σ𝑅𝑡𝑒𝑟𝑚 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = RL + RY = 0,2348 m2-OC/W
Por tanto; Σ𝑅𝑡𝑒𝑟𝑚 (con 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) =
0,2348 m2−OC/W
0,20
, así que:
Σ𝑅𝑡𝑒𝑟𝑚 (con 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = 1,174 m2-OC/W
En otras palabras esto se puede escribir de esta forma:
1,174 m2-OC/W = Rlm + 0,2348 m2-OC/W; donde “Rlm” representa la
resistencia térmica de la lana mineral. Despejando y calculado Rlm,
tenemos:
Rlm = 0,9392 m2-OC/W
De la ecuación de la resistencia térmica del lana mineral, despejamos el
valor que corresponde al espesor “e”.
Rlm =
𝑒
𝑘
e = K·Rlm = (0,040W/m- OC)(0,9392m2- OC/W)
e = 0,037568 m (3,75 cm)
Considere una tubería que lleva una sustancia corrosiva a 600OC. La
tubería esta hecha en acero inoxidable, con 2cm de diámetro interno y
4cm como diámetro externo. Está recubierta por una capa de cloruro de
polivinilo de 3cm de espesor; la temperatura exterior es de 70OC, con un
coeficiente de convección de 51,43W/m2-OC. Calcúlese
a. La perdida de calor por unidad de longitud. (W/m)
b. La temperatura entre el tubo y el aislante. (OC)
ri
re
ra
Aislante e = 3cm
Tubo de acero
inoxidable
600OC
70OC; he = 51,43W/m2-OC
600OC
70OC
Tr = ?
Rtubr Raisl Rhe
q/L = ?
Solución
Lo primero es identificar todos los radios involucrados (ver la figura) ri =
0,01 m; re = 0,02 m y ra = re + e = (0,02 + 0,03)m = 0,05m
Luego se dibuja el circuito termo-.eléctrico y se identifican las resistencias
existentes, y los nodos de temperaturas. Hay tres resistencias, dos
conductivas y una por convección.
Iniciemos con las conductivas, primero necesitamos las conductividades
térmicas del acero inoxidable y el cloruro de polivinilo. Tablas A.2 y A.3.
K1 = 19 W/m-OC y K2 = 0,09W/m-OC
Identificamos las resistencias:
Rtubr = R1 =
Ln 𝑟𝑒/𝑟𝑖
2𝜋𝐾
=
Ln 0,02/0,01
2𝜋(19 W/m−OC)
= 5,8062x10-3 m-OC/W
Raisl = R2 =
Ln 𝑟𝑎/𝑟𝑒
2𝜋𝐾
=
Ln 0,05/0,02
2𝜋(0,09 W/m−OC)
= 1,6003 m-OC/W
Continuamos con el cálculo, ahora sigue la resistencia por convección
externa “Rhe”, entonces:
Rhe =
1
ℎ𝐴
=
1
(51,43W/m2−OC)(2π·0,05m)
= 61,8918x10-3 m-OC/W
Entonces la ΣRterm = Rturb + Raisl + Rhe = 1,667998 m-OC/W
Por lo tanto, el calor por unidad de longitud será:
q =
Δ𝑇
ΣRterm
=
(600OC – 70OC)
1,667998 m−OC/W
= 317,7461 W/m
Seguimos con la otra incógnita, la temperatura entre el tubo de acero y el
aislante, “Tr”. Conocemos el calor total; observemos el circuito térmico,
si nos vamos al nodo de la izquierda (600OC) contando hacia la derecha
hay una sola resistencia para llegar al nodo de “Tr” y desde el nodo de la
derecha (70OC) hasta el nodo de “Tr” hay dos resistencias.
Veamos el diagrama del circuito:
317,7461 W/m =
600OC −𝑇𝑟
Rtubr
Tr = 598,155OC
O bien
317,7461 W/m =
Tr − 70OC
Raisl +𝑅ℎ𝑒
Tr = 598,154OC
600OC
70OC
Tr = ?
Rtubr Raisl Rhe
q/L = 317,7461 W/m
Consideremos el mismo problema anterior, los mismos datos térmicos y
los mismo materiales, pero cambiemos la configuración por una esfera.
¿El calor será el mismo?, de ser diferente ¿A que se deberá?.
ri
re
ra
Aislante e = 3cm
Esfera de acero
inoxidable
600OC
70OC; he = 51,43W/m2-OC
Del problema anterior ya tenemos los radios involucrados como son:
ri = 0,01 m; re = 0,02 m y ra = 0,05m; también poseemos las
conductividades térmicas, para el acero inoxidable y el cloruro de
polivinilo, respectivamente: K1 = 19 W/m-OC y K2 = 0,09W/m-OC.
Solamente el áreas es distinta; A = [4πr2]. Calculando las resistencias:
Rtubr =
𝑟𝑒−𝑟𝑖
𝑟𝑒·𝑟𝑖
4𝜋𝐾1
=
0,02𝑚 −0,01𝑚
0,02𝑚·0,01𝑚
4π[19 W/m−OC]
= 0,2094 OC/W
Raisl =
𝑟𝑎−𝑟𝑒
𝑟𝑎·𝑟𝑒
4𝜋𝐾2
=
0,05𝑚 −0,02𝑚
0,05𝑚·0,02𝑚
4π[0,09W/m−OC]
= 26,5258 OC/W
Con un área de A = 4π[ra2] = 4π 0,05𝑚 2 = 0,031416m2
Rhe =
1
ℎ𝐴
=
1
(51,43W/m2−OC)(0,031416m2 )
= 0,6189 OC/W
Entonces la ΣRterm = Rturb + Raisl + Rhe = 27,3541 OC/W
Por lo tanto, el calor por unidad de longitud será:
q =
Δ𝑇
ΣRterm
=
(600OC – 70OC)
27,3541 OC/W
= 19,3755 W
La temperatura Tr, se puede calcular como:
19,3755 W =
600OC −𝑇𝑟
Rtubr
Tr = 595,942 OC
600OC
70OC
Tr = ?
Rtubr Raisl Rhe
q = 19,3755 W
Sencillo,
No!

Más contenido relacionado

La actualidad más candente

TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
carlos_albert_pd
 
Problemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tcProblemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tc
Yasmire Benitez Gamardo
 
Transferencia de-calor-por-convección (1)
Transferencia de-calor-por-convección (1)Transferencia de-calor-por-convección (1)
Transferencia de-calor-por-convección (1)
Gaby Medrano
 
Clase no 3 termodinamica básica
Clase no 3 termodinamica básicaClase no 3 termodinamica básica
Clase no 3 termodinamica básicaAlex Pitti Zuleta
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
Ignacio Roldán Nogueras
 
Volumen de control
Volumen de controlVolumen de control
Volumen de controlYormanP
 
Balances de energia
Balances de energiaBalances de energia
Balances de energiagerardito8
 
Tema 5 difusión en estado sólido
Tema 5 difusión en estado sólidoTema 5 difusión en estado sólido
Tema 5 difusión en estado sólido
Ignacio Roldán Nogueras
 
Clase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptxClase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptx
WILLIAMSESTEWARDCAST
 
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingeniería
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingenieríaEcuación diferencial de transferencia de calor y sus aplicaciones en ingeniería
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingenieríajalexanderc
 
Ejercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fasesEjercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fases
Jimmy Rivera
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
Oliver Aduvire
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
daszemog
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
jorgeph747
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor
Laura Nitola
 
Ejercicio 4
Ejercicio 4Ejercicio 4
Ejercicio 4
manesa
 
Dinámica de los fluidos
Dinámica de los fluidosDinámica de los fluidos
Dinámica de los fluidosdomingo osorio
 
Conducción Termodinámica
Conducción TermodinámicaConducción Termodinámica
Conducción TermodinámicaDash920820
 

La actualidad más candente (20)

TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
TRANSFERENCIA DE CALOR SUPERFICIES EXTENDIDAS (ALETAS)
 
Problemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tcProblemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tc
 
Transferencia de-calor-por-convección (1)
Transferencia de-calor-por-convección (1)Transferencia de-calor-por-convección (1)
Transferencia de-calor-por-convección (1)
 
Clase no 3 termodinamica básica
Clase no 3 termodinamica básicaClase no 3 termodinamica básica
Clase no 3 termodinamica básica
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
 
Volumen de control
Volumen de controlVolumen de control
Volumen de control
 
Balances de energia
Balances de energiaBalances de energia
Balances de energia
 
Tema 5 difusión en estado sólido
Tema 5 difusión en estado sólidoTema 5 difusión en estado sólido
Tema 5 difusión en estado sólido
 
Clase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptxClase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptx
 
3. psicrometria jm
3. psicrometria jm3. psicrometria jm
3. psicrometria jm
 
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingeniería
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingenieríaEcuación diferencial de transferencia de calor y sus aplicaciones en ingeniería
Ecuación diferencial de transferencia de calor y sus aplicaciones en ingeniería
 
Ejercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fasesEjercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fases
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Clase 16 12-2021
Clase 16 12-2021Clase 16 12-2021
Clase 16 12-2021
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor
 
Ejercicio 4
Ejercicio 4Ejercicio 4
Ejercicio 4
 
Dinámica de los fluidos
Dinámica de los fluidosDinámica de los fluidos
Dinámica de los fluidos
 
Conducción Termodinámica
Conducción TermodinámicaConducción Termodinámica
Conducción Termodinámica
 

Destacado

Guía 1. mecanismos de la transferencia del calor
Guía 1.  mecanismos de la transferencia del calorGuía 1.  mecanismos de la transferencia del calor
Guía 1. mecanismos de la transferencia del calor
Francisco Vargas
 
La resistencia 2º eso
La resistencia 2º esoLa resistencia 2º eso
La resistencia 2º esoJAESHUANMAR1
 
Tablas de transferencia de calor
Tablas de transferencia de calorTablas de transferencia de calor
Tablas de transferencia de calor
Francisco Vargas
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Francisco Vargas
 
Sesores para Nivel y Temperatura
Sesores para Nivel y TemperaturaSesores para Nivel y Temperatura
Sesores para Nivel y Temperatura
Francisco Vargas
 
Guia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cirGuia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cir
Francisco Vargas
 
Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.
Francisco Vargas
 
Diagramas de heisler
Diagramas de heislerDiagramas de heisler
Diagramas de heisler
Francisco Vargas
 
Act. 7
Act. 7Act. 7
Ejercicios 2. Mecánica Estática
Ejercicios 2. Mecánica EstáticaEjercicios 2. Mecánica Estática
Ejercicios 2. Mecánica Estática
Karen Nariño Nougués
 
Desarrollo de emprendedores sh
Desarrollo de emprendedores shDesarrollo de emprendedores sh
Desarrollo de emprendedores sh
Sair_Hernandez
 
Karen nariño
Karen nariñoKaren nariño
Karen nariño
Karen Nariño Nougués
 
Roberth tampoa
Roberth tampoaRoberth tampoa
Roberth tampoa
SlideShare Saia
 
Asignacion2
Asignacion2Asignacion2
Asignacion2
Sair_Hernandez
 
Karen nariño
Karen nariñoKaren nariño
Karen nariño
Karen Nariño Nougués
 
actividad 3
 actividad 3 actividad 3
actividad 3
endersonuft
 
Dibujar diagrama de cuerpo libre mecanica estatica
Dibujar  diagrama   de  cuerpo  libre mecanica estaticaDibujar  diagrama   de  cuerpo  libre mecanica estatica
Dibujar diagrama de cuerpo libre mecanica estatica
Jesus Quiñonez
 
Karen Nariño
Karen NariñoKaren Nariño
Karen Nariño
Karen Nariño Nougués
 
algebra roberth
algebra roberthalgebra roberth
algebra roberth
SlideShare Saia
 
Karen
KarenKaren

Destacado (20)

Guía 1. mecanismos de la transferencia del calor
Guía 1.  mecanismos de la transferencia del calorGuía 1.  mecanismos de la transferencia del calor
Guía 1. mecanismos de la transferencia del calor
 
La resistencia 2º eso
La resistencia 2º esoLa resistencia 2º eso
La resistencia 2º eso
 
Tablas de transferencia de calor
Tablas de transferencia de calorTablas de transferencia de calor
Tablas de transferencia de calor
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
 
Sesores para Nivel y Temperatura
Sesores para Nivel y TemperaturaSesores para Nivel y Temperatura
Sesores para Nivel y Temperatura
 
Guia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cirGuia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cir
 
Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.
 
Diagramas de heisler
Diagramas de heislerDiagramas de heisler
Diagramas de heisler
 
Act. 7
Act. 7Act. 7
Act. 7
 
Ejercicios 2. Mecánica Estática
Ejercicios 2. Mecánica EstáticaEjercicios 2. Mecánica Estática
Ejercicios 2. Mecánica Estática
 
Desarrollo de emprendedores sh
Desarrollo de emprendedores shDesarrollo de emprendedores sh
Desarrollo de emprendedores sh
 
Karen nariño
Karen nariñoKaren nariño
Karen nariño
 
Roberth tampoa
Roberth tampoaRoberth tampoa
Roberth tampoa
 
Asignacion2
Asignacion2Asignacion2
Asignacion2
 
Karen nariño
Karen nariñoKaren nariño
Karen nariño
 
actividad 3
 actividad 3 actividad 3
actividad 3
 
Dibujar diagrama de cuerpo libre mecanica estatica
Dibujar  diagrama   de  cuerpo  libre mecanica estaticaDibujar  diagrama   de  cuerpo  libre mecanica estatica
Dibujar diagrama de cuerpo libre mecanica estatica
 
Karen Nariño
Karen NariñoKaren Nariño
Karen Nariño
 
algebra roberth
algebra roberthalgebra roberth
algebra roberth
 
Karen
KarenKaren
Karen
 

Similar a Guía 2. calor estacionario unidimensional, por resistencias térmicas

Ejer_transf_calortermotecniaquimicaa.pdf
Ejer_transf_calortermotecniaquimicaa.pdfEjer_transf_calortermotecniaquimicaa.pdf
Ejer_transf_calortermotecniaquimicaa.pdf
AlvaroZuiga24
 
Eg034 conduccion resistencias de contacto
Eg034 conduccion resistencias de contactoEg034 conduccion resistencias de contacto
Eg034 conduccion resistencias de contactodalonso29
 
transferencia-de-calor.ppt
transferencia-de-calor.ppttransferencia-de-calor.ppt
transferencia-de-calor.ppt
AcademiaSanRoque
 
transferencia-de-calor.ppt
transferencia-de-calor.ppttransferencia-de-calor.ppt
transferencia-de-calor.ppt
RojasSotoEduardo
 
Mecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calorMecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calor
Francisco Vargas
 
Eg032 conduccion resistencias en serie pared cilindrica
Eg032 conduccion resistencias en serie pared cilindricaEg032 conduccion resistencias en serie pared cilindrica
Eg032 conduccion resistencias en serie pared cilindricadalonso29
 
Eg037 conduccion superficies extendidas 3
Eg037 conduccion superficies extendidas 3Eg037 conduccion superficies extendidas 3
Eg037 conduccion superficies extendidas 3dalonso29
 
180756774 ejercicios-ing-procesos
180756774 ejercicios-ing-procesos180756774 ejercicios-ing-procesos
180756774 ejercicios-ing-procesos
JohnOrteg1
 
Instrumentación
Instrumentación Instrumentación
Instrumentación
Jose Blanco Banderas
 
02 calor termometria
02 calor termometria02 calor termometria
02 calor termometria
Jean C. Anaya'
 
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
maria Apellidos
 
Tippens fisica 7e_diapositivas_18
Tippens fisica 7e_diapositivas_18Tippens fisica 7e_diapositivas_18
Tippens fisica 7e_diapositivas_18Robert
 
Introducción a la Ingeniería cap3
Introducción a la Ingeniería cap3Introducción a la Ingeniería cap3
Introducción a la Ingeniería cap3
Francisco Apablaza
 
Módulos control de temperatura termocuplas
Módulos control de temperatura termocuplasMódulos control de temperatura termocuplas
Módulos control de temperatura termocuplas
Nelson Javier Guerrero Camacho
 
Conducción superficies extendidas y generació
Conducción superficies extendidas y generacióConducción superficies extendidas y generació
Conducción superficies extendidas y generació
brenesartaviamaria
 
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).pptTRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
Fernando Zapata
 
2 transferencia de_calor_2
2 transferencia de_calor_22 transferencia de_calor_2
2 transferencia de_calor_2shider
 
Capítulo 18. Transferencia de calor.ppt
Capítulo 18. Transferencia de calor.pptCapítulo 18. Transferencia de calor.ppt
Capítulo 18. Transferencia de calor.ppt
CuauhtmocCastaosMart
 
U 3 resistencias m1 u1
U 3 resistencias m1 u1U 3 resistencias m1 u1
U 3 resistencias m1 u1
Rafael Llopis Ruiz
 
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
JasminSeufert
 

Similar a Guía 2. calor estacionario unidimensional, por resistencias térmicas (20)

Ejer_transf_calortermotecniaquimicaa.pdf
Ejer_transf_calortermotecniaquimicaa.pdfEjer_transf_calortermotecniaquimicaa.pdf
Ejer_transf_calortermotecniaquimicaa.pdf
 
Eg034 conduccion resistencias de contacto
Eg034 conduccion resistencias de contactoEg034 conduccion resistencias de contacto
Eg034 conduccion resistencias de contacto
 
transferencia-de-calor.ppt
transferencia-de-calor.ppttransferencia-de-calor.ppt
transferencia-de-calor.ppt
 
transferencia-de-calor.ppt
transferencia-de-calor.ppttransferencia-de-calor.ppt
transferencia-de-calor.ppt
 
Mecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calorMecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calor
 
Eg032 conduccion resistencias en serie pared cilindrica
Eg032 conduccion resistencias en serie pared cilindricaEg032 conduccion resistencias en serie pared cilindrica
Eg032 conduccion resistencias en serie pared cilindrica
 
Eg037 conduccion superficies extendidas 3
Eg037 conduccion superficies extendidas 3Eg037 conduccion superficies extendidas 3
Eg037 conduccion superficies extendidas 3
 
180756774 ejercicios-ing-procesos
180756774 ejercicios-ing-procesos180756774 ejercicios-ing-procesos
180756774 ejercicios-ing-procesos
 
Instrumentación
Instrumentación Instrumentación
Instrumentación
 
02 calor termometria
02 calor termometria02 calor termometria
02 calor termometria
 
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
ilide.info-conduccion-unidimensional-en-estado-estable-pr_46b5419722a523e080a...
 
Tippens fisica 7e_diapositivas_18
Tippens fisica 7e_diapositivas_18Tippens fisica 7e_diapositivas_18
Tippens fisica 7e_diapositivas_18
 
Introducción a la Ingeniería cap3
Introducción a la Ingeniería cap3Introducción a la Ingeniería cap3
Introducción a la Ingeniería cap3
 
Módulos control de temperatura termocuplas
Módulos control de temperatura termocuplasMódulos control de temperatura termocuplas
Módulos control de temperatura termocuplas
 
Conducción superficies extendidas y generació
Conducción superficies extendidas y generacióConducción superficies extendidas y generació
Conducción superficies extendidas y generació
 
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).pptTRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
TRANSFERENCIA DE CALOR-MC GRAW HILL (1).ppt
 
2 transferencia de_calor_2
2 transferencia de_calor_22 transferencia de_calor_2
2 transferencia de_calor_2
 
Capítulo 18. Transferencia de calor.ppt
Capítulo 18. Transferencia de calor.pptCapítulo 18. Transferencia de calor.ppt
Capítulo 18. Transferencia de calor.ppt
 
U 3 resistencias m1 u1
U 3 resistencias m1 u1U 3 resistencias m1 u1
U 3 resistencias m1 u1
 
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
 

Más de Francisco Vargas

Problemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saiaProblemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saia
Francisco Vargas
 
Guía de engranajes 2
Guía de engranajes 2Guía de engranajes 2
Guía de engranajes 2
Francisco Vargas
 
Guía de engranajes 1
Guía de engranajes 1Guía de engranajes 1
Guía de engranajes 1
Francisco Vargas
 
Engranajes dinámica
Engranajes dinámicaEngranajes dinámica
Engranajes dinámica
Francisco Vargas
 
Teorías introductorias a los mecanismos
Teorías introductorias a los  mecanismosTeorías introductorias a los  mecanismos
Teorías introductorias a los mecanismos
Francisco Vargas
 
Concepto y definiciones de cinemática
Concepto y definiciones de cinemáticaConcepto y definiciones de cinemática
Concepto y definiciones de cinemática
Francisco Vargas
 
Medicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicasMedicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicas
Francisco Vargas
 
Que es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagramQue es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagram
Francisco Vargas
 
Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calor
Francisco Vargas
 
Transmisiones de correa y de cadena
Transmisiones de correa y de cadenaTransmisiones de correa y de cadena
Transmisiones de correa y de cadena
Francisco Vargas
 
Generadores de vapor
Generadores de vaporGeneradores de vapor
Generadores de vapor
Francisco Vargas
 
Tablas termodinamica
Tablas termodinamicaTablas termodinamica
Tablas termodinamica
Francisco Vargas
 
Sensores de Velocidad-caudal
Sensores de Velocidad-caudalSensores de Velocidad-caudal
Sensores de Velocidad-caudal
Francisco Vargas
 
Sensores de Presión
Sensores de PresiónSensores de Presión
Sensores de Presión
Francisco Vargas
 
Conceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y controlConceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y control
Francisco Vargas
 
Unidad 2 sustancias puras
Unidad 2 sustancias purasUnidad 2 sustancias puras
Unidad 2 sustancias puras
Francisco Vargas
 
Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.
Francisco Vargas
 
Guía 4. soldadura.
Guía 4. soldadura.Guía 4. soldadura.
Guía 4. soldadura.
Francisco Vargas
 
Guía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generaciónGuía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generación
Francisco Vargas
 
Guía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicasGuía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicas
Francisco Vargas
 

Más de Francisco Vargas (20)

Problemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saiaProblemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saia
 
Guía de engranajes 2
Guía de engranajes 2Guía de engranajes 2
Guía de engranajes 2
 
Guía de engranajes 1
Guía de engranajes 1Guía de engranajes 1
Guía de engranajes 1
 
Engranajes dinámica
Engranajes dinámicaEngranajes dinámica
Engranajes dinámica
 
Teorías introductorias a los mecanismos
Teorías introductorias a los  mecanismosTeorías introductorias a los  mecanismos
Teorías introductorias a los mecanismos
 
Concepto y definiciones de cinemática
Concepto y definiciones de cinemáticaConcepto y definiciones de cinemática
Concepto y definiciones de cinemática
 
Medicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicasMedicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicas
 
Que es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagramQue es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagram
 
Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calor
 
Transmisiones de correa y de cadena
Transmisiones de correa y de cadenaTransmisiones de correa y de cadena
Transmisiones de correa y de cadena
 
Generadores de vapor
Generadores de vaporGeneradores de vapor
Generadores de vapor
 
Tablas termodinamica
Tablas termodinamicaTablas termodinamica
Tablas termodinamica
 
Sensores de Velocidad-caudal
Sensores de Velocidad-caudalSensores de Velocidad-caudal
Sensores de Velocidad-caudal
 
Sensores de Presión
Sensores de PresiónSensores de Presión
Sensores de Presión
 
Conceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y controlConceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y control
 
Unidad 2 sustancias puras
Unidad 2 sustancias purasUnidad 2 sustancias puras
Unidad 2 sustancias puras
 
Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.
 
Guía 4. soldadura.
Guía 4. soldadura.Guía 4. soldadura.
Guía 4. soldadura.
 
Guía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generaciónGuía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generación
 
Guía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicasGuía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicas
 

Último

Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
danitarb
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Monseespinoza6
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
Alejandrogarciapanta
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
Mercedes Gonzalez
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
jmorales40
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
DIANADIAZSILVA1
 

Último (20)

Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
 

Guía 2. calor estacionario unidimensional, por resistencias térmicas

  • 2. 2. Conducción-convección en estado estable, unidimensional Resistencias térmicas para paredes compuestas, cilindros y esferas
  • 3. Resistencia Térmica La resistencia térmica de un material representa la capacidad del material de oponerse al flujo del calor. En el caso de materiales homogéneos es la razón entre el espesor y la conductividad térmica del material; en materiales no homogéneos la resistencia es el inverso de la conductancia térmica. Rterm = 𝒆 𝑲 * Donde; “e” es el espesor (m) y “K” la conductividad térmica del material (W/m-OC) por lo que las unidades de la resistencia térmica serán (m2-OC/W). (*): También llamada resistencia térmica por área.
  • 4. Analogías Termo-eléctrica Variables de Transferencia de calor 1. Velocidad de transferencia de calor (Q-punto) 2. Temperaturas (T) 3. Resistencia Térmica (Rth) Variables de Electricidad 1. Intensidad de Corriente (I) 2. Tensión (V) 3. Resistencia eléctrica (R)
  • 5. Calor en función a la resistencia térmica El flujo de calor que atraviesa un elemento, que dispone una configuración de una o más resistencia térmicas, estará dada por la expresión: q = Δ𝑇 Σ𝑅𝑡𝑒𝑟𝑚 Donde “ΔT” es la diferencia de las temperaturas involucradas (OC), en el estudio y “ΣRterm” es la sumatoria de todas las resistencias térmicas (OC/W) que hay en el sistema.
  • 6. Resistencias térmicas según el sistema en estudio 1. Paredes compuestas Rterm = 𝑒 𝑘𝐴 Donde: e = Espesor (m) K = Conductividad térmica (W/m-OC) A = Área perpendicular al flujo del calor (m2)
  • 7. 2. Cilindros Compuestos Rterm = Ln 𝑟𝑒/𝑟𝑖 2𝜋𝐿𝐾 Donde: re = radio externo del cilindro (m). ri = radio interno del cilindro (m). L = longitud del cilindro (m). K = Conductividad térmica del material (W/m-OC)
  • 8. ri re 3. Esferas Compuestas Rterm = 𝑟𝑒−𝑟𝑖 𝑟𝑒·𝑟𝑖 4𝜋𝐾 Donde: re = radio externo de la esfera (m). ri = radio interno de la esfera (m). K = Conductividad térmica del material (W/m-OC)
  • 9. Resistencia térmica, de la convección O De igual forma que el calor por conducción tiene sus respectivas resistencias térmicas, según el sistema en estudio, también la convección tiene una resistencia térmica particular: Rh = 1 ℎ𝐴 O Donde: h = coeficiente de convección (W/m2-OC). A = Área perpendicular al flujo de calor (m2).
  • 11.
  • 12. Ejercicios La pared exterior de una casa puede aproximarse a una capa de 20cm de ladrillo corriente para fachada, seguida por una capa de lana mineral y finalmente una capa de yeso de 4cm. ¿Qué espesor de lana mineral debe añadirse para reducir en un 80% la pérdida de calor, a través de la pared?
  • 13. Solución Primero debemos considerar la siguiente relación 𝑞 (𝑐𝑜𝑛 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) 𝑞 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = 0,20 = Σ𝑅𝑡𝑒𝑟𝑚 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) Σ𝑅𝑡𝑒𝑟𝑚 (𝑐𝑜𝑛 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) Por tablas A.3 (pags 6 y 7) hallamos las conductividades térmicas del ladrillo para fachada, el yeso y la lama mineral, respectivamente: KL = 1, 32W/m- OC KY = 0,48W/m- OC Klm = 0,040W/m- OC Determinamos las resistencias térmicas para el ladrillo y para el yeso: RL = 𝑒 𝐾 = 0,20m 1, 32W/m− OC = 0,1515 m2-OC/W
  • 14. Ahora la resistencia del yeso: RY = 𝑒 𝐾 = 0,04m 0,48W/m− OC = 0,0833 m2-OC/W De modo que la sumatoria de resistencias térmicas, sin aislante se: Σ𝑅𝑡𝑒𝑟𝑚 (sin 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = RL + RY = 0,2348 m2-OC/W Por tanto; Σ𝑅𝑡𝑒𝑟𝑚 (con 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = 0,2348 m2−OC/W 0,20 , así que: Σ𝑅𝑡𝑒𝑟𝑚 (con 𝑎𝑖𝑠𝑙𝑎𝑚𝑖𝑒𝑛𝑡𝑜) = 1,174 m2-OC/W En otras palabras esto se puede escribir de esta forma: 1,174 m2-OC/W = Rlm + 0,2348 m2-OC/W; donde “Rlm” representa la resistencia térmica de la lana mineral. Despejando y calculado Rlm, tenemos: Rlm = 0,9392 m2-OC/W
  • 15. De la ecuación de la resistencia térmica del lana mineral, despejamos el valor que corresponde al espesor “e”. Rlm = 𝑒 𝑘 e = K·Rlm = (0,040W/m- OC)(0,9392m2- OC/W) e = 0,037568 m (3,75 cm)
  • 16. Considere una tubería que lleva una sustancia corrosiva a 600OC. La tubería esta hecha en acero inoxidable, con 2cm de diámetro interno y 4cm como diámetro externo. Está recubierta por una capa de cloruro de polivinilo de 3cm de espesor; la temperatura exterior es de 70OC, con un coeficiente de convección de 51,43W/m2-OC. Calcúlese a. La perdida de calor por unidad de longitud. (W/m) b. La temperatura entre el tubo y el aislante. (OC)
  • 17. ri re ra Aislante e = 3cm Tubo de acero inoxidable 600OC 70OC; he = 51,43W/m2-OC 600OC 70OC Tr = ? Rtubr Raisl Rhe q/L = ?
  • 18. Solución Lo primero es identificar todos los radios involucrados (ver la figura) ri = 0,01 m; re = 0,02 m y ra = re + e = (0,02 + 0,03)m = 0,05m Luego se dibuja el circuito termo-.eléctrico y se identifican las resistencias existentes, y los nodos de temperaturas. Hay tres resistencias, dos conductivas y una por convección. Iniciemos con las conductivas, primero necesitamos las conductividades térmicas del acero inoxidable y el cloruro de polivinilo. Tablas A.2 y A.3. K1 = 19 W/m-OC y K2 = 0,09W/m-OC Identificamos las resistencias: Rtubr = R1 = Ln 𝑟𝑒/𝑟𝑖 2𝜋𝐾 = Ln 0,02/0,01 2𝜋(19 W/m−OC) = 5,8062x10-3 m-OC/W Raisl = R2 = Ln 𝑟𝑎/𝑟𝑒 2𝜋𝐾 = Ln 0,05/0,02 2𝜋(0,09 W/m−OC) = 1,6003 m-OC/W
  • 19. Continuamos con el cálculo, ahora sigue la resistencia por convección externa “Rhe”, entonces: Rhe = 1 ℎ𝐴 = 1 (51,43W/m2−OC)(2π·0,05m) = 61,8918x10-3 m-OC/W Entonces la ΣRterm = Rturb + Raisl + Rhe = 1,667998 m-OC/W Por lo tanto, el calor por unidad de longitud será: q = Δ𝑇 ΣRterm = (600OC – 70OC) 1,667998 m−OC/W = 317,7461 W/m Seguimos con la otra incógnita, la temperatura entre el tubo de acero y el aislante, “Tr”. Conocemos el calor total; observemos el circuito térmico, si nos vamos al nodo de la izquierda (600OC) contando hacia la derecha hay una sola resistencia para llegar al nodo de “Tr” y desde el nodo de la derecha (70OC) hasta el nodo de “Tr” hay dos resistencias.
  • 20. Veamos el diagrama del circuito: 317,7461 W/m = 600OC −𝑇𝑟 Rtubr Tr = 598,155OC O bien 317,7461 W/m = Tr − 70OC Raisl +𝑅ℎ𝑒 Tr = 598,154OC 600OC 70OC Tr = ? Rtubr Raisl Rhe q/L = 317,7461 W/m
  • 21. Consideremos el mismo problema anterior, los mismos datos térmicos y los mismo materiales, pero cambiemos la configuración por una esfera. ¿El calor será el mismo?, de ser diferente ¿A que se deberá?. ri re ra Aislante e = 3cm Esfera de acero inoxidable 600OC 70OC; he = 51,43W/m2-OC
  • 22. Del problema anterior ya tenemos los radios involucrados como son: ri = 0,01 m; re = 0,02 m y ra = 0,05m; también poseemos las conductividades térmicas, para el acero inoxidable y el cloruro de polivinilo, respectivamente: K1 = 19 W/m-OC y K2 = 0,09W/m-OC. Solamente el áreas es distinta; A = [4πr2]. Calculando las resistencias: Rtubr = 𝑟𝑒−𝑟𝑖 𝑟𝑒·𝑟𝑖 4𝜋𝐾1 = 0,02𝑚 −0,01𝑚 0,02𝑚·0,01𝑚 4π[19 W/m−OC] = 0,2094 OC/W Raisl = 𝑟𝑎−𝑟𝑒 𝑟𝑎·𝑟𝑒 4𝜋𝐾2 = 0,05𝑚 −0,02𝑚 0,05𝑚·0,02𝑚 4π[0,09W/m−OC] = 26,5258 OC/W Con un área de A = 4π[ra2] = 4π 0,05𝑚 2 = 0,031416m2 Rhe = 1 ℎ𝐴 = 1 (51,43W/m2−OC)(0,031416m2 ) = 0,6189 OC/W
  • 23. Entonces la ΣRterm = Rturb + Raisl + Rhe = 27,3541 OC/W Por lo tanto, el calor por unidad de longitud será: q = Δ𝑇 ΣRterm = (600OC – 70OC) 27,3541 OC/W = 19,3755 W La temperatura Tr, se puede calcular como: 19,3755 W = 600OC −𝑇𝑟 Rtubr Tr = 595,942 OC 600OC 70OC Tr = ? Rtubr Raisl Rhe q = 19,3755 W