SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
TRANSFERENCIA
DE CALOR
GUIA 1
MECANISMOS DE
TRANSFERENCIA DEL CALOR.
1. CONDUCCIÓN-CONVECCIÓN
ESTACIONARIA UNIDIMENSIONAL
Definición
¿Qué es el calor?
O Forma de energía que se transmite a través del
límite de un sistema que está a una temperatura a
otro sistema a una temperatura más baja por virtud
de la diferencia de temperaturas entre los sistemas.
Es un proceso transitorio.
O Es una forma de energía que se transfiere a causa
de los gradientes de temperatura.
Clasificación
O Conducción.
O Convección.
O Radiación.
Calor por conducción
O El mecanismo de conducción se produce a escala
atómica o molecular con desplazamientos muy cortos de
las unidades transportadoras de energía.
O Cuando en un cuerpo existe un gradiente de
temperatura, la experiencia muestra que hay
transferencia hacia la región de baja temperatura. Se
dice que la energía se ha transferido por conducción y el
flujo de calor por unidad de área es proporcional al
gradiente normal de temperatura.
𝑞
𝐴
=
𝑑𝑇
𝑑𝑥
O El calor por conducción está regido por la ley de Fourier, la
cual se define como:
q = - KA
𝑑𝑇
𝑑𝑥
Donde;
q = es el flujo de calor, (W).
K = la constante positiva, llamada: conductividad térmica del
material, (W/m-OC).
A = el área perpendicular al flujo del calor, (m2)
dT/dx = es el gradiente de temperatura en la dirección del flujo
de calor, (OC/m)
Calor por convección
O Es bien conocido que una placa de metal caliente se enfriará
más rápidamente cuando se colocada delante de un ventilador
que cuando se expone al aire en calma; cabría sospechar que
el flujo de calor pude ser diferente si la placa se enfriara con
agua en vez de con aire.
O Se realiza entre una superficie sólida y un fluido (líquido o
gaseoso) por estar ambos a diferente temperatura.
O El estudio técnico de la convección se realiza a partir de un
coeficiente de transmisión de calor, denominado; coeficiente
de convección, a partir de la ecuación del enfriamiento de
Newton.
O Para expresar el efecto global de la convección, se utiliza la ley
de Newton del enfriamiento, definida como:
q = hA(Tp – T∞)
Donde;
q = flujo de calor transferido, (W).
h = coeficiente de convección, (W/m2-OC).
A = área de la superficie, (m2).
(Tp – T∞) = diferencia global de temperaturas entre la pared y el
flujo respectivamente, (OC).
Clasificación de las clases de
convección
Según el movimiento del flujo:
O Natural
O Forzada.
Según la posición relativa del fluido y la superficie:
O De flujo interior.
O De flujo exterior.
Según el régimen de circulación del fluido:
O En régimen laminar.
O En régimen de transición.
O En régimen turbulento.
Calor por radiación
O En contraposición a los mecanismos de la conducción y la
convección, donde la transferencia de energía involucra un
medio material, el calor pude ser transferirse a través de
zonas en las que exista un vacío perfecto. En este caso el
mecanismo es la radiación electromagnética.
O Las ondas electromagnéticas se propagan a la velocidad de la
luz y transportan energía, que de forma genérica, recibe el
nombre de energía radiante.
O Existe una clase de energía radiante que emite todos los
cuerpos, por estar a una temperatura T determinada,
denominada radiación térmica.
O Consideraciones termodinámicas muestran que un radiador
térmico ideal o cuerpo negro, emitirá energía en forma
proporcional a la cuarta potencia de la temperatura absoluta del
cuerpo y directamente proporcional al área de su superficie.
Así;
qemitido = σAT4
O Donde σ es la constante de proporcionalidad y se denomina
constante de Stefan-Boltzman, y tiene un valor de en el sistema
internacional de: 5,669x10-8 W/(m2-OK4).
O Un problema simple de radiación se encuentra cuando, se tiene
una superficie T1 encerrada completamente en otra superficie
mayor que se mantiene a T2; el intercambio neto de radiación
en este caso puede calcularse como:
q = ε1σA1[(T1)4 – (T2)4]
Manejo de tablas
O Propiedades de los metales y no metales
O Distribuidas en 5 tablas, A-2 hasta A-3.
O Cada tabla consta de varias columnas:
1. Tipo de material
2. Propiedades a 20OC (densidad, calor específico,
conductividad térmica y difusividad térmica)
3. Conductividad térmica entre 100OC y 1200OC
Tablas de los no-metales (A-3)
Están compuestas de 6 columnas:
1. Sustancia (material)
2. Temperatura (OC)
3. Conductividad térmica.
4. Densidad.
5. Calor específico.
6. Difusividad térmica.
Hay tres (3) tablas para sustancias no-metálicas.
Ejercicios ilustrados.
Una cara de una placa de cobre de 3cm de espesor se
mantiene a 400OC y la otra se mantiene a 100OC. ¿Qué
cantidad de calor se transfiere a través de la placa?
3 cm
400OC
100OC
Primeramente escribimos la ecuación que rige el calor por
conducción:
q = - KA
𝑑𝑇
𝑑𝑥
Observamos que el problema no hace referencia al área de la placa,
asumimos un valor unitario (1 m2). Usando las tablas para metales,
A-2 (pág. 5) y buscamos cobre puro en las propiedades a 20OC,
hallamos el valor de “k” conductividad térmica:
k = 386 W/m-OC
El parámetro “dx”, representa el espesor de la placa, dx = 0,03 m; y
el otro parámetro “dT”, es la diferencia de temperaturas de la placa:
dT = (400OC – 100OC) = 300OC
A hora sustituyendo los valores:
q = - (386 W/m-OC) (1 m2)
300OC
0,03 m
= -3,86x106 W
O Supongamos que tenemos la misma placa de cobre,
cuyas dimensiones son de 50x75 cm, se mantiene a
300OC, sobre ella fluye una corriente de aire a 20OC
con un coeficiente de convección de 25 W/m2-OC.
Calcule la transferencia de calor al ambiente.
300OC 75cm
50cm
Aire
El calor solicitado es la sumatoria del calor por conducción más la
convección. Debemos volver a determinar el calor por conducción,
ahora con un área de 3750cm2 (0,375 m2), pero con el mismo
espesor (0,03 m) y un dT de 300OC.
q = - (386)(0,375)
300
0,03
= -1 ,4475x106 W
Ahora el calor por convección lo determinamos por la ecuación del
enfriamiento de Newton; donde Tp será 300OC y T∞ son los 20OC y
el valor de h, es 25 W/m2-OC. Sustituyendo:
q = hA(Tp – T∞) = (25 W/m2-OC)(0,375 m2)(300OC – 20OC)
q = 2,625x103 W
El calor total es la sumatoria de ambos:
qTotal = -1,444875 x106 W
Una corriente eléctrica pasa por un cable de 1mm de diámetro y
10 cm de largo. El cable se encuentra sumergido en agua liquida a
presión atmosférica y se incrementa la corriente interior hasta que
el agua hierve. En estas condiciones el coeficiente de convección
en el agua a 100OC, serán de 500 W/m2-OC. ¿Cuánta potencia
eléctrica se debe suministrar al cable para mantener su
temperatura a 114OC?
Solución
q = hA(Tp – T∞) = ?
Acable = πDL = π[(1x10-3m)(0,1m)] = 3,1416x10-4 m2
q = (500 W/m2-OC)(3,1416x10-4 m2)(114OC – 100OC)
q = 2,19912 W
Dos placas infinitas de 800OC y 300OC, intercambian calor por
radiación. Calcúlese el calor transferido entre ellas por unidad de
área.
Solución
q = ε1σA1[(T1)4 – (T2)4]= ?
Asumiendo que ε1 = 1 y que σ = 5,669x10-8 W/(m2-OK4); se pasa A1,
al lado izquierdo de la igualdad con las incógnitas:
𝑞
𝐴
= σ[(T1)4 – (T2)4]= ?
T1 = 800OC (1073OK) y T2 = 300OC (573OK)
𝑞
𝐴
= 5,669x10−8 W/(m2−OK4) (1073OK)4−(573OK)4
𝒒
𝑨
= 69,034x103 W/m2
Una tubería horizontal de acero al carbono (1,5%) que tiene un
diámetro de 50cm se mantiene a una temperatura de 50OC, en un
reciento muy grande, donde el aire circundante y las paredes están a
20OC y con un coeficiente de convección, de 6,50 W/m2-OC. Si la
emisividad del acero es de 0,80. Calcúlese la pérdida de calor que la
tubería experimenta por unidad de longitud. Espesor de pared de
5mm.
Solución
O [q/L]Total = ?
Para calor por convección, A(tubería) = πDL, donde L = ?; entonces:
q = hA(Tp – T∞) = h(πDL)(Tp – T∞)
𝑞
𝐿
= h(πD)(Tp – T∞)
𝑞
𝐿
=(6,50 W/m2-OC)[π(0,5m)][50OC – 20OC] = 306,305 W/m
Para el calor por conducción, q = - K(πDL)
𝑑𝑇
𝑑𝑥
donde L = ?
𝑞
𝐿
= - K(πD)
𝑑𝑇
𝑑𝑥
= - (36 W/m-OC)[π(0,5m)]
30OC
0,005𝑚
𝑞
𝐿
= -339,292x103 W/m
Para el calor por radiación, ε = 0,80 y T1 = 323OK y T2 = 293OK
𝑞
𝐿
= ε1σ(πD)[(T1)4 – (T2)4] , entonces:
𝑞
𝐿
= 0,80[5,669x10-8 W/(m2-OK4)][π(0,5m)][(323OK)4 − (293OK)4
]
𝒒
𝑳
= 251,692W/m
Sumando los tres calores obtenidos:
[q/L]Total = -338,734003x103 W/m

Más contenido relacionado

La actualidad más candente

Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calorBreymer Maza
 
La segunda ley de la termodinã¡mica
La segunda ley de la termodinã¡micaLa segunda ley de la termodinã¡mica
La segunda ley de la termodinã¡micaJasmin Bedoya
 
Eg021 conducción ejercicio
Eg021 conducción ejercicioEg021 conducción ejercicio
Eg021 conducción ejerciciodalonso29
 
Clase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptxClase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptxWILLIAMSESTEWARDCAST
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gasesdaszemog
 
Tema 1 (conceptos básicos de la termodinámica.)
Tema 1 (conceptos básicos de la termodinámica.)Tema 1 (conceptos básicos de la termodinámica.)
Tema 1 (conceptos básicos de la termodinámica.)Christian Arias Vega
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Laura Nitola
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoJesús Rodrigues
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorALEXITTOOh
 

La actualidad más candente (20)

Tema 5 difusión problemas enunciados
Tema 5 difusión problemas enunciadosTema 5 difusión problemas enunciados
Tema 5 difusión problemas enunciados
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
termodinámica
 termodinámica termodinámica
termodinámica
 
La segunda ley de la termodinã¡mica
La segunda ley de la termodinã¡micaLa segunda ley de la termodinã¡mica
La segunda ley de la termodinã¡mica
 
Eg021 conducción ejercicio
Eg021 conducción ejercicioEg021 conducción ejercicio
Eg021 conducción ejercicio
 
Ciclo de carnot pdf
Ciclo de carnot pdf Ciclo de carnot pdf
Ciclo de carnot pdf
 
Ciclo de carnot
Ciclo de carnotCiclo de carnot
Ciclo de carnot
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Clase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptxClase 10 - Ley de Fourier para la conducción de calor.pptx
Clase 10 - Ley de Fourier para la conducción de calor.pptx
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Entropía
EntropíaEntropía
Entropía
 
Tema 1 (conceptos básicos de la termodinámica.)
Tema 1 (conceptos básicos de la termodinámica.)Tema 1 (conceptos básicos de la termodinámica.)
Tema 1 (conceptos básicos de la termodinámica.)
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor
 
La ley de fourier
La ley de fourierLa ley de fourier
La ley de fourier
 
Problemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimicoProblemas resueltos-de-reactores-quimico
Problemas resueltos-de-reactores-quimico
 
Primera ley de Termodinámica
Primera ley de TermodinámicaPrimera ley de Termodinámica
Primera ley de Termodinámica
 
Primera ley de la termodinamica
Primera ley de la termodinamicaPrimera ley de la termodinamica
Primera ley de la termodinamica
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Conversión de trabajo en calor
Conversión de trabajo en calorConversión de trabajo en calor
Conversión de trabajo en calor
 

Destacado

Tablas de transferencia de calor
Tablas de transferencia de calorTablas de transferencia de calor
Tablas de transferencia de calorFrancisco Vargas
 
Do you need chemo to battle metaplastic breast Cancer?
Do you need chemo to battle metaplastic breast Cancer?Do you need chemo to battle metaplastic breast Cancer?
Do you need chemo to battle metaplastic breast Cancer?Bena Roberts
 
Guía 2. calor estacionario unidimensional, por resistencias térmicas
Guía 2. calor estacionario unidimensional, por resistencias térmicasGuía 2. calor estacionario unidimensional, por resistencias térmicas
Guía 2. calor estacionario unidimensional, por resistencias térmicasFrancisco Vargas
 
Guia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cirGuia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cirFrancisco Vargas
 
Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.Francisco Vargas
 
Mecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calorMecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calorFrancisco Vargas
 
Problemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorProblemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorNeyser Carranza Guevara
 
Transferencia de calor_segunda_edici_n_manrique_
Transferencia de calor_segunda_edici_n_manrique_Transferencia de calor_segunda_edici_n_manrique_
Transferencia de calor_segunda_edici_n_manrique_MateoLeonidez
 
Sesores para Nivel y Temperatura
Sesores para Nivel y TemperaturaSesores para Nivel y Temperatura
Sesores para Nivel y TemperaturaFrancisco Vargas
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesFrancisco Vargas
 
մեր գյուղը
մեր գյուղըմեր գյուղը
մեր գյուղըNane41
 
Trabajo de transferencia de calor bidireccional
Trabajo de transferencia de calor bidireccionalTrabajo de transferencia de calor bidireccional
Trabajo de transferencia de calor bidireccionalhubertparra9
 
Transmisiones de correa y de cadena
Transmisiones de correa y de cadenaTransmisiones de correa y de cadena
Transmisiones de correa y de cadenaFrancisco Vargas
 
Transferencia de calor- Mapa conceptual
Transferencia de calor- Mapa conceptualTransferencia de calor- Mapa conceptual
Transferencia de calor- Mapa conceptualrafaelseb
 
Ambitos de la mecánica de los fluidos 1
Ambitos de la mecánica de los fluidos 1Ambitos de la mecánica de los fluidos 1
Ambitos de la mecánica de los fluidos 1Francisco Vargas
 
Calor modos de tranferencia de energia termia y temperatura. 6 basicos
Calor modos de tranferencia de energia termia y temperatura. 6 basicosCalor modos de tranferencia de energia termia y temperatura. 6 basicos
Calor modos de tranferencia de energia termia y temperatura. 6 basicosJacqueline Barraza
 

Destacado (20)

Tablas de transferencia de calor
Tablas de transferencia de calorTablas de transferencia de calor
Tablas de transferencia de calor
 
Do you need chemo to battle metaplastic breast Cancer?
Do you need chemo to battle metaplastic breast Cancer?Do you need chemo to battle metaplastic breast Cancer?
Do you need chemo to battle metaplastic breast Cancer?
 
Guía 2. calor estacionario unidimensional, por resistencias térmicas
Guía 2. calor estacionario unidimensional, por resistencias térmicasGuía 2. calor estacionario unidimensional, por resistencias térmicas
Guía 2. calor estacionario unidimensional, por resistencias térmicas
 
Guia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cirGuia 1. ejercicios de grados de libertas y cir
Guia 1. ejercicios de grados de libertas y cir
 
Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.Pasos para entender los principios de la convección.
Pasos para entender los principios de la convección.
 
Mecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calorMecanismos básicos para la transferencia del calor
Mecanismos básicos para la transferencia del calor
 
Problemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calorProblemas propuestos de transferencia de calor
Problemas propuestos de transferencia de calor
 
Transferencia de calor_segunda_edici_n_manrique_
Transferencia de calor_segunda_edici_n_manrique_Transferencia de calor_segunda_edici_n_manrique_
Transferencia de calor_segunda_edici_n_manrique_
 
Sesores para Nivel y Temperatura
Sesores para Nivel y TemperaturaSesores para Nivel y Temperatura
Sesores para Nivel y Temperatura
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
 
մեր գյուղը
մեր գյուղըմեր գյուղը
մեր գյուղը
 
Trabajo de transferencia de calor bidireccional
Trabajo de transferencia de calor bidireccionalTrabajo de transferencia de calor bidireccional
Trabajo de transferencia de calor bidireccional
 
Transmisiones de correa y de cadena
Transmisiones de correa y de cadenaTransmisiones de correa y de cadena
Transmisiones de correa y de cadena
 
Calor
CalorCalor
Calor
 
Diagramas de heisler
Diagramas de heislerDiagramas de heisler
Diagramas de heisler
 
Transferencia de calor- Mapa conceptual
Transferencia de calor- Mapa conceptualTransferencia de calor- Mapa conceptual
Transferencia de calor- Mapa conceptual
 
Sensores de Presión
Sensores de PresiónSensores de Presión
Sensores de Presión
 
Calor
CalorCalor
Calor
 
Ambitos de la mecánica de los fluidos 1
Ambitos de la mecánica de los fluidos 1Ambitos de la mecánica de los fluidos 1
Ambitos de la mecánica de los fluidos 1
 
Calor modos de tranferencia de energia termia y temperatura. 6 basicos
Calor modos de tranferencia de energia termia y temperatura. 6 basicosCalor modos de tranferencia de energia termia y temperatura. 6 basicos
Calor modos de tranferencia de energia termia y temperatura. 6 basicos
 

Similar a Transferencia de calor guía 1: Mecanismos de transferencia del calor

Bla bla 3_1aleycerrados
Bla bla 3_1aleycerradosBla bla 3_1aleycerrados
Bla bla 3_1aleycerradosakkito
 
Resumen transmisión de calor por conducción mc cabe
Resumen transmisión de calor por conducción mc cabeResumen transmisión de calor por conducción mc cabe
Resumen transmisión de calor por conducción mc cabekarenhidalgoescobar
 
Conducción pp
Conducción ppConducción pp
Conducción ppYani Pino
 
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdfRakelGalindoPerez
 
Tema 1 - Mecanismos de Transferencia de Calor.pdf
Tema 1 - Mecanismos de Transferencia de Calor.pdfTema 1 - Mecanismos de Transferencia de Calor.pdf
Tema 1 - Mecanismos de Transferencia de Calor.pdfCristianArielIbarraM
 
tema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambientetema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambienteEsmeraldaGuerrero16
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Luis Huanacuni
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Edisson Cruz
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Gilberto Mireles
 
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdf
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdfMecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdf
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdfANDYANDIDARWINALFONS
 
Mecanismos de transferencia de calor
Mecanismos de transferencia de calorMecanismos de transferencia de calor
Mecanismos de transferencia de calordaszemog
 
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.ppt
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.pptTEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.ppt
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.pptcozmezepeda1
 
Informe final texto
Informe final textoInforme final texto
Informe final textokenpachied
 
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)JasminSeufert
 

Similar a Transferencia de calor guía 1: Mecanismos de transferencia del calor (20)

Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Imprimir dos
Imprimir dosImprimir dos
Imprimir dos
 
Bla bla 3_1aleycerrados
Bla bla 3_1aleycerradosBla bla 3_1aleycerrados
Bla bla 3_1aleycerrados
 
Bla bla 3_1aleycerrados
Bla bla 3_1aleycerradosBla bla 3_1aleycerrados
Bla bla 3_1aleycerrados
 
Resumen transmisión de calor por conducción mc cabe
Resumen transmisión de calor por conducción mc cabeResumen transmisión de calor por conducción mc cabe
Resumen transmisión de calor por conducción mc cabe
 
Conducción pp
Conducción ppConducción pp
Conducción pp
 
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf
03_TRANSFERENCIA DE CALOR (ESTACIONARIO).pdf
 
Mec calor
Mec calorMec calor
Mec calor
 
Tema 1 - Mecanismos de Transferencia de Calor.pdf
Tema 1 - Mecanismos de Transferencia de Calor.pdfTema 1 - Mecanismos de Transferencia de Calor.pdf
Tema 1 - Mecanismos de Transferencia de Calor.pdf
 
tema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambientetema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambiente
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
 
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdf
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdfMecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdf
Mecanismos de transmisión de calor (CONDUCCION, CONVECCION, RADIACION).pdf
 
Cap14
Cap14Cap14
Cap14
 
Trasfenrecia de calor de calor 1
Trasfenrecia de calor de calor 1Trasfenrecia de calor de calor 1
Trasfenrecia de calor de calor 1
 
Mecanismos de transferencia de calor
Mecanismos de transferencia de calorMecanismos de transferencia de calor
Mecanismos de transferencia de calor
 
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.ppt
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.pptTEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.ppt
TEMA I. TEMPERATURA, LEY CERO, CALOR Y FLUJO DE CALOR.ppt
 
Informe final texto
Informe final textoInforme final texto
Informe final texto
 
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
 

Más de Francisco Vargas

Problemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saiaProblemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saiaFrancisco Vargas
 
Teorías introductorias a los mecanismos
Teorías introductorias a los  mecanismosTeorías introductorias a los  mecanismos
Teorías introductorias a los mecanismosFrancisco Vargas
 
Concepto y definiciones de cinemática
Concepto y definiciones de cinemáticaConcepto y definiciones de cinemática
Concepto y definiciones de cinemáticaFrancisco Vargas
 
Medicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicasMedicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicasFrancisco Vargas
 
Que es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagramQue es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagramFrancisco Vargas
 
Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorFrancisco Vargas
 
Sensores de Velocidad-caudal
Sensores de Velocidad-caudalSensores de Velocidad-caudal
Sensores de Velocidad-caudalFrancisco Vargas
 
Conceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y controlConceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y controlFrancisco Vargas
 
Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.Francisco Vargas
 
Guía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generaciónGuía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generaciónFrancisco Vargas
 
Guía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicasGuía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicasFrancisco Vargas
 
Guia 1 fresado y fresadores.
Guia 1 fresado y fresadores.Guia 1 fresado y fresadores.
Guia 1 fresado y fresadores.Francisco Vargas
 
Guía 4 taladrado y escariado
Guía 4 taladrado y escariadoGuía 4 taladrado y escariado
Guía 4 taladrado y escariadoFrancisco Vargas
 

Más de Francisco Vargas (20)

Problemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saiaProblemario ciclos aire termo 2-uft-saia
Problemario ciclos aire termo 2-uft-saia
 
Guía de engranajes 2
Guía de engranajes 2Guía de engranajes 2
Guía de engranajes 2
 
Guía de engranajes 1
Guía de engranajes 1Guía de engranajes 1
Guía de engranajes 1
 
Engranajes dinámica
Engranajes dinámicaEngranajes dinámica
Engranajes dinámica
 
Teorías introductorias a los mecanismos
Teorías introductorias a los  mecanismosTeorías introductorias a los  mecanismos
Teorías introductorias a los mecanismos
 
Concepto y definiciones de cinemática
Concepto y definiciones de cinemáticaConcepto y definiciones de cinemática
Concepto y definiciones de cinemática
 
Medicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicasMedicion-de-variables-fisicas-y-quimicas
Medicion-de-variables-fisicas-y-quimicas
 
Que es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagramQue es-un-piping-and-instrumentation-diagram
Que es-un-piping-and-instrumentation-diagram
 
Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calor
 
Generadores de vapor
Generadores de vaporGeneradores de vapor
Generadores de vapor
 
Tablas termodinamica
Tablas termodinamicaTablas termodinamica
Tablas termodinamica
 
Sensores de Velocidad-caudal
Sensores de Velocidad-caudalSensores de Velocidad-caudal
Sensores de Velocidad-caudal
 
Conceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y controlConceptos básicos de la instrumentación y control
Conceptos básicos de la instrumentación y control
 
Unidad 2 sustancias puras
Unidad 2 sustancias purasUnidad 2 sustancias puras
Unidad 2 sustancias puras
 
Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.Unidad 1 termodinamica, conceptos y definiciones.
Unidad 1 termodinamica, conceptos y definiciones.
 
Guía 4. soldadura.
Guía 4. soldadura.Guía 4. soldadura.
Guía 4. soldadura.
 
Guía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generaciónGuía 3 engranajes. tallado y generación
Guía 3 engranajes. tallado y generación
 
Guía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicasGuía 2 engranajes, tipos y caracteristicas
Guía 2 engranajes, tipos y caracteristicas
 
Guia 1 fresado y fresadores.
Guia 1 fresado y fresadores.Guia 1 fresado y fresadores.
Guia 1 fresado y fresadores.
 
Guía 4 taladrado y escariado
Guía 4 taladrado y escariadoGuía 4 taladrado y escariado
Guía 4 taladrado y escariado
 

Último

codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxCeciliaGuerreroGonza1
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 

Último (20)

Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 

Transferencia de calor guía 1: Mecanismos de transferencia del calor

  • 2. MECANISMOS DE TRANSFERENCIA DEL CALOR. 1. CONDUCCIÓN-CONVECCIÓN ESTACIONARIA UNIDIMENSIONAL
  • 3. Definición ¿Qué es el calor? O Forma de energía que se transmite a través del límite de un sistema que está a una temperatura a otro sistema a una temperatura más baja por virtud de la diferencia de temperaturas entre los sistemas. Es un proceso transitorio. O Es una forma de energía que se transfiere a causa de los gradientes de temperatura.
  • 5.
  • 6. Calor por conducción O El mecanismo de conducción se produce a escala atómica o molecular con desplazamientos muy cortos de las unidades transportadoras de energía. O Cuando en un cuerpo existe un gradiente de temperatura, la experiencia muestra que hay transferencia hacia la región de baja temperatura. Se dice que la energía se ha transferido por conducción y el flujo de calor por unidad de área es proporcional al gradiente normal de temperatura. 𝑞 𝐴 = 𝑑𝑇 𝑑𝑥
  • 7. O El calor por conducción está regido por la ley de Fourier, la cual se define como: q = - KA 𝑑𝑇 𝑑𝑥 Donde; q = es el flujo de calor, (W). K = la constante positiva, llamada: conductividad térmica del material, (W/m-OC). A = el área perpendicular al flujo del calor, (m2) dT/dx = es el gradiente de temperatura en la dirección del flujo de calor, (OC/m)
  • 8. Calor por convección O Es bien conocido que una placa de metal caliente se enfriará más rápidamente cuando se colocada delante de un ventilador que cuando se expone al aire en calma; cabría sospechar que el flujo de calor pude ser diferente si la placa se enfriara con agua en vez de con aire. O Se realiza entre una superficie sólida y un fluido (líquido o gaseoso) por estar ambos a diferente temperatura. O El estudio técnico de la convección se realiza a partir de un coeficiente de transmisión de calor, denominado; coeficiente de convección, a partir de la ecuación del enfriamiento de Newton.
  • 9. O Para expresar el efecto global de la convección, se utiliza la ley de Newton del enfriamiento, definida como: q = hA(Tp – T∞) Donde; q = flujo de calor transferido, (W). h = coeficiente de convección, (W/m2-OC). A = área de la superficie, (m2). (Tp – T∞) = diferencia global de temperaturas entre la pared y el flujo respectivamente, (OC).
  • 10. Clasificación de las clases de convección Según el movimiento del flujo: O Natural O Forzada. Según la posición relativa del fluido y la superficie: O De flujo interior. O De flujo exterior. Según el régimen de circulación del fluido: O En régimen laminar. O En régimen de transición. O En régimen turbulento.
  • 11. Calor por radiación O En contraposición a los mecanismos de la conducción y la convección, donde la transferencia de energía involucra un medio material, el calor pude ser transferirse a través de zonas en las que exista un vacío perfecto. En este caso el mecanismo es la radiación electromagnética. O Las ondas electromagnéticas se propagan a la velocidad de la luz y transportan energía, que de forma genérica, recibe el nombre de energía radiante. O Existe una clase de energía radiante que emite todos los cuerpos, por estar a una temperatura T determinada, denominada radiación térmica.
  • 12. O Consideraciones termodinámicas muestran que un radiador térmico ideal o cuerpo negro, emitirá energía en forma proporcional a la cuarta potencia de la temperatura absoluta del cuerpo y directamente proporcional al área de su superficie. Así; qemitido = σAT4 O Donde σ es la constante de proporcionalidad y se denomina constante de Stefan-Boltzman, y tiene un valor de en el sistema internacional de: 5,669x10-8 W/(m2-OK4). O Un problema simple de radiación se encuentra cuando, se tiene una superficie T1 encerrada completamente en otra superficie mayor que se mantiene a T2; el intercambio neto de radiación en este caso puede calcularse como: q = ε1σA1[(T1)4 – (T2)4]
  • 13. Manejo de tablas O Propiedades de los metales y no metales O Distribuidas en 5 tablas, A-2 hasta A-3. O Cada tabla consta de varias columnas: 1. Tipo de material 2. Propiedades a 20OC (densidad, calor específico, conductividad térmica y difusividad térmica) 3. Conductividad térmica entre 100OC y 1200OC
  • 14.
  • 15. Tablas de los no-metales (A-3) Están compuestas de 6 columnas: 1. Sustancia (material) 2. Temperatura (OC) 3. Conductividad térmica. 4. Densidad. 5. Calor específico. 6. Difusividad térmica. Hay tres (3) tablas para sustancias no-metálicas.
  • 16.
  • 17. Ejercicios ilustrados. Una cara de una placa de cobre de 3cm de espesor se mantiene a 400OC y la otra se mantiene a 100OC. ¿Qué cantidad de calor se transfiere a través de la placa? 3 cm 400OC 100OC
  • 18. Primeramente escribimos la ecuación que rige el calor por conducción: q = - KA 𝑑𝑇 𝑑𝑥 Observamos que el problema no hace referencia al área de la placa, asumimos un valor unitario (1 m2). Usando las tablas para metales, A-2 (pág. 5) y buscamos cobre puro en las propiedades a 20OC, hallamos el valor de “k” conductividad térmica: k = 386 W/m-OC El parámetro “dx”, representa el espesor de la placa, dx = 0,03 m; y el otro parámetro “dT”, es la diferencia de temperaturas de la placa: dT = (400OC – 100OC) = 300OC A hora sustituyendo los valores: q = - (386 W/m-OC) (1 m2) 300OC 0,03 m = -3,86x106 W
  • 19. O Supongamos que tenemos la misma placa de cobre, cuyas dimensiones son de 50x75 cm, se mantiene a 300OC, sobre ella fluye una corriente de aire a 20OC con un coeficiente de convección de 25 W/m2-OC. Calcule la transferencia de calor al ambiente. 300OC 75cm 50cm Aire
  • 20. El calor solicitado es la sumatoria del calor por conducción más la convección. Debemos volver a determinar el calor por conducción, ahora con un área de 3750cm2 (0,375 m2), pero con el mismo espesor (0,03 m) y un dT de 300OC. q = - (386)(0,375) 300 0,03 = -1 ,4475x106 W Ahora el calor por convección lo determinamos por la ecuación del enfriamiento de Newton; donde Tp será 300OC y T∞ son los 20OC y el valor de h, es 25 W/m2-OC. Sustituyendo: q = hA(Tp – T∞) = (25 W/m2-OC)(0,375 m2)(300OC – 20OC) q = 2,625x103 W El calor total es la sumatoria de ambos: qTotal = -1,444875 x106 W
  • 21. Una corriente eléctrica pasa por un cable de 1mm de diámetro y 10 cm de largo. El cable se encuentra sumergido en agua liquida a presión atmosférica y se incrementa la corriente interior hasta que el agua hierve. En estas condiciones el coeficiente de convección en el agua a 100OC, serán de 500 W/m2-OC. ¿Cuánta potencia eléctrica se debe suministrar al cable para mantener su temperatura a 114OC? Solución q = hA(Tp – T∞) = ? Acable = πDL = π[(1x10-3m)(0,1m)] = 3,1416x10-4 m2 q = (500 W/m2-OC)(3,1416x10-4 m2)(114OC – 100OC) q = 2,19912 W
  • 22. Dos placas infinitas de 800OC y 300OC, intercambian calor por radiación. Calcúlese el calor transferido entre ellas por unidad de área. Solución q = ε1σA1[(T1)4 – (T2)4]= ? Asumiendo que ε1 = 1 y que σ = 5,669x10-8 W/(m2-OK4); se pasa A1, al lado izquierdo de la igualdad con las incógnitas: 𝑞 𝐴 = σ[(T1)4 – (T2)4]= ? T1 = 800OC (1073OK) y T2 = 300OC (573OK) 𝑞 𝐴 = 5,669x10−8 W/(m2−OK4) (1073OK)4−(573OK)4 𝒒 𝑨 = 69,034x103 W/m2
  • 23. Una tubería horizontal de acero al carbono (1,5%) que tiene un diámetro de 50cm se mantiene a una temperatura de 50OC, en un reciento muy grande, donde el aire circundante y las paredes están a 20OC y con un coeficiente de convección, de 6,50 W/m2-OC. Si la emisividad del acero es de 0,80. Calcúlese la pérdida de calor que la tubería experimenta por unidad de longitud. Espesor de pared de 5mm. Solución O [q/L]Total = ? Para calor por convección, A(tubería) = πDL, donde L = ?; entonces: q = hA(Tp – T∞) = h(πDL)(Tp – T∞) 𝑞 𝐿 = h(πD)(Tp – T∞) 𝑞 𝐿 =(6,50 W/m2-OC)[π(0,5m)][50OC – 20OC] = 306,305 W/m Para el calor por conducción, q = - K(πDL) 𝑑𝑇 𝑑𝑥 donde L = ?
  • 24. 𝑞 𝐿 = - K(πD) 𝑑𝑇 𝑑𝑥 = - (36 W/m-OC)[π(0,5m)] 30OC 0,005𝑚 𝑞 𝐿 = -339,292x103 W/m Para el calor por radiación, ε = 0,80 y T1 = 323OK y T2 = 293OK 𝑞 𝐿 = ε1σ(πD)[(T1)4 – (T2)4] , entonces: 𝑞 𝐿 = 0,80[5,669x10-8 W/(m2-OK4)][π(0,5m)][(323OK)4 − (293OK)4 ] 𝒒 𝑳 = 251,692W/m Sumando los tres calores obtenidos: [q/L]Total = -338,734003x103 W/m