Matemáticas 1 ¿Qué son las matemáticas? ¿Para qué sirven?
Matemáticas Las matemáticas dependen tanto de la lógica como de la creatividad, y están regidas por diversos propósitos prácticos y por su interés intrínseco.  Para algunas personas, y no sólo para los matemáticos profesionales, la esencia de esta disciplina se encuentra en su belleza y en su reto intelectual para otros, incluidos muchos científicos e ingenieros, su valor principal estriba en la forma en que se aplican a su propio trabajo.  Ya que las matemáticas juegan ese papel central en la cultura moderna, es indispensable una comprensión básica de ellas en la formación científica. Para lograr esto, los estudiantes deben percatarse de que las matemáticas forman parte del quehacer científico, comprender la naturaleza del pensamiento matemático familiarizarse con las ideas y habilidades de esta disciplina.                        CIENCIA: CONOCIMIENTO PARA TODOS
Instrumentos musicales
Cuerdas
Viento
Percusión
Conjuntos Conjunto:  Cualquier agregado o colección de objetos o entes de cualquier índole. Elementos:  Objetos que forman el conjunto. Para hablar de un conjunto es necesario que: La colección de objetos debe estar bien definida. Ningún objeto del conjunto se debe contar más de un vez. El orden en que se enumeren los objetos (elementos) carece de importancia.
Simbología Usar letras mayúsculas para determinar un conjunto. Usar llaves para limitar el conjunto { ….}, lo cual significa conjunto formado por… Lo que queda dentro de las llaves constituye la descripción del conjunto o de sus elementos.
Ejemplo A  =  {  }
A={ Conjunto de instrumentos musicales} A= { piano, tambor, guitarra, trompeta, silbato, flauta, pandero arpa}
Especificación de un conjunto Por enumeración: Consiste en elaborar una lista de todos sus elementos, separándolos mediante comas y encerrándolos con llaves. Ejemplo: El conjunto de las vocales { a, e, i, o, u} El conjunto de los dígitos {1,2,3,4,5,6,7,8,9}
Especificación de un conjunto Por descripción verbal: Consiste en una descripción verbal que expresa necesaria y únicamente los requisitos que debe satisfacer un elemento para pertenecer al conjunto. Ejemplo: A= El conjunto de los países de América Latina. B= El conjunto de los paralelogramos
Especificación de un conjunto Por comprensión: Consiste en usar una variable genérica, es decir un indicador de elementos y una frase o relación matemática que especifique con toda precisión los elementos que se estén generando, todo ello encerrado en llaves. C = {x |x es una letra del abecedario} D = {x |x es un río de la República Mexicana}
Relación de pertenencia Pertenencia: Relación que existe entre el conjunto y sus elementos ( Є ) Si a es un elemento que pertenece al conjunte A se escribe: a     A Para indicar que no pertenece: a     A
Ejemplos M = {Países de América} Uruguay     M España    M
Tipos de conjuntos  Operaciones con conjuntos
Conjuntos finitos Se pueden enumerar todos los elementos del conjunto. A={vocales} A={a, e, i, o, u}
Conjuntos infinitos Cuando no se pueden enumerar todos los elementos del conjunto.  B={Números naturales} B={1,2,3,4,5,6,7,8,9……}
Conjunto universo Universo , espacio o conjunto referencial (U) Conjunto formado por todos los elementos de un tema dado. Ejemplo:  U   =    a , e , i , o , u     Tema:  vocales minúsculas del abecedario castellano
Conjunto vacío Conjunto vacío  (     ) Es el conjunto que no tiene elementos. También puede decirse que ningún elemento del universo cumple la condición dada en él. Ejemplo:   Especies de insectos de 10 patas   =       =  
Unión o reunión  (    ) Unión o reunión  (    ) El conjunto  A    B  está formado solamente por todos los elementos que pertenecen a  A,  y/ó  a  B, (o a ambos). A    B = { x :  x    A    x    B }
Ejemplo: Sean:  U = { p , r , s , t }  A = { p , s }  B  =  { r , s }  A    B  =  { p, r, s}
Intersección  (    ) El conjunto  A    B  está formado solamente por todos los elementos que pertenecen  a  A  y   a  B simultáneamente. A    B = { x :  x    A    x    B }
Ejemplo: Sean:  U = { p , r , s , t }  A = { p , s }  B  =  { r , s }  A    B  = { s }
Diferencia  (    ) El conjunto  A    B  está formado solamente por todos los elementos que pertenecen a  A,  pero que no  pertenecen a  B. A    B  =  { x :  x    A     x    B }
Ejemplo: Sean:  U = { p , r , s , t }  A = { p , s }  B  =  { r , s }  A    B  =  { p }
Igualdad Relación de igualdad  ( = ) Dos conjuntos son iguales si y sólo si están formados por los mismos elementos. A  =  B       x ( x    A     x    B )
Ejemplo  Sean: A =    1 , 2 , 3     B =    2 , 1 , 3   . A=B
Relación de inclusión  (     ) Sean  A y B  conjuntos, entonces  A  está incluido en  B, o bien  A  es un subconjunto de  B,  si y sólo si  cada elemento de  A  lo es también de  B. A    B       x ( x    A     x    B )
Ejemplo: Sean: A  =    p , q     y  B  =    m , n , p , q , r    ,  Entonces A    B ={p, q} Todos los elementos de A están en el conjunto B
Ejemplo: Sean: A = { 1,2,3,4,5} B = {1,3,5,7} Entonces: A    B No todos los elementos de A están en el conjunto B
Ejercicio 1: Dados los conjuntos: U   =  { 1 , 2 , 3 , 4 , 5 }  A  =  { 1 , 3 , 5 } ,  B  =  { 4 , 5 } ,  C  =  { 2 , 4 , 5 }  y D  =  { 2 , 3 } ,  Efectúa las siguientes operaciones: 1 )  A  B  2 )  C  D  3 )  B  C  4 )  A  D  5 ) A    C  6 ) C    A  7) Indica si D es un subconjunto de A  8) Indica si B es un subconjunto de C
Complemento de un conjunto Si consideramos a U como un conjunto Universo y A     U  definimos el complemento de A que se denota por A c  como: A C  =  { x  |  x    U y  x     A }
Ejemplo: Sean:  U = { p , r , s , t }  A = { p , s }  B  =  { r , s }  A' =  { r , t }
Diagramas de Venn Euler Es un Organizador Gráfico (OG) que permite entender las relaciones entre conjuntos.  Un típico Diagrama de Venn utiliza círculos para representar grupos de ítems o ideas que comparten o no propiedades comunes.  Su creador fue el matemático y filósofo británico John Venn Euler quién quería representar gráficamente la relación matemática o lógica existente entre diferentes grupos de cosas (conjuntos), representando cada conjunto mediante un óvalo, círculo o rectángulo.
Diagramas de Venn Euler
Ejercicio: Sean U: A:  B:  Encuentra:
 

Lgicayconjuntos 090602081334-phpapp02

  • 1.
    Matemáticas 1 ¿Quéson las matemáticas? ¿Para qué sirven?
  • 2.
    Matemáticas Las matemáticasdependen tanto de la lógica como de la creatividad, y están regidas por diversos propósitos prácticos y por su interés intrínseco. Para algunas personas, y no sólo para los matemáticos profesionales, la esencia de esta disciplina se encuentra en su belleza y en su reto intelectual para otros, incluidos muchos científicos e ingenieros, su valor principal estriba en la forma en que se aplican a su propio trabajo. Ya que las matemáticas juegan ese papel central en la cultura moderna, es indispensable una comprensión básica de ellas en la formación científica. Para lograr esto, los estudiantes deben percatarse de que las matemáticas forman parte del quehacer científico, comprender la naturaleza del pensamiento matemático familiarizarse con las ideas y habilidades de esta disciplina.                       CIENCIA: CONOCIMIENTO PARA TODOS
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
    Conjuntos Conjunto: Cualquier agregado o colección de objetos o entes de cualquier índole. Elementos: Objetos que forman el conjunto. Para hablar de un conjunto es necesario que: La colección de objetos debe estar bien definida. Ningún objeto del conjunto se debe contar más de un vez. El orden en que se enumeren los objetos (elementos) carece de importancia.
  • 8.
    Simbología Usar letrasmayúsculas para determinar un conjunto. Usar llaves para limitar el conjunto { ….}, lo cual significa conjunto formado por… Lo que queda dentro de las llaves constituye la descripción del conjunto o de sus elementos.
  • 9.
  • 10.
    A={ Conjunto deinstrumentos musicales} A= { piano, tambor, guitarra, trompeta, silbato, flauta, pandero arpa}
  • 11.
    Especificación de unconjunto Por enumeración: Consiste en elaborar una lista de todos sus elementos, separándolos mediante comas y encerrándolos con llaves. Ejemplo: El conjunto de las vocales { a, e, i, o, u} El conjunto de los dígitos {1,2,3,4,5,6,7,8,9}
  • 12.
    Especificación de unconjunto Por descripción verbal: Consiste en una descripción verbal que expresa necesaria y únicamente los requisitos que debe satisfacer un elemento para pertenecer al conjunto. Ejemplo: A= El conjunto de los países de América Latina. B= El conjunto de los paralelogramos
  • 13.
    Especificación de unconjunto Por comprensión: Consiste en usar una variable genérica, es decir un indicador de elementos y una frase o relación matemática que especifique con toda precisión los elementos que se estén generando, todo ello encerrado en llaves. C = {x |x es una letra del abecedario} D = {x |x es un río de la República Mexicana}
  • 14.
    Relación de pertenenciaPertenencia: Relación que existe entre el conjunto y sus elementos ( Є ) Si a es un elemento que pertenece al conjunte A se escribe: a  A Para indicar que no pertenece: a  A
  • 15.
    Ejemplos M ={Países de América} Uruguay  M España  M
  • 16.
    Tipos de conjuntos Operaciones con conjuntos
  • 17.
    Conjuntos finitos Sepueden enumerar todos los elementos del conjunto. A={vocales} A={a, e, i, o, u}
  • 18.
    Conjuntos infinitos Cuandono se pueden enumerar todos los elementos del conjunto. B={Números naturales} B={1,2,3,4,5,6,7,8,9……}
  • 19.
    Conjunto universo Universo, espacio o conjunto referencial (U) Conjunto formado por todos los elementos de un tema dado. Ejemplo: U =  a , e , i , o , u  Tema: vocales minúsculas del abecedario castellano
  • 20.
    Conjunto vacío Conjuntovacío (  ) Es el conjunto que no tiene elementos. También puede decirse que ningún elemento del universo cumple la condición dada en él. Ejemplo:  Especies de insectos de 10 patas  =   = 
  • 21.
    Unión o reunión (  ) Unión o reunión (  ) El conjunto A  B está formado solamente por todos los elementos que pertenecen a A, y/ó a B, (o a ambos). A  B = { x : x  A  x  B }
  • 22.
    Ejemplo: Sean: U = { p , r , s , t } A = { p , s } B = { r , s } A  B = { p, r, s}
  • 23.
    Intersección (  ) El conjunto A  B está formado solamente por todos los elementos que pertenecen a A y a B simultáneamente. A  B = { x : x  A  x  B }
  • 24.
    Ejemplo: Sean: U = { p , r , s , t } A = { p , s } B = { r , s } A  B = { s }
  • 25.
    Diferencia (  ) El conjunto A  B está formado solamente por todos los elementos que pertenecen a A, pero que no pertenecen a B. A  B = { x : x  A  x  B }
  • 26.
    Ejemplo: Sean: U = { p , r , s , t } A = { p , s } B = { r , s } A  B = { p }
  • 27.
    Igualdad Relación deigualdad ( = ) Dos conjuntos son iguales si y sólo si están formados por los mismos elementos. A = B   x ( x  A  x  B )
  • 28.
    Ejemplo  Sean: A=  1 , 2 , 3  B =  2 , 1 , 3  . A=B
  • 29.
    Relación de inclusión (  ) Sean A y B conjuntos, entonces A está incluido en B, o bien A es un subconjunto de B, si y sólo si cada elemento de A lo es también de B. A  B   x ( x  A  x  B )
  • 30.
    Ejemplo: Sean: A =  p , q  y B =  m , n , p , q , r  , Entonces A  B ={p, q} Todos los elementos de A están en el conjunto B
  • 31.
    Ejemplo: Sean: A= { 1,2,3,4,5} B = {1,3,5,7} Entonces: A  B No todos los elementos de A están en el conjunto B
  • 32.
    Ejercicio 1: Dadoslos conjuntos: U = { 1 , 2 , 3 , 4 , 5 } A = { 1 , 3 , 5 } , B = { 4 , 5 } , C = { 2 , 4 , 5 } y D = { 2 , 3 } , Efectúa las siguientes operaciones: 1 ) A  B 2 ) C  D 3 ) B  C 4 ) A  D 5 ) A  C 6 ) C  A 7) Indica si D es un subconjunto de A 8) Indica si B es un subconjunto de C
  • 33.
    Complemento de unconjunto Si consideramos a U como un conjunto Universo y A  U definimos el complemento de A que se denota por A c como: A C = { x  | x  U y x  A }
  • 34.
    Ejemplo: Sean: U = { p , r , s , t } A = { p , s } B = { r , s } A' = { r , t }
  • 35.
    Diagramas de VennEuler Es un Organizador Gráfico (OG) que permite entender las relaciones entre conjuntos. Un típico Diagrama de Venn utiliza círculos para representar grupos de ítems o ideas que comparten o no propiedades comunes. Su creador fue el matemático y filósofo británico John Venn Euler quién quería representar gráficamente la relación matemática o lógica existente entre diferentes grupos de cosas (conjuntos), representando cada conjunto mediante un óvalo, círculo o rectángulo.
  • 36.
  • 37.
    Ejercicio: Sean U:A: B: Encuentra:
  • 38.