UNIVERSIDAD FERMIN TORO
MATEMATICA II
ALEXANDER FREITEZ
C.I. 17101055


                                        INTEGRAL DEFINIDA
El rectángulo inscrito sobre el i-esimo termino sub intervalo xi-1, xi tiene altura f (xi-1),
mientras que el i-esimo rectángulo circunscrito tiene una altura f(xi). Como la base de
cada rectángulo tiene una longitud x las áreas de estos rectángulos son f (xi-1) x y
f (xi) x.

          y




                                               f(xi)
                   f (xi-1)
                                                                                  x
                a=x0           xi-1       xi           xn=b



Al sumar las áreas de los rectángulos inscritos para i = 1, 2, 3 ….. n obtenemos la
                           n
                 An              f xi 1 x
subestimación              i 1                  del área real A


De manera análoga                la suma de las áreas de los rectángulos circunscritos es la
                                 n
                      An               f xi x
sobreestimación                  i 1



                                                                       n                    n
                                                                             f xi 1 x   A         f xi   x
La desigualdad implica que An                    A     An , entonces   i 1                  i 1




                                                                                                             1
Universidad Nacional de Ingeniería UNI-Norte
Las desigualdades se invierten si f` x   fuera decreciente. Si el número n de
subintervalos es muy grande, de modo que x sea muy pequeño, entonces la
diferencia entre las áreas An y An de los polígonos inscritos y circunscritos será
muy pequeña. Por tanto ambos valores serán muy cercanos al área real A de la
región R.

     An    An       f b        f a



Pero                 b a                           , cuando
                                       0                          n
                      n

El área de la región R está dada por:


                                   n                          n
                A    lim               f xi    1        lim           f xi x
                      n        i 1                      n     i 1



                                                                               b a
Al aplicar la fórmula o Ecuación recordemos que x                                  y       x1   a i x para i=0, 1, 2,
                                                                                n
…..n pues xi está a i pasos de longitud x a la derecha de                         0    a

Ejemplos.

1) Determinar el área bajo la gráfica de f(x)=x2 en el intervalo 0,3 .

Solución:

Si dividimos 0, 3 en n subintervalos, de la misma longitud.

          b a   3 0            3                        3
 x                                                  x
           n     n             n                        n

                                           3
xi    a i x               xi       0 i
                                           n

                                                                                                                    2
Universidad Nacional de Ingeniería UNI-Norte
n                       n
Por tanto:             f ( xi ) x                ( xi ) 2 x sustituimos
             i 1                         i 1


                             2
                 n
                        3i       3               n
                                                  27i 2
                                                     2
                                                                 aplicando propiedad de sumatorias,
                 i 1    n        n           i   1 n


                                                      n
                                           27
                                         = 2                i 2 aplicamos la fórmula de sumatoria
                                          n          i 1



                                                 27 1 3          1 2       1
                                                      n            n         n     aplicamos límite cuando n
                                                 n2 3            2         6

                                     1       1             1              1                1    1
             A         lim 27                                      27             9 pues      y 2 tienden a cero cuando
                       n             3       2n           6n 2            3                2n  6n

n                    ... A = 9u2


                                                     10

                                                     9

                                                     8

                                                     7
                                                                                                          y = x2
                                                     6

                                                     5
                                                                                                          A = 9u2
                                                     4

                                                     3

                                                     2

                                                      1

                                                     0
                                                          0,0       1,0            2,0      3,0    4,0
                                                                              x
                                                                    xi-1           xi


Ejemplo:

2) Determine el área bajo la gráfica de f(x):100-3x2 de x=1 a x=5

                                                                                                                          3
Universidad Nacional de Ingeniería UNI-Norte
Solución: El intervalo es 1 , 5

                     b a      5 1           4
                 x
                      n        n            n

  xi         a i x
                 4                         4i
  xi       1 i               xi       1       Ahora apliquemos la fórmula
                 n                         n

                                  n                n
                                          f x x          100 3x 2 x
                                  i 1             i 1



                                                   n                               2
                                                                         4i             4
                                                             100 3 1
                                                   i 1                   n              n
                                                         n
                                                                      8i               16i 2        4
                                                              100 3 1
                                                       i 1            n                 n2          n

                                                         n
                                                                         24i           48i 2    4
                                                              100 3
                                                       i 1                n             n2      n

                                                        n
                                                                   24i        48i 2         4
                                                              97
                                                       i 1          n          n2           n

                                                        n
                                                              388 96i          192i 2
                                                       i 1     n  n2            n3

                                                       388 n   96         n
                                                                                       192 n 2
                                                             1                 i               i
                                                        n i1   n2        i 1            n3 i 1

                                            aplicamos fórmulas correspondientes a cada caso.


       n             n
                                                388            96 1 2          1            192 1 3     1 2   1
             f x x         100 3x 2 x               n               n            n                n       n     n
       i 1           i 1                         n             n2 2            2             n3 3       2     6

                                                48    96           32
Simplificamos (n)            388 48                64
                                                n     n            n2
                                                                                                                    4
Universidad Nacional de Ingeniería UNI-Norte
144 32
                                276          -
                                       n  n2
Aplicamos límite

                        144    32
A   lim
     n
               276
                         n     n3
                                      276


A=276 u2



                                            SUMAS DE RIEMANN
                                                       n                     n
Las sumas de aproximación en la ecuación                    f xi   1   x y         f xi     x son ambas de la
                                                      i 1                    i 1
          n
                                       *
forma          f xi *    x donde xi es un punto seleccionado en el iésimo subintervalo xi 1 , xi
         i n




              a = x0     x1*    x1     *
                                      x2    x2   ……   xi-1 xi*         xi      *
                                                                              xn          xn = b

Una función f definida en a , b que no necesariamente es continua o positiva. Una
partición P de a , b es una colección de subintervalos
  x0, x1 , x1, x2 , x2, x3 ,…. xn-1, xn de a , b de modo que a = x0 x1 x2 x3 …..                                     xn-
1    xn = b

La NORMA de la partición P es el máximo de las longitudes xi                                  xi   xi   1   de los
subintervalos en P y se denota P .




                                                                                                                       5
Universidad Nacional de Ingeniería UNI-Norte
n
                                                               *                                                                  *
             Para obtener una suma como                 f xi       x , necesitamos un punto xi                                        en el iésimo
                                                  i 1

             subintervalo para cada i, 1 i n. Una colección de puntos S xi *, x2* , x3* ,..... xn* donde
             xi *, en xi 1 , xi (para cada i) es una selección para la partición P.
             Esto define la suma de Riemann para una función f en un intervalo a , b , S una
                                                                                        n
                                                                                                       *
             selección para P, entonces la suma de Riemamn R                                    f xi           xi
                                                                                       i 1

             En la siguiente gráfica de la función f x             2 x3       6x2       5 en el intervalo 0, 3




                      6,0
                                                                                       Suma según los extremos
                                                                                       izquierdos
                      4,0


                                                                                            n
                                                                                   R             f xi      1        x
                      2,0
                                                                                        i 1
               F(x)




                      0,0




                      -2,0




                      -4,0
                               2,00
                               2,10
                               2,20
                               2,30
                               2,40
                               2,50
                               2,60
                               2,70
                               2,80
                               2,90
                               3,00
                               ,00
                               ,10
                               ,20
                               ,30
                               ,40
                               ,50
                               ,60
                               ,70
                               ,80
                               ,90
                               1,00
                               1,10
                               1,20
                               1,30
                               1,40
                               1,50
                               1,60
                               1,70
                               1,80
                               1,90




                                          X




             Según los extremos derechos                                           Según los puntos medios
                        n                                                                          n
                                                                                                                                           xi           xi
             R=              f ( xi ) x                                            Rmed =                  f (mi ) x    ,   xi*       mi        1

                      i 1                                                                         i 1                                               2


       6,0                                                                   6,0




       4,0                                                                   4,0



                                                                                                                                                             6
       2,0   Universidad Nacional de Ingeniería UNI-Norte                    2,0
                                                                      F(x)
F(x)




       0,0                                                                   0,0
LA INTEGRAL DEFINIDA SEGÚN RIEMANN

El matemático alemán G . F. B Riemann (1826 -1866) Proporcionó una definición
rigurosa de la integral.

Definición: La integral definida de la función f de a a b es el número
                          n
                                      *
        I     lim
               p       0 i 1
                               f xi       xi

Siempre que el límite exista, en cuyo caso decimos que f es integrable en [a, b]. La
ecuación significa que, para cada número     > 0, existe un número      > 0 tal que
    n
                   *
I           f xi       xi <
    i 1

Para cada suma de Riemann asociada con una partición arbitraria P de [a, b] para la que
 P <


Nota: La palabra límite se usa para denotar el número mínimo y el número máximo del
intervalo [a, b] y no tiene nada que ver con las definiciones de límite dadas anteriormente.

La notación usual para la integral de f de a a b, debida al filósofo y matemático alemán G.
W Leibniz, es:



                                                                                           7
Universidad Nacional de Ingeniería UNI-Norte
Esta notación integral no solo es altamente sugerente, sino que también es útil, en
extremo para el manejo de las integrales. Los números a y b son el limite inferior y el
limite superior de la integral, respectivamente, son los extremos del intervalo de
integración.

La variable x se puede reemplazar por cualquier otra variable sin afectar el significado de
la Ecuación.

Así si f es integrable en [a, b] , entonces
b            b
                              b
    f x dx       f t dt           f u du ; f x es el integrando.
                              a
a            a



La integral dada, de la integral definida, se aplica solamente cuando a < b, pero es
conveniente incluir, cuando a > b y a = b.
                                      b
* Si a = b                                f x dx   0
                                      a


                                  b                 a
* Si a > b                                f x dx        f x dx
                                  a                 b


                                                                           b
Definición: Se llama integral definida entre a y b de f(x), y se denota        f x dx al área de
                                                                           a

la porción del plano limitado por la grafica de la función f(x), el eje x y las rectas x = a y
x = b.

                          TEOREMA DE EVALUACIÓN DE INTEGRALES


“ Si G es una primitiva de la función continua f en G(b) – G(a) se abrevia generalmente [
                          b
         b
G(x) ]a entonces              f x dx           Gb       Ga
                          a



Ejemplo: Evaluar



                                                                                              8
Universidad Nacional de Ingeniería UNI-Norte
1) senxdx                cosx 0          cos                cos0
     0

                                  = - (-1) – (-1)
                                  = +1 + 1 = 2

     2                       2
          5       1 6              1     6     1        6    64           32
2) X dx             X                2           0              0
     0
                  6          0
                                   6           6             6            3



     9                                                             9
                  1/ 2                 x2       x1 / 2
3)       2X   X            3 dx      2                      3x
     1
                                       2        1/ 2               1


                                                               9
                                        x2   2 x1 / 2       3x 1
                                     9 2 12             2 91 / 2 11 / 2    39 1
                                    80 4 24
                                    52

                                  Propiedades de las Integrales Definidas
Sea f una función integrable en a, b :

Propiedad 1:
                   b
                         f x dx     0        Es decir, si la base del área de la región bajo la curva es cero,
                   a

el área es cero.

Propiedad 2:
b
    f x dx > 0 ,         x       a, b y f(x) > 0, Es decir, el área de la región bajo la curva siempre
a

será positiva si f(x) es positiva.

Propiedad 3:




                                                                                                                 9
Universidad Nacional de Ingeniería UNI-Norte
b
        f x dx < 0,               x       a, b y f(x) < 0, Es decir, el área de la región bajo la curva siempre será
a

negativa si f(x) es negativa.

Propiedad 4:
c                    b                       c
        f x dx =             f x dx +            f x dx , Si f es una función integrable en un intervalo que contiene
a                    a                       b

los puntos a, b, c talque a < b < c.

Propiedad 5:
b                                     b             b
        f x        g x dx                 f x dx        g x dx Si f y g son funciones integrables en [a,b].
a                                     a             a




Propiedad 6:
    b                         b
        Kf x dx          k        f ( x)dx para toda constante k
    a                         a



Propiedad 7:
b                        a
        f ( x)dx = - f ( x)dx Al intercambiar los limites de integración cambia el signo de la
a                        b

integral.

Propiedad 8:
b                    b
        f ( x)dx         g x dx Si f y g son funciones integrables [a,b] y si f(x)                g(x).
a                    a



Propiedad 9:
b
    Kdx        Kb a                   Es decir, si la función es constante su integral es el producto de la
a

constante por la diferencia de los límites de integración.

                                                                                                                    10
Universidad Nacional de Ingeniería UNI-Norte
Ejemplos
Calcular la integral definida de las siguientes funciones:
      5
1) 7dx
      2
                                                                          5
Solución : como es una constante, entonces: 7dx = 7(5-2) = 7(3) = 21 (Por prop. 9)
                                                                          2


      2                  2                                            2
            3
2)        x dx     4 y       x dx       2 entonces calcular               5x 3   3x 4 dx
      0                  0                                            0




Solución:

2                             2             2          2
     5x 3       3x 4 dx = 5 x 3 dx              3xdx       4dx
0                             0             0          0


                              2             2
                                    3
                             5 x dx 3 xdx 4 2 0
                              0             0



                         = 5(4) – 3(2) + 8 Sustituyendo

                         = 20 – 6 + 8
                         = 22

3) Calcular el área bajo la gráfica aplicando la integral definida.



                                        4
                                        3
                                        2
                                        1

                                                1 2 3        4    5

                                                                                           11
Universidad Nacional de Ingeniería UNI-Norte
Solución:
5
    3dx           3(5 1)         3(4) 12u 2
1



4) Evalúe
5                                                       5
        1           5                                           2        3
                       dx           reescribimos            x       5x       dx
4       x2          x3                                  4




Solución:

5                    5
    x 2 dx               5 x 3 dx     integrando obtenemos
4                    4



        1                2   5                      5
    x               x                 1     5
                5
        1                2   4
                                      x    2x 2     4



Sustituimos aplicando la definición

            1            5            1         5
                             2                      2
            5       25                4    24

            1       5        1   5        17
=                                                   0.10625
            5       50       4   32       160



                                                        Ejercicios Propuestos
        7
                                                                                  R/ = 2025/4
a)           x3      4 x dx
        2




                                                                                                12
Universidad Nacional de Ingeniería UNI-Norte
6
                                                           R/ = -1661/12
b)               y3        y 2 1 dy
     5

                                                           R/ = 6
c) 3senZdz
     0
     4
                               1                           R/ = 8.2
d)                    x              3
                                         x dx
     1                          x
      e
                                                           R/ = 1
e)           ln y dy
         1
     4
                                                           R/ = 192
f)           7x5/ 2            5 x 3 / 2 dx
     0
         0
                           3                               R/ = 1/4
g)               x 1 dx
         1

             8                                             R/ = 1/2
                      2
h)           sec tdt
         0
         /4
                                                           R/ = 1/4
i)           senx cos xdx
         0
     2
                           x                               R/ = 4/
j) cos                       dx
     0
                          4
     3
                                                           R/ = 23.37
k) xe x / 2 dx
     1
         2
                      x2 1
                                                           R/ = 3/2 e (e2-1)
l)           3 xe            dx
     0




                                     TEOREMA FUNDAMENTAL DEL CÁLCULO

Si f(x) es continua en el intervalo cerrado [a, b] y F es una primitiva de f en [a, b],
            b
entonces a f x dx = F(b) – F(a); la diferencia F(b) – F(a) se denota por el símbolo f ( x)]b
                                                                                           a

o por F ( x) b .
             a



                               Estrategia para usar el teorema fundamental del cálculo

1. Supuesta conocida una primitiva de f, disponemos de un nuevo recurso para calcular
integrales definidas que no requiere hallar el límite de una suma.
                                                                                           13
Universidad Nacional de Ingeniería UNI-Norte
2. Use la siguiente notación para aplicar el teorema fundamental del cálculo
 b
   f ( x)dx = F ( x) a = F(b) – F(a).
                     b
 a



Nota: No es necesario incluir una constante de integración C en la primitiva.

Ocurren los siguientes casos:
                                                                            b                a
                                      1) Si a > b se tiene                  a
                                                                                f x dx
                                                                                            b
                                                                                                 f x dx
                                                                                         =- [F(a) – F(b)]
                                                                                         = F(b) – F(a)



                                      2) a = b se tiene
                                        a
                                                f x dx        0        Fa       Fa
                                        a




                                      Ejemplos

Evaluar
     3
                             x3             3
a)       6x 2     5 dx   6            5x        2
     2
                             3
                                            3
                         2x3          5x        2
                                  3                           3
                             23         53           2    2        5    2
                             2 27       15          2    8        10
                             54 15                  16 10
                         39            6
                         45


     0
              2                   2x3       3x 2              0
b)       2x       3x 2 dx                                2x   2
     2
                                   3         2

                                                                                                            14
Universidad Nacional de Ingeniería UNI-Norte
3                  2
                                     2                   2                                03      02
                                   2                   3               22               2       3         20
                                     3                   2                                3       2
                                       8
                                  2                6 4                0
                                       3
                                  16       2
                                   3       1
                                   10
                                    3
                                  10
                                   3


   4             4                                 4                  3/ 2               3/ 2
                      1/ 2          x3/ 2                         4                    4
c) 3 x dx 3 x                dx   3                          3                     3            0
   4             4
                                    3/ 2           4
                                                                  3/ 2                 3/ 2

* Aplicación del teorema fundamental del cálculo para hallar un área.

d) Calcular el área de la región acotada por la gráfica f(x) = x2 en el intervalo 0,3 nótese
que y 2.
                                                       10

         3
             2       x3      3
                                                       9
Área = x dx                  0
                                       .
         0
                     3                                 8


                     33 0 3                            7

                                                       6
                      3   3
                        2                              5
                     9u
                                                       4

                                                       3

                                                       2

                                                        1

                                                       0
                                                            0,0              1,0         2,0        3,0    4,0




Nota: Este ejercicio esta resuelto al inicio de la unidad usando sumatoria.

 TEOREMA DEL VALOR MEDIO PARA INTEGRALES DEFINIDAS

                                                                                                                 15
Universidad Nacional de Ingeniería UNI-Norte
Si f es continua en el intervalo cerrado a, b , entonces existe un número “c” en a, b tal
         b
que          f ( x)dx              f (c)(b a) , c puede ser cualquier punto de a, b .
         a

Si despejamos f(c) tendríamos:
                       b
               1
f (c )                     f ( x)dx obteniéndose así la definición del valor medio de una función en un
             b aa
intervalo cuyo teorema es:

“Si f es integrable en el intervalo cerrado a, b , el valor medio de f en a,b) es
                                   b
                       1
 f med                                 f ( x)dx ”
                   b aa


                                                                          Ejemplo


a) Halle el valor medio de f ( x) 3x 2 2 x en el intervalo 1,4 en este caso a =1, b = 4

                               b                        4                                     4
                   1                                1            2            1 3x 3   2x 2           1 3              4
f med                              f ( x)dx                 3x       2 x dx                             x         x2   1
                b a            a
                                                4 11                          3 3       2     1
                                                                                                      3

                                                                              1    3      2               3       2
                                                                                 4    4               1       1
                                                                              3
                                                                              1                           1
                                                                                 64 16            0         48
                                                                              3                           3
                                                                              16

                                                                     GRAFICO
                           2
      f(x) = 3x -2x
        x    Y
        1    1
        2    8
        3    23
        4    40



                                                                                                                           16
Universidad Nacional de Ingeniería UNI-Norte
La figura muestra que el área de la región bajo la grafica de f es igual al área del
rectángulo cuya altura es el valor medio.

b) Encuentre un número c que satisfaga la conclusión del teorema del valor medio para la
                                    3
siguiente integral definida x 2 dx      f (c)(b a)
                                    0

Recordemos que esta ya es un área conocida igual a 9 unidades cuadradas, por tanto
 3
     x 2 dx   f (c)(b a)
 0

              x3 3
                 0     f (c ) 3 0
               3
              33
                   f (c)(3)
               3
              9 f (c)(3)
              9
                    f (c )
              3
              f (c ) 3



Como f(x) = x2 entonces c2 = 3
c = 3 que es valor que satisface la conclusión del teorema.


                                    INTEGRACIÓN NUMÉRICA


En varias ciencias, como las ciencias sociales, frecuentemente aparecen funciones en las
que se conocen de ellas solo su gráfica o algunos puntos de la misma. En estos casos no
es posible calcular la antiderivada de la función para determinar el área de la región
limitada por dicha función. Existe un método que proporciona una aproximación al valor
del área y que se conoce con el nombre de “INTEGRACIÓN NUMÉRICA”. Este método
se utiliza en los casos en que es muy complicado o imposible obtener la antiderivada de
la función.

Para aproximar el área de una región usaremos los siguientes métodos:

                                                                                       17
Universidad Nacional de Ingeniería UNI-Norte
1) Método del Trapecio

Una forma de aproximar el valor de una integral definida es usar “n” trapecios como lo
muestra la figura:




                  x=0               x1   x2   x3      x4 = b




En este método se supone que f es continua y positiva en a, b de manera que la integral
                                               b
                                                   f ( x)dx
                                               a

representa el área de la región limitada por la grafica de f y el eje x, entre x=a y x=b.
                                                                                b a
En primer lugar partimos a, b en n subintervalos, cada uno de anchura x             tales
                                                                                 n
que a= x0    x1   x2 ...   xn = b

A continuación formamos un trapecio sobre cada subintervalo como lo muestra la figura




                                                                                            18
Universidad Nacional de Ingeniería UNI-Norte
f(x0)

                                                           f (x1)

                                         x0         x1

                                              b a
                                               n

                                                         f xi 1 f ( xi )      b a
donde el área del i-ésimo trapecio =                                                    por tanto la suma de las áreas
                                                               2               n
de los n trapecios es:
            b a f ( x0 ) f ( x1 )             f ( xn 1 ) f ( xn )        b a
Área =                            ...                                           f ( x0 )   f ( x1 ) ... f ( xn 1 )   f ( xn )
             n          2                               2                 2n
 b              b a
     f ( x)dx       f ( x0 ) 2 f ( x1 ) ... 2 f ( xn 1 )            f ( xn ) que es la regla del trapecio para
 a               2n
                  b
aproximar         a
                      f ( x)dx


Ejemplo:
                                                                                   3
                      1) Use la regla de los trapecio para estimar                     x 2 dx con n=5
                                                                                  0



                                  b a 3 0 3
Primero calcular x
                                   n        5   5
x0     0, x1    0.6, x 2    1.2, x3 1.8, x 4 2.4, x5        3
Segundo aplicar la ecuación
   b a
=         f ( x0 ) 2 f ( x1 ) 2 f ( x2 ) ... 2 f ( xn 1 ) f ( xn )
     2n
  3 0
=       0 2(0.36) 2(1.44) 2(3.24) 2(5.76) 2(9)
  2(5)
   3
= 0.72 2.88 6.48 11.52 18 9.18 U 2
  10

                                 10

                                 9
                                                                                              y = x2
                                                                                              A = 9.18 u2
                                 8

                                 7

                                 6
                                                                                                                                19
                                 5
Universidad Nacional de Ingeniería UNI-Norte
                                 4

                                 3

                                 2
2) Use la regla del trapecio para estimar                                             senxdx con n=4 y n=8
                                                                                  0


                                    b a                  0
Cuando n=4                  x
                                     n               4         4
                                               3
x0       0, x1       , x2           , x3          , x4
                 4              2               4
                    0                                                                 3
     senxdx           sen0 2sen                              2sen           2sen              2sen
 0               2(4)           4                                   2                  4
                  2           2                                                                                        2 1
=        0 2(       ) 2(1) 2( ) 0                                       2     2           2          2 2    2                      1.896
     8           2           2                                 8                               8                       4

                                           0
Cuando n=8                  x
                                       8          8
                                               3                             5                3            7
x0       0, x1       , x2           , x3          , x4             , x5         , x6             , x7         , x8
                 8              4               8              2              8                4            8



                      0
    senxdx                  sen0 2sen                    2sen               2sen3             2sen         2sen5       2sen3        2sen7       sen
0
                 28                              8                 4                  8              2             8           4            8



GRAFICA




                                                                                                                                                      20
Universidad Nacional de Ingeniería UNI-Norte
como vemos

sen             sen7             y sen3               sen5
      8                  8                    8               8
Por tanto tenemos

                                  2                                                2
            2 sen            2           2 sen3        2(1) 2 sen5            2        2 sen7
     16              8           2                8                       8       2             8

            2 2 2                2sen        2sen7                2sen3       2sen5
     16                                  8                8               8            8

            2 2 2            4sen            4sen3
     16                                  8            8

Utilizando la calculadora obtenemos 1.974 u2 que se aproxima al área exacta que es 2u2


                                                              Ejercicios Propuestos


Aproxime el valor de la integral para el “n” que se especifique usando la regla del
trapecio.


      2
            2
                                                                                  R/ = 8/3 u2
a)        x dx,          n       4
      0
      8
                     2
                                                                                  R/ = 416/3 u2
b)          4 x dx, n                    4
      0
      9
                                                                                  R/ = 38/3 u2
c)           x dx,       n 8
      4
      3
            1                                                                     R/ = 2/3 u2
d)             dx,       n       4
      1     x2
      1.1
                 2
                                                                                  R/ = 0.089        8.9 * 10-2
e)          senx dx n                4
      1




                                                                                                                 21
Universidad Nacional de Ingeniería UNI-Norte

Tarea alexander freitez

  • 1.
    UNIVERSIDAD FERMIN TORO MATEMATICAII ALEXANDER FREITEZ C.I. 17101055 INTEGRAL DEFINIDA El rectángulo inscrito sobre el i-esimo termino sub intervalo xi-1, xi tiene altura f (xi-1), mientras que el i-esimo rectángulo circunscrito tiene una altura f(xi). Como la base de cada rectángulo tiene una longitud x las áreas de estos rectángulos son f (xi-1) x y f (xi) x. y f(xi) f (xi-1) x a=x0 xi-1 xi xn=b Al sumar las áreas de los rectángulos inscritos para i = 1, 2, 3 ….. n obtenemos la n An f xi 1 x subestimación i 1 del área real A De manera análoga la suma de las áreas de los rectángulos circunscritos es la n An f xi x sobreestimación i 1 n n f xi 1 x A f xi x La desigualdad implica que An A An , entonces i 1 i 1 1 Universidad Nacional de Ingeniería UNI-Norte
  • 2.
    Las desigualdades seinvierten si f` x fuera decreciente. Si el número n de subintervalos es muy grande, de modo que x sea muy pequeño, entonces la diferencia entre las áreas An y An de los polígonos inscritos y circunscritos será muy pequeña. Por tanto ambos valores serán muy cercanos al área real A de la región R. An An f b f a Pero b a , cuando 0 n n El área de la región R está dada por: n n A lim f xi 1 lim f xi x n i 1 n i 1 b a Al aplicar la fórmula o Ecuación recordemos que x y x1 a i x para i=0, 1, 2, n …..n pues xi está a i pasos de longitud x a la derecha de 0 a Ejemplos. 1) Determinar el área bajo la gráfica de f(x)=x2 en el intervalo 0,3 . Solución: Si dividimos 0, 3 en n subintervalos, de la misma longitud. b a 3 0 3 3 x x n n n n 3 xi a i x xi 0 i n 2 Universidad Nacional de Ingeniería UNI-Norte
  • 3.
    n n Por tanto: f ( xi ) x ( xi ) 2 x sustituimos i 1 i 1 2 n 3i 3 n 27i 2 2 aplicando propiedad de sumatorias, i 1 n n i 1 n n 27 = 2 i 2 aplicamos la fórmula de sumatoria n i 1 27 1 3 1 2 1 n n n aplicamos límite cuando n n2 3 2 6 1 1 1 1 1 1 A lim 27 27 9 pues y 2 tienden a cero cuando n 3 2n 6n 2 3 2n 6n n ... A = 9u2 10 9 8 7 y = x2 6 5 A = 9u2 4 3 2 1 0 0,0 1,0 2,0 3,0 4,0 x xi-1 xi Ejemplo: 2) Determine el área bajo la gráfica de f(x):100-3x2 de x=1 a x=5 3 Universidad Nacional de Ingeniería UNI-Norte
  • 4.
    Solución: El intervaloes 1 , 5 b a 5 1 4 x n n n xi a i x 4 4i xi 1 i xi 1 Ahora apliquemos la fórmula n n n n f x x 100 3x 2 x i 1 i 1 n 2 4i 4 100 3 1 i 1 n n n 8i 16i 2 4 100 3 1 i 1 n n2 n n 24i 48i 2 4 100 3 i 1 n n2 n n 24i 48i 2 4 97 i 1 n n2 n n 388 96i 192i 2 i 1 n n2 n3 388 n 96 n 192 n 2 1 i i n i1 n2 i 1 n3 i 1 aplicamos fórmulas correspondientes a cada caso. n n 388 96 1 2 1 192 1 3 1 2 1 f x x 100 3x 2 x n n n n n n i 1 i 1 n n2 2 2 n3 3 2 6 48 96 32 Simplificamos (n) 388 48 64 n n n2 4 Universidad Nacional de Ingeniería UNI-Norte
  • 5.
    144 32 276 - n n2 Aplicamos límite 144 32 A lim n 276 n n3 276 A=276 u2 SUMAS DE RIEMANN n n Las sumas de aproximación en la ecuación f xi 1 x y f xi x son ambas de la i 1 i 1 n * forma f xi * x donde xi es un punto seleccionado en el iésimo subintervalo xi 1 , xi i n a = x0 x1* x1 * x2 x2 …… xi-1 xi* xi * xn xn = b Una función f definida en a , b que no necesariamente es continua o positiva. Una partición P de a , b es una colección de subintervalos x0, x1 , x1, x2 , x2, x3 ,…. xn-1, xn de a , b de modo que a = x0 x1 x2 x3 ….. xn- 1 xn = b La NORMA de la partición P es el máximo de las longitudes xi xi xi 1 de los subintervalos en P y se denota P . 5 Universidad Nacional de Ingeniería UNI-Norte
  • 6.
    n * * Para obtener una suma como f xi x , necesitamos un punto xi en el iésimo i 1 subintervalo para cada i, 1 i n. Una colección de puntos S xi *, x2* , x3* ,..... xn* donde xi *, en xi 1 , xi (para cada i) es una selección para la partición P. Esto define la suma de Riemann para una función f en un intervalo a , b , S una n * selección para P, entonces la suma de Riemamn R f xi xi i 1 En la siguiente gráfica de la función f x 2 x3 6x2 5 en el intervalo 0, 3 6,0 Suma según los extremos izquierdos 4,0 n R f xi 1 x 2,0 i 1 F(x) 0,0 -2,0 -4,0 2,00 2,10 2,20 2,30 2,40 2,50 2,60 2,70 2,80 2,90 3,00 ,00 ,10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70 1,80 1,90 X Según los extremos derechos Según los puntos medios n n xi xi R= f ( xi ) x Rmed = f (mi ) x , xi* mi 1 i 1 i 1 2 6,0 6,0 4,0 4,0 6 2,0 Universidad Nacional de Ingeniería UNI-Norte 2,0 F(x) F(x) 0,0 0,0
  • 7.
    LA INTEGRAL DEFINIDASEGÚN RIEMANN El matemático alemán G . F. B Riemann (1826 -1866) Proporcionó una definición rigurosa de la integral. Definición: La integral definida de la función f de a a b es el número n * I lim p 0 i 1 f xi xi Siempre que el límite exista, en cuyo caso decimos que f es integrable en [a, b]. La ecuación significa que, para cada número > 0, existe un número > 0 tal que n * I f xi xi < i 1 Para cada suma de Riemann asociada con una partición arbitraria P de [a, b] para la que P < Nota: La palabra límite se usa para denotar el número mínimo y el número máximo del intervalo [a, b] y no tiene nada que ver con las definiciones de límite dadas anteriormente. La notación usual para la integral de f de a a b, debida al filósofo y matemático alemán G. W Leibniz, es: 7 Universidad Nacional de Ingeniería UNI-Norte
  • 8.
    Esta notación integralno solo es altamente sugerente, sino que también es útil, en extremo para el manejo de las integrales. Los números a y b son el limite inferior y el limite superior de la integral, respectivamente, son los extremos del intervalo de integración. La variable x se puede reemplazar por cualquier otra variable sin afectar el significado de la Ecuación. Así si f es integrable en [a, b] , entonces b b b f x dx f t dt f u du ; f x es el integrando. a a a La integral dada, de la integral definida, se aplica solamente cuando a < b, pero es conveniente incluir, cuando a > b y a = b. b * Si a = b f x dx 0 a b a * Si a > b f x dx f x dx a b b Definición: Se llama integral definida entre a y b de f(x), y se denota f x dx al área de a la porción del plano limitado por la grafica de la función f(x), el eje x y las rectas x = a y x = b. TEOREMA DE EVALUACIÓN DE INTEGRALES “ Si G es una primitiva de la función continua f en G(b) – G(a) se abrevia generalmente [ b b G(x) ]a entonces f x dx Gb Ga a Ejemplo: Evaluar 8 Universidad Nacional de Ingeniería UNI-Norte
  • 9.
    1) senxdx cosx 0 cos cos0 0 = - (-1) – (-1) = +1 + 1 = 2 2 2 5 1 6 1 6 1 6 64 32 2) X dx X 2 0 0 0 6 0 6 6 6 3 9 9 1/ 2 x2 x1 / 2 3) 2X X 3 dx 2 3x 1 2 1/ 2 1 9 x2 2 x1 / 2 3x 1 9 2 12 2 91 / 2 11 / 2 39 1 80 4 24 52 Propiedades de las Integrales Definidas Sea f una función integrable en a, b : Propiedad 1: b f x dx 0 Es decir, si la base del área de la región bajo la curva es cero, a el área es cero. Propiedad 2: b f x dx > 0 , x a, b y f(x) > 0, Es decir, el área de la región bajo la curva siempre a será positiva si f(x) es positiva. Propiedad 3: 9 Universidad Nacional de Ingeniería UNI-Norte
  • 10.
    b f x dx < 0, x a, b y f(x) < 0, Es decir, el área de la región bajo la curva siempre será a negativa si f(x) es negativa. Propiedad 4: c b c f x dx = f x dx + f x dx , Si f es una función integrable en un intervalo que contiene a a b los puntos a, b, c talque a < b < c. Propiedad 5: b b b f x g x dx f x dx g x dx Si f y g son funciones integrables en [a,b]. a a a Propiedad 6: b b Kf x dx k f ( x)dx para toda constante k a a Propiedad 7: b a f ( x)dx = - f ( x)dx Al intercambiar los limites de integración cambia el signo de la a b integral. Propiedad 8: b b f ( x)dx g x dx Si f y g son funciones integrables [a,b] y si f(x) g(x). a a Propiedad 9: b Kdx Kb a Es decir, si la función es constante su integral es el producto de la a constante por la diferencia de los límites de integración. 10 Universidad Nacional de Ingeniería UNI-Norte
  • 11.
    Ejemplos Calcular la integraldefinida de las siguientes funciones: 5 1) 7dx 2 5 Solución : como es una constante, entonces: 7dx = 7(5-2) = 7(3) = 21 (Por prop. 9) 2 2 2 2 3 2) x dx 4 y x dx 2 entonces calcular 5x 3 3x 4 dx 0 0 0 Solución: 2 2 2 2 5x 3 3x 4 dx = 5 x 3 dx 3xdx 4dx 0 0 0 0 2 2 3 5 x dx 3 xdx 4 2 0 0 0 = 5(4) – 3(2) + 8 Sustituyendo = 20 – 6 + 8 = 22 3) Calcular el área bajo la gráfica aplicando la integral definida. 4 3 2 1 1 2 3 4 5 11 Universidad Nacional de Ingeniería UNI-Norte
  • 12.
    Solución: 5 3dx 3(5 1) 3(4) 12u 2 1 4) Evalúe 5 5 1 5 2 3 dx reescribimos x 5x dx 4 x2 x3 4 Solución: 5 5 x 2 dx 5 x 3 dx integrando obtenemos 4 4 1 2 5 5 x x 1 5 5 1 2 4 x 2x 2 4 Sustituimos aplicando la definición 1 5 1 5 2 2 5 25 4 24 1 5 1 5 17 = 0.10625 5 50 4 32 160 Ejercicios Propuestos 7 R/ = 2025/4 a) x3 4 x dx 2 12 Universidad Nacional de Ingeniería UNI-Norte
  • 13.
    6 R/ = -1661/12 b) y3 y 2 1 dy 5 R/ = 6 c) 3senZdz 0 4 1 R/ = 8.2 d) x 3 x dx 1 x e R/ = 1 e) ln y dy 1 4 R/ = 192 f) 7x5/ 2 5 x 3 / 2 dx 0 0 3 R/ = 1/4 g) x 1 dx 1 8 R/ = 1/2 2 h) sec tdt 0 /4 R/ = 1/4 i) senx cos xdx 0 2 x R/ = 4/ j) cos dx 0 4 3 R/ = 23.37 k) xe x / 2 dx 1 2 x2 1 R/ = 3/2 e (e2-1) l) 3 xe dx 0 TEOREMA FUNDAMENTAL DEL CÁLCULO Si f(x) es continua en el intervalo cerrado [a, b] y F es una primitiva de f en [a, b], b entonces a f x dx = F(b) – F(a); la diferencia F(b) – F(a) se denota por el símbolo f ( x)]b a o por F ( x) b . a Estrategia para usar el teorema fundamental del cálculo 1. Supuesta conocida una primitiva de f, disponemos de un nuevo recurso para calcular integrales definidas que no requiere hallar el límite de una suma. 13 Universidad Nacional de Ingeniería UNI-Norte
  • 14.
    2. Use lasiguiente notación para aplicar el teorema fundamental del cálculo b f ( x)dx = F ( x) a = F(b) – F(a). b a Nota: No es necesario incluir una constante de integración C en la primitiva. Ocurren los siguientes casos: b a 1) Si a > b se tiene a f x dx b f x dx =- [F(a) – F(b)] = F(b) – F(a) 2) a = b se tiene a f x dx 0 Fa Fa a Ejemplos Evaluar 3 x3 3 a) 6x 2 5 dx 6 5x 2 2 3 3 2x3 5x 2 3 3 23 53 2 2 5 2 2 27 15 2 8 10 54 15 16 10 39 6 45 0 2 2x3 3x 2 0 b) 2x 3x 2 dx 2x 2 2 3 2 14 Universidad Nacional de Ingeniería UNI-Norte
  • 15.
    3 2 2 2 03 02 2 3 22 2 3 20 3 2 3 2 8 2 6 4 0 3 16 2 3 1 10 3 10 3 4 4 4 3/ 2 3/ 2 1/ 2 x3/ 2 4 4 c) 3 x dx 3 x dx 3 3 3 0 4 4 3/ 2 4 3/ 2 3/ 2 * Aplicación del teorema fundamental del cálculo para hallar un área. d) Calcular el área de la región acotada por la gráfica f(x) = x2 en el intervalo 0,3 nótese que y 2. 10 3 2 x3 3 9 Área = x dx 0 . 0 3 8 33 0 3 7 6 3 3 2 5 9u 4 3 2 1 0 0,0 1,0 2,0 3,0 4,0 Nota: Este ejercicio esta resuelto al inicio de la unidad usando sumatoria. TEOREMA DEL VALOR MEDIO PARA INTEGRALES DEFINIDAS 15 Universidad Nacional de Ingeniería UNI-Norte
  • 16.
    Si f escontinua en el intervalo cerrado a, b , entonces existe un número “c” en a, b tal b que f ( x)dx f (c)(b a) , c puede ser cualquier punto de a, b . a Si despejamos f(c) tendríamos: b 1 f (c ) f ( x)dx obteniéndose así la definición del valor medio de una función en un b aa intervalo cuyo teorema es: “Si f es integrable en el intervalo cerrado a, b , el valor medio de f en a,b) es b 1 f med f ( x)dx ” b aa Ejemplo a) Halle el valor medio de f ( x) 3x 2 2 x en el intervalo 1,4 en este caso a =1, b = 4 b 4 4 1 1 2 1 3x 3 2x 2 1 3 4 f med f ( x)dx 3x 2 x dx x x2 1 b a a 4 11 3 3 2 1 3 1 3 2 3 2 4 4 1 1 3 1 1 64 16 0 48 3 3 16 GRAFICO 2 f(x) = 3x -2x x Y 1 1 2 8 3 23 4 40 16 Universidad Nacional de Ingeniería UNI-Norte
  • 17.
    La figura muestraque el área de la región bajo la grafica de f es igual al área del rectángulo cuya altura es el valor medio. b) Encuentre un número c que satisfaga la conclusión del teorema del valor medio para la 3 siguiente integral definida x 2 dx f (c)(b a) 0 Recordemos que esta ya es un área conocida igual a 9 unidades cuadradas, por tanto 3 x 2 dx f (c)(b a) 0 x3 3 0 f (c ) 3 0 3 33 f (c)(3) 3 9 f (c)(3) 9 f (c ) 3 f (c ) 3 Como f(x) = x2 entonces c2 = 3 c = 3 que es valor que satisface la conclusión del teorema. INTEGRACIÓN NUMÉRICA En varias ciencias, como las ciencias sociales, frecuentemente aparecen funciones en las que se conocen de ellas solo su gráfica o algunos puntos de la misma. En estos casos no es posible calcular la antiderivada de la función para determinar el área de la región limitada por dicha función. Existe un método que proporciona una aproximación al valor del área y que se conoce con el nombre de “INTEGRACIÓN NUMÉRICA”. Este método se utiliza en los casos en que es muy complicado o imposible obtener la antiderivada de la función. Para aproximar el área de una región usaremos los siguientes métodos: 17 Universidad Nacional de Ingeniería UNI-Norte
  • 18.
    1) Método delTrapecio Una forma de aproximar el valor de una integral definida es usar “n” trapecios como lo muestra la figura: x=0 x1 x2 x3 x4 = b En este método se supone que f es continua y positiva en a, b de manera que la integral b f ( x)dx a representa el área de la región limitada por la grafica de f y el eje x, entre x=a y x=b. b a En primer lugar partimos a, b en n subintervalos, cada uno de anchura x tales n que a= x0 x1 x2 ... xn = b A continuación formamos un trapecio sobre cada subintervalo como lo muestra la figura 18 Universidad Nacional de Ingeniería UNI-Norte
  • 19.
    f(x0) f (x1) x0 x1 b a n f xi 1 f ( xi ) b a donde el área del i-ésimo trapecio = por tanto la suma de las áreas 2 n de los n trapecios es: b a f ( x0 ) f ( x1 ) f ( xn 1 ) f ( xn ) b a Área = ... f ( x0 ) f ( x1 ) ... f ( xn 1 ) f ( xn ) n 2 2 2n b b a f ( x)dx f ( x0 ) 2 f ( x1 ) ... 2 f ( xn 1 ) f ( xn ) que es la regla del trapecio para a 2n b aproximar a f ( x)dx Ejemplo: 3 1) Use la regla de los trapecio para estimar x 2 dx con n=5 0 b a 3 0 3 Primero calcular x n 5 5 x0 0, x1 0.6, x 2 1.2, x3 1.8, x 4 2.4, x5 3 Segundo aplicar la ecuación b a = f ( x0 ) 2 f ( x1 ) 2 f ( x2 ) ... 2 f ( xn 1 ) f ( xn ) 2n 3 0 = 0 2(0.36) 2(1.44) 2(3.24) 2(5.76) 2(9) 2(5) 3 = 0.72 2.88 6.48 11.52 18 9.18 U 2 10 10 9 y = x2 A = 9.18 u2 8 7 6 19 5 Universidad Nacional de Ingeniería UNI-Norte 4 3 2
  • 20.
    2) Use laregla del trapecio para estimar senxdx con n=4 y n=8 0 b a 0 Cuando n=4 x n 4 4 3 x0 0, x1 , x2 , x3 , x4 4 2 4 0 3 senxdx sen0 2sen 2sen 2sen 2sen 0 2(4) 4 2 4 2 2 2 1 = 0 2( ) 2(1) 2( ) 0 2 2 2 2 2 2 1.896 8 2 2 8 8 4 0 Cuando n=8 x 8 8 3 5 3 7 x0 0, x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 8 4 8 2 8 4 8 0 senxdx sen0 2sen 2sen 2sen3 2sen 2sen5 2sen3 2sen7 sen 0 28 8 4 8 2 8 4 8 GRAFICA 20 Universidad Nacional de Ingeniería UNI-Norte
  • 21.
    como vemos sen sen7 y sen3 sen5 8 8 8 8 Por tanto tenemos 2 2 2 sen 2 2 sen3 2(1) 2 sen5 2 2 sen7 16 8 2 8 8 2 8 2 2 2 2sen 2sen7 2sen3 2sen5 16 8 8 8 8 2 2 2 4sen 4sen3 16 8 8 Utilizando la calculadora obtenemos 1.974 u2 que se aproxima al área exacta que es 2u2 Ejercicios Propuestos Aproxime el valor de la integral para el “n” que se especifique usando la regla del trapecio. 2 2 R/ = 8/3 u2 a) x dx, n 4 0 8 2 R/ = 416/3 u2 b) 4 x dx, n 4 0 9 R/ = 38/3 u2 c) x dx, n 8 4 3 1 R/ = 2/3 u2 d) dx, n 4 1 x2 1.1 2 R/ = 0.089 8.9 * 10-2 e) senx dx n 4 1 21 Universidad Nacional de Ingeniería UNI-Norte