SlideShare una empresa de Scribd logo
1
Estadística Aplicada
http:/matap.dmae.upm.es
Manuel Abejón
(Grupos 2 y 3)
Bartolo Luque
(Grupo 1)
Apuntes y formulario (M. Cordero y J. Olarrea)
en publicaciones:
Programa y texto básico que fijan el contenido y el nivel
de conocimientos a efectos de enseñanza y exámenes.
2
Estadística Aplicada
Todas las transparencias del curso
están accesibles en pdf en:
http:/matap.dmae.upm.es/bartolo.html
Sección: Docencia-Estadística Aplicada
3
Estadística Aplicada
El examen y el criterio de
evaluación serán comunes.
Cada profesor corregirá a su(s) grupo(s).
La nota final podrá ser mejorada hasta
en un factor de 1,25 en función de trabajos
no obligatorios realizados a lo largo del
curso.
4
“La combinatoria trata, ante
todo, de contar el número de
maneras en que unos objetos
dados pueden organizarse de
una determinada forma.”
Introducción a la combinatoria
Ian Anderson
“La tercera prioridad de la
campaña es dar la primera
prioridad a la enseñanza.”
Web oficial de George W. Bush
1.Combinatoria
El arte de contar
5
En 1858 el egiptólogo escocés
A. Henry Rhind compró en
Luxor (Egipto) el papiro que
actualmente se conoce como
papiro Rhind o de Ahmes,
encontrado en las ruinas de un
antiguo edificio de Tebas. Fue
escrito por el escriba Ahmes
aproximadamente en el año
1650 antes de nuestra era.
Comienza con la frase:
“Cálculo exacto para entrar en
conocimiento de todas las cosas
existentes y de todos los oscuros
secretos y misterios.”
El papiro mide unos 6 m de largo y 33 cm
de ancho. Representa la mejor fuente de
información sobre matemática egipcia
antigua conocida.
El papiro Rhind (problema 79)
6
Escrito en hierático, consta de 87 problemas y su resolución.
Nos da información sobre cuestiones aritméticas básicas,
fracciones, cálculo de áreas, volúmenes, progresiones,
repartos proporcionales, reglas de tres, ecuaciones lineales y
trigonometría básica. El problema 79 es de combinatoria.
Veamos una versión “moderna”...
El papiro Rhind (problema 79)
7
Según iba a St. Ives
me crucé con un hombre con 7 esposas.
Cada esposa tenía 7 sacos,
cada saco tenía 7 gatos,
cada gato tenía 7 gatitos.
Gatitos, gatos, sacos y esposas.
¿Cuántos iban a St. Ives?
St. Ives Mother Goose
(La mamá oca de San Ives)
La regla del producto
8
You are eating at Emile’s restaurant and the waiter informs you
that you have (a) two choices for appetizers: soup or juice;
(b) three for the main course: a meat, fish, or vegetable dish; and
(c) two for dessert: ice cream or cake. How many possible
choices do you have for your complete meal?
El total de posibilidades será: 2 .
3 .
2 = 12
9
Principio multiplicativo (ilustración gráfica)
El primer elemento puede escogerse de dos
formas distintas: a1 y a2.
El segundo de tres maneras distintas: b1, b2 y b3.
El tercer elemento puede escogerse en dos modos
distintos: c1 y c2.
El total de posibilidades será: 2 .
3 .
2 = 12
c1
c2 c1 c2 c1 c2 c1
c2 c1
c2 c1
c2
b1 b2
b3 b1 b3b2
a1 a2
10
Alfabeto Braille
¿Cuántos símbolos distintos pueden representarse?
      6364222222
654321
→=×××××
11
La regla del producto o principio multiplicativo
Si una elección tiene m alternativas posibles y otra n,
entonces la realización de ambas tiene m x n.
15
214
14
101,54334.332.961.518.999.
21122111111
×≈
=×=×××××    
Mozart compuso un vals con 11
posibilidades distintas para 14 de los 16
compases y 2 posibilidades para cada uno
de los restantes. ¿Se habrán llegado a
escuchar alguna vez todas las
realizaciones posibles?
12
¿De cuántas formas se pueden escoger dos fichas de
dominó de las 28 que hay, teniendo en cuenta el orden, y de
forma que se puedan aplicar una a la otra (es decir, de modo
que se encuentre el mismo número de tantos en ambas
fichas)?
13
Escojamos la primera ficha. Esto se puede
hacer de 28 maneras:
En 7 casos la ficha elegida será un “doble”, es decir,
tendrá la forma 00, 11, 22, 33, 44, 55, 66.
Y en 21 casos será una ficha con distinto número de
tantos. Por ejemplo 05, 13, 46, etc.
En el primer caso (ficha doble), la segunda ficha se
puede elegir de 6 maneras. Por ejemplo, si en el
primer paso fue elegida la ficha 11.
En el segundo se puede tomar una de las fichas 10, 12,
13, 14, 15 o 16.
14
En el segundo caso, la segunda ficha se puede
escoger de 12 maneras. Por ejemplo para la ficha 35
servirán las 03, 13, 23, 33, 43, 63, 50, 51, 52, 54, 55, 56.
Según la regla del producto, en el primer caso
obtenemos 7 x 6 = 42 elecciones,
y en el segundo, 21 x 12 = 252.
Así que en total tendremos 42 + 252 = 294 formas.
15
¿Cuántas fotografías
distintas podemos
hacer cambiando a
los personajes de
posición?
¿Cuántas
permutaciones son
posibles?
1
7
64
5
32
       040.51234567
7654321
=××××××
040.5!7 =
16
Permutaciones (sin repetición)
Dados n objetos distintos, llamamos permutación a una
ordenación particular de los n objetos en una fila.
Ejemplo: Hay 6 posibles permutaciones con las tres letras
a, b, c: abc, acb, bac, bca, cab, cba.
El número de permutaciones de n objetos diferentes tomados
todos a la vez es n! (se lee “n factorial” o “factorial de n”).
Usando la regla del producto: hay n posibles objetos para la
primera plaza de la fila, n-1 objetos posibles para ocupar la
segunda, etc...
!123)2()1( nnnnPn =⋅⋅⋅⋅−⋅−⋅= 
17
Con las letras de la palabra DISCO, ¿cuántas palabras distintas
(con o sin sentido) se pueden formar?
120!55 ==P
Evidentemente, al tratarse de palabras el orden importa.
Tenemos que formar palabras de cinco letras con cinco
elementos: {D, I, S, C, O}, que no están repetidos.
El cálculo del número de permutaciones “n!” se cree que apareció por
primera vez en la India. Se tiene constancia de ejemplos del año 300
antes de nuestra era. En el siglo XI la "fórmula general" era bien
conocida en la India y los países árabes.
18
(a) n! y (n! + 1) no tienen factores comunes.
(b) O bien (n! + 1) es primo o bien es factorizable:
(b.1) Si (n! + 1) es primo queda demostrada la afirmación.
(b.2) Si (n! + 1) puede descomponerse en factores, por (a) ninguno
de ellos puede dividir a n!. De modo que cualquier factor de (n! + 1)
estará entre n y (n! + 1).
(b.2.1) Si el factor es primo queda demostrada la afirmación.
(b.2.2) Si el factor no es primo, entonces por el mismo argumento
(b.2), será mayor que n y podemos volver a descomponerlo hasta
encontrar finalmente un primo mayor que n.
Existencia de infinitos números primos
Podemos encontrar uno de los primeras
aplicaciones del factorial en una prueba de
Euclides de la existencia de infinitos números
primos. Euclides argumentaba que siempre
existe al menos un primo entre n y (n! + 1) de
la siguiente manera:
19
¿Cuál es el número de posibles ordenaciones
de una baraja de póker de 52 cartas?
El resultado es 52!, que es aproximadamente 8 × 1067
.
Observa que a partir de una simple baraja obtenemos un
enorme número, superior, por ejemplo, al cuadrado del
número de Avogadro: 6,02 × 1023
.
Explosión combinatoria
20
Fórmula de Stirling
n
n
enn −
+
⋅⋅ 2
1
2~! π
La demostración de la fórmula de Stirling puede encontrarse en la
mayoría de textos de análisis. Vamos a verificar la bondad de la
aproximación usando el programa StirlingApproximations, que
imprime: (a) n!, (b) la aproximación de Stirling y (c) el cociente de
ambos valores. Observemos como ese cociente se acerca a 1 a
medida que n crece. Se dice entonces que la aproximación es
asintótica.
A veces, al resolver un problema de combinatoria, es mejor
encontrar una aproximación asintótica formada por funciones
cuyo comportamiento es fácil de comprender que la solución
exacta, cuyo comportamiento escapa a nuestra intuición.
James Stirling presentó su fórmula en
“Methodus Differentialis” publicado
en 1730.
21
Supongamos que los siete personajes de Star Treck se hacen
fotografías en fila en todas las permutaciones posibles. ¿En
cuántos casos Data y Picard aparecen juntos?
Pensemos que Data y Picard son siameses o que van dentro de un saco. El
número de posibles fotografías sería entonces de: 6! = 720.
Pero además, para cada una de esas fotografías, Data puede estar a la
derecha o a la izquierda de Picard. Luego el resultado es: 2· 6! = 1440.
22
(1) La relación de vecindad se conserva en las permutaciones
cíclicas y en caso de una simetría.
Varias personas se sientan a una mesa redonda.
Consideraremos que dos formas de sentarse
coinciden si cada persona tiene los mismos vecinos
en ambos lados. ¿De cuántos modos diferentes se
pueden sentar 4 personas? ¿Y 7? ¿Y n?
En el caso de 4 personas, tendremos 4 permutaciones
cíclicas y una simetría especular para cada una: 2 x 4 = 8
transformaciones que conserven la relación de vecindad.
23
Espejo
Permutaciones cíclicas
Permutaciones simétricas
Como el número total de permutaciones de 4 personas es
igual a 4! = 24, tendremos 24 / 8 = 3 formas distintas de sentarse.
24
(2) Si hay 7 personas alrededor de la mesa, tendremos
7! / (7 x 2) = 360 modos.
(3) Y, en general, en el caso de n personas:
n! / (n x 2) formas.
25
En una reunión deben intervenir 5 personas: A, B, C, D y E.
¿De cuántas maneras se pueden distribuir en la lista de
oradores, con la condición de que B no debe intervenir
antes que A?
El número total de posibles listas de oradores distintas es 5!.
Podemos asociar a cada permutación del tipo: (...A...B...) la
misma permutando (...B...A...). Esta última no nos vale. De
modo que por cada par hay sólo una manera que satisface la
condición planteada. Tendremos 5! / 2 = 60 maneras.
26
El mismo problema, pero con la condición de que A deba
intervenir inmediatamente antes que B.
Si A interviene inmediatamente antes que B, podemos
considerarlos como si fuesen un solo orador. Es decir,
ahora sólo contamos las permutaciones tipo: ...AB...
Tendremos entonces: 4! = 24 formas.
27
Emparejamientos
Dados 2n objetos distintos, ¿cuántas maneras
hay de formar n parejas?
Intentemos agrupar los 2n objetos usando
n pares de paréntesis: ( , ) ( , ) ( , ) ... ( , )
Hay 2n espacios vacíos y 2n objetos, luego los
podemos colocar de (2n)! maneras distintas.
Pero para cada paréntesis tenemos 2! = 2
ordenaciones posibles que han de contarse como
una sola (dan lugar al mismo par), debemos
dividir entre 2 · 2 · ... · 2 = 2n
.
28
El orden en que hemos colocado los paréntesis
tampoco nos importa, y como hay n! maneras
distintas de hacerlo, cada emparejamiento
posible ha sido obtenido de hecho n! veces.
Entonces el número de parejas distintas es:
!2
)!2(
n
n
n
29
Generalicemos el problema: dados m·n objetos,
¿cuántas maneras hay de formar n conjuntos de
m objetos?
Agrupemos los m·n objetos usando n paréntesis:
( , , ... , ) ( , , ... , ) ( , , ... , ) ... (, , ... , )
Hay m·n espacios vacíos y m·n objetos, luego los
podemos colocar de (m·n)! maneras distintas.
Pero para cada paréntesis tenemos m! ordenaciones
posibles que han de contarse como una sola (dan
lugar a la misma m-terna ). Luego hemos de dividir
entre m! · m! · ... · m! = (m!)n
.
30
El orden en que hemos colocado los paréntesis
tampoco nos importa, y como hay n! maneras
distintas de hacerlo, cada emparejamiento
posible ha sido obtenido de hecho n! veces.
Entonces el número de maneras es:
!)!(
)!(
nm
nm
n
⋅
31
Un comentarista deportivo español (o sea, de fútbol)
pedía en antena que, para conseguir el equipo ideal
de entre sus 20 jugadores, un entrenador probara todas
las posibilidades para dar con el 10 ideal (el portero lo
daba por indiscutible). ¿Le daría tiempo en una liga?
2.800670.442.571121...181920
factores10
=⋅⋅⋅⋅⋅   
Variaciones (sin repetición)
32
Variaciones (sin repetición)
Según la regla del producto, las maneras de escoger r
elementos distintos de entre un total de n según
un determinado orden, será igual al producto de:
Esta expresión se conoce como variaciones de n elementos
tomados de r en r, y se representa por Vn,r
.
Habitualmente se expresa como:
123...)1()(
123...)2()1(
⋅⋅⋅⋅−−⋅−
⋅⋅⋅⋅−⋅−⋅
=
−
=
rnrn
nnn
r)!(n
n!
Vn,r
1121...181920
!10
!20
!)1020(
!20
10,20 ⋅⋅⋅⋅⋅==
−
=V
En el problema
anterior:
)1(...)2()1(, +−⋅⋅−⋅−⋅= rnnnnV rn
33
¿Cuantos números de tres cifras distintas y significativas
se pueden formar con las nueve cifras del sistema decimal
1, 2, 3, 4, 5, 6, 7, 8, 9? ¿Y si admitimos el 0?
5047893,9 =⋅⋅=V
Si admitimos el 0, como primera opción seguimos teniendo
9 números, pero ahora como segundo número podemos usar
también el 0, luego tenemos 9 posibles candidatos...:
641899 =⋅⋅
Al tratarse de números el orden importa y además nos
dice "cifras distintas" luego no pueden repetirse.
34
Raymond Queneau escribió el libro de
poemas llamado “Cent mille milliards de
poèmes”. Una obra de poesía
combinatoria. Constaba de 10 páginas. En
cada página aparecía un soneto. Cada
soneto está formado por 14 versos. Según
Queneau es posible escoger como primer
verso cualquiera de los primeros versos de
los 10 sonetos originales, como segundo
verso, el segundo verso de cualquiera de
los 10 sonetos originales y así
sucesivamente hasta el verso 14. Y el
soneto resultante tiene sentido. ¿Hace
justicia el título al libro?
14
14
10101010 =×××    
Variaciones con repetición
35
Variaciones con repetición
Según la regla del producto, las maneras de escoger r
elementos de entre un total de n según un determinado
orden, y con la posibilidad de repetir los elementos
en cada elección, son:
Esta expresión se conoce como variaciones con repetición
y se representa como:
r
rn nVR =,
e lee: “variaciones con repetición de n elementos tomados de r en r”.
r
nn...··n·n·n =
36
¿Cuantos números de tres cifras significativas se pueden
formar con las nueve cifras del sistema decimal
1, 2, 3, 4, 5, 6, 7, 8, 9? ¿Y si admitimos el 0?
72993
3,9 ==VR
Si admitimos el 0, como primera opción seguimos teniendo
9 números. Pero ahora como segundo número podemos usar
también el 0, luego tenemos 10 posibles candidatos e ídem
para el tercero:
90010109 =⋅⋅
Al tratarse de números el orden importa y además nos
dice que las "cifras se pueden repetir”:
37
Combinaciones (sin repetición)
¿Cuántas posibles combinados de dos bebidas podemos
hacer con ginebra, vodka y tequila?
Si el orden importara tendríamos 3 · 2 = 6.
Pero en realidad: (g, v) = (v, g), (g, t) = (t, g) y (t, v) = (v, t),
porque el orden no importa. De modo que debemos dividir
entre 2: 6 / 2 = 3.
¿Cuántas posibles combinados de tres bebidas podemos
hacer con ginebra, vodka, tequila y ron?
De nuevo, si el orden importara tendríamos 4 · 3 · 2 = 24.
Pero en realidad: (g, v, t) = (g, t, v) = (v, g, t) = etc...,
porque el orden no importa. De modo que debemos dividir
entre 3!: 24 / 3! = 4.
38
Combinaciones (sin repetición)
¿Cuántas posibles configuraciones de r elementos
podemos construir desde un conjunto de n elementos
diferentes, sin que importe el orden y no sea posible la
repetición?
Si el orden importara tendríamos n · (n-1) ·.....· (n - r + 1)
posibilidades. Las podemos partir en clases, de forma que
en cada clase estén aquellas configuraciones que sean la
misma salvo el orden. Como hemos escogido r elementos,
cada clase estará formada por las r! formas distintas de
ordenar esos elementos.
)!(!
!)1(....)1(·
rnr
n
r!
rnnn
−
=
+−⋅⋅−
39
Este número se conoce como las combinaciones de n
elementos tomadas de k en k y se denota por:
)!(!
!
),(
rnr
n
r
n
rnCCr
n
−
=





==
506.142
)!530(!5
!30
5
30
)5,30( =
−
=





=C
Cuantos grupos de 5 alumnos pueden formarse con los 30
alumnos de una clase. (Un grupo es distinto si se diferencia
por lo menos en un alumno).
No importa el orden. No puede haber dos alumnos iguales
(no hay clones) en un grupo, luego no hay repetición.
40
¿Cuántas manos distintas pueden darse a 4
jugadores con 5 cartas cada uno y una baraja de
52 cartas? (Intenta primero una respuesta a ojo).
El primer jugador puede recibir C(52, 5) manos distintas.
Una vez el primer jugador tiene su mano el segundo
puede recibir C(47, 5) manos distintas (5 cartas de las 47
restantes). El tercero: C(42, 5) y el cuarto: C(37, 5). Por la
regla del producto tendremos un total de:
!32!5
!37
!37!5
!42
!42!5
!47
!47!5
!52
)5,37()5,42()5,47()5,52( ×××=CCCC
24
101.52404.020.034.843.475.641.478.262.
!32!5!5!5!5
!52
⋅≈==
41
¿De cuántas maneras distintas podemos pintar una tira de
cinco casillas, pintando 2 de rojo y 3 de azul?
Respuesta:
Combinaciones de 5 elementos
tomados de 2 en 2. O de 5 elementos
tomados de 3 en 3:
C(5,2) = C(5,3) = 10.
42
Hogar,
dulce hogar
Cine
¿Cuántos caminos
distintos podemos
recorrer desde hogar
a cine? (Cada movimiento
debe acercarnos al cine).
Cualquier posible recorrido consiste en 8 movimientos a la
derecha (1) y 4 movimientos hacia arriba (0). La solución es,
por tanto:
495
!4!8
!12
4
12
8
12
==





=





011010111110
43
Ejemplo: para generar el 5º elemento en la fila #7,
sumamos el 4º
y 5º
elemento en la fila #6.
El triángulo de Pascal (o de Tartaglia)
44
Números combinatorios
10
2
5
=





Fila 5, posición 2:
120
7
10
=





Fila 10, posición 7:
45
)!79(!7
!9
)!29(!2
!9
36
7
9
2
9
−
=
−
=





=











−
=





rn
n
r
n
46
21615
5
7
5
6
4
6
=+






=





+











=




 −
+





−
−
r
n
r
n
r
n 1
1
1 Identidad de
Pascal
47
),(
1
1
1
),1()1,1( rnC
r
n
r
n
r
n
rnCrnC =





=




 −
+





−
−
=−+−−
Demostrar la identidad de Pascal:
Demostración:
( ) ( ) ( )
=
−−
−
+
−−
−
=−+−−
!!1
)!1(
!1!
)!1(
),1()1,1(
rrn
n
rrn
n
rnCrnC
( ) ( )
=




 −
+
−−
−
r
rn
rrn
n
1
!1!
!)1(
( ) ( ) ( )
),(
!!
!
!1!
!)1(
rnC
rrn
n
r
n
rrn
n
=
−
=
−−
−
48
La suma de fila enésima es el
número total de subconjuntos
posibles de un conjunto de n
elementos = 2n
32215101051 5
==+++++
( ) n
n
r n
nnnn
rnC 2
210
,
0
=





++





+





+





=∑=

Fila 5:
49
1 2 3 4 5 6 7 8 ....
....
....
1
2
3
4
5
6
7
8
....
....
....
....
....
....
N
2N
50
1 2 3 4 5 6 7 8 ....
....
....
1
2
3
4
5
6
7
8
....
....
....
....
....
....
N
2N
51
Imaginemos una bola cayendo por el triángulo de Pascal.
Cada fila que baja puede caer hacia la derecha o hacia
la izquierda. ¿Cuántos posibles caminos nos llevan a la
posición 2 de la fila 7?
21
)!27(!2
!7
2
7
=
−
=




Respuesta:
¿Por qué? Imaginemos que la bola va
siempre a la izquierda, 7 veces a la
izquierda. Acabaremos en la posición
0 de la fila 7. Si va 5 veces a la izquierda
y 2 a la derecha, independientemente
del orden en que lo haga, acabará en
la posición 2 de la fila 7.
52
(1) La buena de la señora Evita Gastos pretendía
pasar de largo junto a la máquina de chicles de
bola sin que sus gemelitos se dieran cuenta.
Primer gemelo: ¡Mamá yo quiero un chicle!
Segundo gemelo: ¡Mamá, yo también. Y lo quiero
del mismo color que el de Toñito!
53
La máquina, tiene chicles de bola de color rojo y
verde. Cada chicle cuesta 1 euro. No hay forma de
saber el color de la próxima bola. Si la Sra. Gastos
quiere estar segura de sacar dos bolas iguales,
¿cuántos euros tiene que estar dispuesta a gastar?
"El peor de los casos posibles."
1 2 3
54
(2) Supongamos ahora que la máquina contiene
6 bolas rojas, 4 verdes y 5 azules. ¿Cuántas
monedas necesita la señora Evita Gastos para
estar segura de conseguir dos bolas iguales?
Generaliza a n conjuntos de bolas, donde
cada conjunto es de un color.
El peor de los casos posibles.
1 2 3 4
....... + 1
1 2 n n+1
55
(3) Ahora pasa por delante de la máquina la
señora Bolsaprieta con sus trillizos. La máquina
contiene ahora 6 bolas rojas, 4 verdes y 1 azul.
¿Cuántas monedas necesita la señora para estar
segura de conseguir tres bolas iguales?
1 2 3 4 5 6
56
Podríamos haber atacado el problema en forma
bruta. Asignando a cada bola una letra y
examinando cada una de las:
800.916.39!11 =
posibles extracciones para
determinar cuál presenta una
secuencia inicial máxima antes
de que aparezcan 3 bolas
idénticas.
La idea “¡ajá!” consiste en
establecer el caso más
“desfavorable”.
¡Ajá!, Martin Gardner
57
Prueba ahora con este: En una misma caja hay 10 pares
de calcetines rojos y 10 pares verdes, y en otra
caja hay 10 pares de guantes de color rojos y otros tantos
pares verdes.¿Cuántos calcetines y guantes es necesario
sacar como máximo al azar (pero con la mejor estrategia)
de cada caja, para estar seguro de conseguir un par de
calcetines y un par de guantes de un mismo color?
CR CV (CR o CV)
1 2 3
Rd GRd GRd GRd GRd GVi GVi GVi GVi GVi (GRi o GVd)
2 3 4 5 6 7 8 9 10 11
CR+GVd GVd GVd GVd GVd CRi
14 15 16 17 18 19
Si seguimos sacando calcetines podemos sacar hasta 8 rojos más.
58
El principio del palomar establece que si n
palomas se distribuyen en m palomares, y
si n > m, entonces al menos habrá un palomar con más de una
paloma. Por ejemplo: si se toman trece personas, al menos dos
habrán nacido el mismo mes.
El primer enunciado del principio se cree que proviene de
Dirichlet en 1834 con el nombre de Schubfachprinzip ("principio
de los cajones").
Principio del palomar o
de los cajones de Dirichlet
En promedio la cabeza de una persona tiene
entorno a 150.000 cabellos. ¿Existen dos
personas en Madrid con la misma cantidad de
pelos en el coco?
Peter Gustav Lejeune
Dirichlet (1805 -1859)
59
¿Cuántas palabras distintas (con o sin sentido)
podemos construir utilizando todas las letras de
MISSISSIPPI ?
S = { 1⋅M, 4⋅I, 4⋅S, 2⋅P }
Llenemos las 11 casillas:
60
S = { 1⋅M, 4⋅I, 4⋅S, 2⋅P }
MM








1
11
# de posibilidades para M:
IIII II II








4
10
× # de posibilidades para I:
SS SS SS








4
6
SS
× # de posibilidades para S:
PP PP








2
2
× # de posibilidades para P:
34.650
61
Permutaciones con repetición
Si n objetos pueden dividirse en r clases con ni objetos
idénticos en cada clase (i = 1, 2, ..., r), es
decir, tal que
Entonces el número de permutaciones posibles es:
nnnn
nnn
n
PR
r
r
nnn
n
r
=+++
=


21
21
,...,,
con
!!!
!21
.21 nnnn r =+++ 
¿Por qué?
62
=




 −−−−





 −−
⋅




 −
⋅




 −
r
r
n
nnnn
n
nnn
n
nn
n
n 121
3
21
2
1
1


!!!
!
21 rnnn
n

=
Recuerda el problema de MISSISSIPPI...
( ) ( ) ( )
=
−−⋅⋅⋅−−−
−⋅⋅⋅−−−
⋅
⋅⋅⋅
−−−
−−
⋅
−−
−
⋅
−
=
−
−
!)!(
)!(
!!
)!(
!!
)!(
!!
!
1!0
121
121
3321
21
221
1
11
rrr
r
nnnnnn
nnnn
nnnnn
nnn
nnnn
nn
nnn
n
  
63
¿De cuántas maneras distintas pueden colocarse
en línea nueve bolas de las que 4 son blancas,
3 amarillas y 2 azules?
1260
!2!3!4
!92,3,4
9 ==PR
El orden importa por ser de distinto color, pero hay
bolas del mismo color (están repetidas y son
indistinguibles) y colocamos 9 bolas en línea y
tenemos 9 bolas para colocar.
64
ADN (Ácido Desoxirribonucleico)
Cadena de cuatro posibles bases:
Timina (T), Citosina (C), Adenina (A) y Guanina (G)
Ejemplo de cadena de ADN:
TTCGCAAAAAGAATC
ADN y ARN
65
Alga (P. salina):
6,6x105
bases de longitud.
Moho (D. discoideum):
5,4x107
bases de longitud.
Mosca de la fruta (D. melanogaster):
1,4x108
bases
Gallo (G. domesticus):
1,2x109
bases
66
Humanos (H. sapiens):
3,3x109
bases.
¿Cuántas cadenas distintas de esta longitud son posibles?
98
899
1098,1106,63
106,610106,6103,3
10)10(
)2(24
⋅⋅
⋅⋅⋅
=
≈==
67
RNA es una molécula mensajera. Lee las bases del ADN y
las copia exactamente iguales, excepto para el caso de la
timina (T) que reemplaza por la base uracilo (U).
ADN y ARN
68
Algunas enzimas rompen las cadenas de ARN en los
lugares donde detectan una G. Otras enzimas lo hacen
para C o U.
Consideremos la cadena: CCGGUCCGAAAG
Si aplicamos una G-enzima romperá la cadena en los
fragmentos: CCG|G|UCCG|AAAG
CCG, G, UCCG, AAAG
Gracias a la G-enzima podemos conocer estos fragmentos
pero no el orden en que aparecen en la cadena original.
Tijeras moleculares
69
Cada permutación nos proporciona una posible cadena.
Como por ejemplo, ésta (que no es la original):
UCCGGCCGAAAG
En el ejemplo, ¿cuántas posibles cadenas podemos
construir con estos cuatro fragmentos?
4 x 3 x 2 x 1 = 4! = 24 posibles cadenas.
70
Cadena original: CCGGUCCGAAAG
Supongamos que aplicamos las enzimas U y C.
Dispondremos de los U,C-fragmentos:
C, C, GGU, C, C, GAAAG
¿Cuántas cadenas supuestas cadenas originales
podemos formar con estos fragmentos?
¿Es 6! = 720 la respuesta correcta?
71
Las dos primeras cadenas y la cuarta y quinta son la
misma (C), de modo que no podemos distinguirlas...
El número de posibles fragmentos no será 6! = 720.
Tenemos 6 posiciones (hay 6 fragmentos) y asignamos 4
posiciones de tipo C, uno de tipo GGU y uno de tipo
GAAAG. El número de posibilidades es:
PR(6;4,1,1) = 6!/4!1!1! = 30
Pero el resultado es incorrecto, aunque no por nuestro
argumento combinatorio... ¿Por qué?
C, C, GGU, C, C, GAAAG
72
Observemos que el fragmento GAAAG no acaba en U o C.
De modo que necesariamente es el final.
Así que tenemos realmente que posicionar 5 fragmentos. El
número de posibles cadenas con esos 5 fragmentos es:
PR(5;4,1) = 5
Las posibles cadenas son:
(1) CCCCGGU, (2) CCCGGUC, (3) CCGGUCC,
(4) CGGUCCC y (5) GGUCCCC
a las que hay que añadir GAAAG al final.
73
De modo que tenemos 24 posibles cadenas a partir de los
G-fragmentos y 5 con los U,C-fragmentos. Pero no hemos
combinado los conocimientos de los G y U,C-fragmentos.
G-fragmentos: CCG, G, UCCG, AAAG
U,C-fragmentos: C, C, GGU, C, C, GAAAG
¿Cuáles de las 5 cadenas posibles de los U,C-fragmentos
están en acuerdo con los G-fragmentos?
74
CCCGGUCGAAAG
CCGGUCCGAAAG
CGGUCCCGAAAG
GGUCCCCGAAAG
CCCCGGUGAAAG → no, ya que CCCCG es un G-
fragmento y no aparece entre los posibles.
¿Hay más casos semejantes?
Comparando las 4 posibles cadenas de ARN restantes
con los fragmentos U,C-fragmentos, solo la tercera:
CCGGUCCGAAAG
es compatible. Y hemos recuperado así la cadena inicial.
75
Por cierto, ¿cuántas cadenas posibles de ARN pueden
construirse con las mismas 12 bases:
4 Cs, 4 Gs, 3 As y 1 U?
PR(12;4,4,3,1) = 138 600
76
La “Estratagema de fragmentación”
que hemos descrito brevemente fue
usada por primera vez por R.W.
Holley en Cornell en 1965 para
determinar una secuencia de ARN.
El método fue superado casi
inmediatamente por otros mucho más
eficientes.
Esto era un ejemplo de secuenciación de una cadena de
ARN dada la completa digestión por enzimas.
No es siempre posible establecer sin ambigüedad la
cadena original por este método.
77
El binomio de Newton
(a + b)2
= (a + b) (a + b).
Todos los posibles productos son: aa, ab, ba, bb.
(a + b)2
= a2
+ 2ab + b2
.
(a + b)3
= (a + b) (a + b) (a + b).
Todos los posibles productos son:
aaa, aab, aba, baa, abb, bab, bba, bbb.
(a + b)3
= a3
+ 3a2
b + 3ab2
+ b3
.
(a + b)4
= a4
+ 4a3
b + 6a2
b2
+ 4ab3
+ b4
.
C(4,0) = 1; C(4,1) = 4; C(4,2) = 6; C(4,3) = 4; C(4,4) = 1
78
Teorema del binomio
( ) ( ) jjn
n
j
n
yxjnCyx −
=
∑=+
0
,
nnnnn
y
n
n
yx
n
n
yx
n
yx
n
x
n






+





−
++





+





+





= −−− 11221
1
...
210
( )( ) ( )( ) ( ) ( )( )k
n
k
kkn
n
k
n
knCknC 1,11,110
00
−=−=−+= ∑∑ =
−
=
( ) ( ) 0,1
0
=−∑=
knC
n
k
k
Demostrar:
79
Generalización del binomio de Newton
Vamos a encontrar una fórmula similar a la del binomio de
Newton para (a + b + c)n
.
Aplicando la propiedad distributiva a:
(a + b + c)n
= (a + b + c) (a + b + c) ... (a + b + c)
tendremos todos los posibles productos ah
bk
cm
tales que
h + k + m = n escogidas sobre: S = {n ·a, n · b, n · c}.
De modo que:
mkh
nmkh
mkh
n
cba
mkh
n
cba ∑
=++
=++
,, !!!
!
)(

Coeficientes
Multinomiales
80
Queremos pintar r pelotas con n colores. Es como agrupar r
pelotas en n montones, alguno de los cuales puede estar vacíos.
Supongamos n = 4 y r = 5, por ejemplo.
La configuración 1 1 0 1 0 1 0 1 significa: hay tantas bolas
como 1s y 0 = “pasa al siguiente color”. Hay 2 bolas del primer
color, 1 bola del segundo color, 1 bola del tercer color y 1
bola del cuarto color.
¿Qué significa: 1 1 1 1 1 0 0 0 y 0 0 1 1 1 1 1 0?
Siempre hay 5 unos y 3 ceros (cambios de color).
En el caso general, f(n, r) será el número de maneras de
disponer r unos y n-1 ceros en una secuencia que consta
de n – 1 + r símbolos en total.
f(n, r) = # de maneras de escoger n-1 lugares entre n + r – 1 o
f(n, r) = # de maneras de escoger r lugares entre n + r – 1
Combinaciones con repetición
81
Combinaciones con repetición
¿Cuántas combinaciones con repetición de 2
elementos sobre el conjunto:
S = {∞⋅a, ∞⋅b, ∞⋅c , ∞⋅d} son posibles?
Tenemos 4 “colores” (n = 4) y 2 “bolas” (r = 2).
Tenemos 2 1’s y 4–1=3 0’s:
11000 = {a, a}
10100 = {a, b}
10010 = {a, c}
10001 = {a, d}
01100 = {b, b}
01010 = {b, c}
01001 = {b, d}
00110 = {c, c}
00101 = {c, d}
00011 = {d, d}
82
Combinaciones con repetición
Un total de 10 posibilidades:
{a, a}, {a, b}, {a, c}, {a, d}, {b, b},
{b, c}, {b, d}, {c, c}, {c, d}, {d, d}.
10
)!25(!2
!5
2
5
2
2141
=
−
=





=




 +−
=




 +−
r
rn
83
Combinaciones con repetición
El número de r-combinaciones de un conjunto
con n objetos distintos, cada uno repetido
infinitamente, es:





 +−
==
r
rn
rnCRCRn
r
1
),(
84
En una confitería hay cinco tipos diferentes de pasteles.
¿De cuántas formas se pueden elegir cuatro pasteles?
70
4
8
4
1454
5 =





=




 −+
=CR
No importa el orden (son pasteles). Puede haber dos
o más pasteles repetidos (hasta cuatro), luego se
trata de combinaciones con repetición:
85
Ejemplo. (El número de soluciones enteras)
¿Cuántas soluciones tiene la ecuación diofántica:
donde x1
, x2
y x3
son enteros no negativos?
11321 =++ xxx
Solución:
Tenemos que seleccionar un total de 11 objetos (unidades)
para formar 3 conjuntos (3 números). Es equivalente a
pintar 11 bolas con 3 colores. En cada selección tenemos
x1
elementos en el primer conjunto, x2
elementos en el
segundo conjunto y x3
elementos en el tercero.
El número de soluciones posibles es:
C(3 + 11 - 1, 11) = 78
86
87
¿De cuántas formas posibles podemos ordenar una baraja
de n cartas?
f(n) = n!
Cuando encontramos soluciones como estas se denominan
fórmulas cerradas (que pueden expresarse como
composición de funciones sencillas). Hemos visto las
permutaciones, variaciones o combinaciones.
Pero en general esta aproximación no siempre es posible o
práctica. En ese caso podemos encontrar la solución como
una ecuación de recurrencia o como una función
generatriz. Veamos como funcionarían para las
combinaciones con repetición.
88
Supongamos que tenemos r pelotas de golf, indistinguibles
entre sí, cada una de las cuales debe ser pintada con cualquiera
de n colores disponibles. ¿De cuántas formas las podemos
colorear?
Denotemos como x1 al número de pelotas pintadas con el primer
color, como x2 al número de pelotas pintadas con el segundo
color, etc. Entonces: x1 +x2 +...+ xn = r.
Llamemos a la solución f(n,r). Entonces:
(a) Si sólo dispusiéramos de un color (n = 1) las r pelotas sólo
podrían pintarse de una manera: f(1,r) = 1 para todo r ≥ 1.
(b) Si dispusiéramos de n colores para una sola pelota, tendríamos
n formas de colorear posibles: f(n, 1) = n para todo n ≥ 1.
Combinaciones con repetición
89
(1) Enfoque por recurrencias:
Consideremos f(n, r) y centrémosnos en el n-ésimo color.
Una vez pintadas las r pelotas, podemos o no haber usado el
n-ésimo color. Si no lo ha sido, sólo han entrado en juego n - 1
colores, y entonces las formas posibles de colorear en ese caso
son: f(n - 1, r). Y si el n-ésimo color ha sido utilizado, al menos
una de las r bolas habrá sido pintada con él y quedaran r - 1
pelotas que pueden estar coloreadas con n colores, es decir
f(n, r - 1), por lo tanto:
f(n, r) = f(n - 1, r) + f(n, r - 1)
Solucionar el problema consiste en resolver esta ecuación de
recurrencia con las condiciones iniciales:
f(1,r) = 1 para todo r ≥ 1,
f(n, 1) = n para todo n ≥ 1.
90
(2) Enfoque por funciones generatrices:
nn
n
xxxx
x
x
xxx
xnfxnfnfxxx
−
−
−=++++
−=
−
=++++
+++=++++
)1(...)1(
)1(
1
1
...1
...)2,()1,()0,(...)1(
32
132
232
Función generatriz de
los números f(n, r).
91
¿De cuántas maneras podemos partir
un conjunto de n objetos en k
subconjuntos disjuntos? Por ejemplo:
Sea S = {1, 2, 3, 4}. ¿De cuántas
maneras podemos partir S en dos
subconjuntos disjuntos ninguno vacío?
{1}, {2, 3, 4}
{2}, {1, 3, 4}
{3}, {1, 2, 4}
{4}, {1, 2, 3}
{1, 2}, {3, 4}
{1, 3}, {2, 4}
{1, 4}, {2, 3}
El número de maneras de partir un conjunto de n
elementos en k subconjuntos, ninguno vacío, es igual a
S(n, k), donde los S(n, k) se conocen como los números
de Stirling. Y están definidos como:
S(n, k) = S(n -1, k - 1) + k S(n - 1, k)
S(n, 1) = 1 y
S(n, n) = 1, para todo n ≥ 1.
92
El triángulo de los números de Stirling:
S(n, k) = S(n - 1, k - 1) + k S(n - 1, k)
con
S(n, 1) = 1 y S(n, n) = 1, para todo n ≥ 1.
n S(n,1) S(n,2) S(n,3) S(n,4) S(n,5) S(n,6) S(n,7) S(n,8)
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
93
Sucesiones
¿Cuál es la continuación de las siguientes sucesiones
infinitas?
1, 2, 4, 8, 16, 32, …
1, 4, 9, 16, 25, 36, ...
1, 1, 2, 3, 5, 8, 13, ...
Sucesión geométrica: an = 2n
Sucesión de cuadrados: an = n2
Sucesión de Fibonacci:
F(n) = F(n - 2) + F(n - 1)
1, 3, 6, 10, 15, 21, 28, ...
Números triangulares
94
Números triangulares
1554321
104321
6321
321
1
5
4
3
2
1
=++++=
=+++=
=++=
=+=
=
T
T
T
T
T
2
)1( +
=
nn
Tn
Demostrar que:
95
2
)1( +
=
nn
Tn
Demostración visual
n
n+1
nT
nT
Tn = 1 + 2 + 3 +............................+ n
96
2
1 nTT nn =+−
n
n
1−nT
nT
97
Número de
personas
Número de
apretones de
manos
2 1
3 3
4 6
5 10
6 15
¿Cuántos apretones
de manos distintos
pueden darse n
personas?
Los números triangulares:
A-B A-B A-C
B-C
A-B A-C A-D
B-C B-D
C-D
98
Principio del palo de hockey
(The Hockey Stick Principle)
35201041 =+++
462252126562161 =+++++
99
Números
naturales Números
triangulares
Por el principio del palo de hockey:
1+1 = 2
1+1+1 = 3
1+1+1+1 = 4
1+2 = 3
1+2+3 = 6
1+2+3+4 = 10
100
Números
tetraédricos
...3520
1041
54
321
==
===
TeTe
TeTeTe
101
The On-Line Encyclopedia of Integer Sequences
N. J. A. Sloane (http://www.research.att.com/~njas/sequences/)
Sloane, N. J. A. 1973. A Handbook of Integer Sequences. New York: Academic Press.
Sloane, N. J. A. 1994. "An On-Line Version of the Encyclopedia of Integer Sequences."
The Electronic Journal of Combinatorics. Vol. 1, Feature F1.
Sloane, N. J. A., and Simon Plouffe. 1995. The Encyclopedia of Integer Sequences.
San Diego: Academic Press.
Base de datos con más de 100.000 sucesiones de números enteros.
Capaz de identificar una sucesión a partir de sus primeros términos.
No solo hay ejemplos de combinatoria o teoría de números, sino
también de otras áreas como: diseño de circuitos (combinaciones de
funciones booleanas), química (números de ésteres con n átomos de
carbono), física (diagramas de Feynman con n vértices) y biología
(estructuras secundarias de ARN con n nucleótidos).
102
Como en el caso de la Encyclopedia of Integer Sequences, Simon
Plouffe ha desarrollado el Inverse Symbolic Calculator, o ISC.
La calculadora es inversa en el sentido de que utiliza como
entrada un número y devuelve “de dónde puede surgir”. Por
ejemplo, no le preguntamos cuánto vale e/π + 1 y nos devuelve
1.8652559794322, como en una calculadora estándar. Sino al
revés: introducimos 1.8652559794322 y nos sugiere e/ π + 1
como posible fuente del mismo.
La base de datos de constantes matemáticas de ISC tiene
alrededor de 9 millones de entradas y su creador aspira a que
tenga hasta 10 millones.
Brian Hayes, "A Question of Numbers", American Scientist, January-February 1996
Inverse Symbolic Calculator
Simon Plouffe (http://oldweb.cecm.sfu.ca/projects/ISC/)
103
Números poligonales en general,
números n-gonales
Ejemplo, los número pentagonales son:
1, 5, 12, 22, …
104
¿Cuál es el sexto número pentagonal?
Los números poligonales
siempre comienza con el 1.
1 + 5x4 + T4x3 1+20+30 = 51
• Miremos los “palos” que
arrancan de ese punto. Hay
4 palos y cada uno mide 5.
• Faltan los triángulos. Hay 3
triángulos de orden 4.
105
¿Cuál es el k-ésimo número n-gonal?
Los números n-gonales
siempre comienza con el 1.
1 + (k-1) (n-1) + Tk-2 (n-2)
• Miremos los “palos” que arrancan
de ese punto. Hay n-1 palos y
cada uno mide k-1.
• Faltan los triángulos. Hay
n-2 triángulos de orden k-2.
106
1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ...
¿De cuántas formas puede ser dividido en triángulos un polígono
convexo al trazar diagonales que no se intersecten?
n-gono # diagonales # triángulos
cuadrado 1 2
pentágono 2 3
hexágono 3 4
(...)
n-gono n-3 n-2
2
5
14
Leonhard Euler:
)!1(
)104(...1062
−
−⋅⋅⋅⋅
n
n
107
Eugène Charles Catalan
(1814- 1894), matemático belga,
propuso el problema en 1838.
Números de Catalan
Tenemos una cadena de n símbolos,
dadas en un orden fijo. Deseamos
añadir n-1 paréntesis, de modo que
en el interior de cada par de
paréntesis izquierdo y derecho haya
dos "términos". Estos términos
emparejados pueden ser dos letras
adyacentes cualesquiera, o una letra
y un agrupamiento adyacente
encerrado en paréntesis, o dos
agrupamientos contiguos. ¿De
cuántas formas podemos introducir
paréntesis en la cadena?
108
n = 2 números: (12)
n = 3 números: (1 (2 3)) ((1 2) 3)
n = 4 números: (1 (2 (3 4))) (1 ((2 3) 4))
((1 2) (3 4)) ((1 (2 3)) 4)
(((1 2) 3) 4)
n = 5 números: (1 (2 (3 (4 5)))) (1 (2 ((3 4) 5)))
(1 ((2 3) (4 5))) (1 ((2 (3 4)) 5))
(1 (((2 3) 4) 5)) ((1 2) (3 (4 5)))
((1 2) ((3 4) 5)) ((1 (2 3)) (4 5))
((1 (2 (3 4))) 5) ((1 ((2 3) 4)) 5)
(((1 2) 3) (4 5)) (((1 2) (3 4)) 5)
(((1 (2 3)) 4) 5) ((((1 2) 3) 4) 5)
En 1961, H. G. Forder demostró
una correspondencia biunívoca
entre las triangulaciones de
los polígonos y la introducción
de paréntesis en las expresiones.
109
El matemático británico
Arthur Cayley demostró
que los números de
Catalan dan el total de
árboles (grafos conexos
sin loops) que son
planares (se puede
dibujar en el plano sin
que se intersecten las
aristas), plantados (tiene
un tronco en cuyo
extremo se halla la raíz)
y trivalentes (en cada
nodo exceptuando la raíz
y los extremos de las
ramas, concurren tres
aristas).
2
5
14
42
110
n = 2¿Cuántos caminos
distintos puede seguir una
torre de ajedrez desde el
vértice superior izquierdo al
inferior derecho, siempre
por debajo de la diagonal y
con movimientos posibles
al sur y al oeste, en un
tablero de lado n?
n = 3
n = 4
2
5
14
111
La Combinatoria es una rama de la matemética
que estudia colecciones de objetos (normalmente
finitos) que satisfacen ciertos criterios. En
particular si se trata de contarlos estamos frente a
la Combinatoria Enumerativa. Nos hemos
centrado casi exclusivamente en ella porque es
esencial para cálculos elementales de
probabilidad.
Pero existen otras ramas bien desarrolladas: el
diseño combinatorio, la teoría de matroides, la
combinatoria extremal, la optimización
combinatoria o el álgebra combinatoria.
112
El señor Asamantecas tiene un asador pequeño,
donde apenas caben dos chuletas. Su mujer y su
hija Clara se mueren de hambre y están ansiosas
por comer cuanto antes. El problema es asar las
res chuletas en el mínimo tiempo posible.
Sr. Asamantecas: Vamos a ver, hacen falta 20 minutos
para asar una chuleta por los dos lados, pues cada uno
arda 10. Como puedo preparar dos chuletas a la vez,
en 20 minutos puedo tener listas dos. La tercera tardará
otros 20 minutos. Así que la comida estará a punto
dentro de 40 minutos.
Clara: ¡Pero papá! ¡Si puedes hacerlo en mucho menos!
Acaba de ocurrírseme cómo ahorrar 10 minutos.
¿Cuál fue la feliz idea que se le ocurrió a Clara?
Táctica para chuletas (Optimización combinatoria)
113
Chuletas A, B y C.
A1+B1 = 10 min
A2+C1 = 10 min
B2+C2 = 10 min
----------------------
Total = 30 min
Esto es un problema típico
de optimización combinatoria
en investigación operativa.
114
(2) Un pastor tiene que pasar un lobo, un conejo y
una col de una orilla de un río a la otra orilla.
Dispone de una barca en la que sólo caben él
y una de las tres cosas anteriores. Si deja solos
al conejo y al lobo, éste se come a aquél;
si deja al conejo con la col, aquél se la come.
¿Cómo debe proceder para llevar las tres
cosas a la orilla opuesta?
Un par de problemas clásicos de optimización
combinatoria más:
(1) ¿Cómo harías para traer de un río
seis litros de agua, si no tienes a tu disposición,
para medir el agua, mas que dos recipientes,
uno de cuatro litros y otro de nueve?
115
Trabajos propuestos
116
El problema de los cuatro colores
117
Ars Combinatoria de Ramon Llull
118
Creación combinatoria
Grupo Oulipo.
John Cage...
ect...
119
Ejercicios de
combinatoria
120
¿Cuántos números de 4 dígitos pueden formarse con los
10 números 0, 1, 2, ..., 9 si:
a) se permiten repeticiones,
b) no se permiten repeticiones,
c) el último número debe ser cero y no se permiten repeticiones?
a) El primer número puede ser cualesquiera de los 9 dígitos
(el cero no es significativo como primera cifra). El segundo, tercero
y cuarto número pueden ser siempre cualquiera de los 10.
Por lo tanto habrá: 9·10·10·10 = 9.000 números posibles.
b) El primer número puede cualquiera de los 9 (excepto el cero).
El segundo puede ser cualquiera de los 9 restantes (ahora el cero
se permite). El tercero tendrá 8 posibilidades y el cuarto 7.
Por lo que resultan: 9·9·8·7 = 4.536 números.
121
c) Análogamente a antes, el primer dígito se puede escoger de
9 maneras, el segundo de 9 y el tercero de 8. El cuarto, sin
embargo, solo tiene una posibilidad: el cero.
Entonces, por la regla del producto:
Configuraciones posibles = 9·9·8·1 = 648 números.
_ _ _ 0
122
¿De cuántas maneras posibles se pueden sentar 10 personas en
una banca si solamente hay 4 puestos disponibles?
El primer puesto libre puede ocuparse de 10 maneras, luego el
segundo de 9 maneras, el tercero de 8 y el cuarto de 7. El número
de ordenaciones de 10 personas tomadas de 4 a la vez será:
50407·8·9·104,10 ==V
123
• Tenemos 6 alumnos de primer curso, 5 de segundo, 4 de tercero, 3 de
cuarto, 2 de quinto, 1 de sexto, como candidatos a recibir 5 premios de la
Facultad, uno al alumno menos charlatán, otro al más atento, otro al que
tiene mejor letra, otro al que asiste más a tutorías y otro al que mejor
aparca el coche. Suponiendo que ningún alumno puede recibir más de
un premio, se pide: ¿De cuántas maneras se pueden distribuir los
premios?
Solución:
21 candidatos a 5 premios. Como ningún alumno puede recibir más de
un premio, tenemos 21 candidatos para el primer premio, 20 para el
segundo...
En total 21x20x19x18x17=2.441.880 (distribuciones posibles).
124
En una estantería se quieren colocar 4 libros diferentes de
matemáticas, 6 de física y 2 de química. ¿De cuántas maneras
distintas se pueden colocar si:
a) los libros de cada materia deben quedar juntos,
b) sólo los libros de matemáticas deben quedar juntos?
a) Por un lado, los libros de matemáticas se pueden colocar de 4!
maneras, los de física de 6! y los de química de 2!. Los tres grupos
de libros se podrán colocar de 3! maneras. Por consiguiente se
obtienen: 4!·6!·2!·3! = 207.360 distintas configuraciones.
b) Si consideramos los 4 libros de matemáticas como si fuesen uno solo,
entonces tenemos 9 libros, que pueden colocarse de 9! maneras. En todas
estas configuraciones los libros de matemáticas estarían juntos. Pero a
su vez, éstos se pueden colocar de 4! maneras, por lo que en total se
obtienen: 9!·4!= 8.709.120 maneras
125
¿Cuántas permutaciones pueden formarse con las letras
de la palabra BONDAD?
Respuesta: 6!/2!
¿De dónde sale ese 2!?
Supón que para distinguir la D repetida utilizamos una tilde:
BONDAD’
Ahora todas las letras son distintas, luego hay 6!
permutaciones posibles. Pero cada par de permutaciones:
- - - D - D’
- - - D’- D
en realidad son la misma. Por lo tanto debemos dividir por 2 el
número total de permutaciones.
¿Y por qué por 2!?
Piensa que ocurriría si hubieran tres D's...
126
Ahora este es fácil: una generalización del anterior. ¿Cuántas
palabras distintas de 11 letras podemos formar con la palabra
CACATUA?
La palabra CACATUA consta de 7 letras de las cuales sólo hay 4
tipos distinguibles: 2C, 3A, 1T y 1U. Tendremos entonces que
repetir elementos dentro de cada tipo. Por lo tanto se trata de una
permutación con repetición:
!1!1!3!2
!77
1,1,3,2 =PR
127
En una línea están acomodadas cinco canicas rojas, dos blancas y
tres azules. Si las canicas del mismo color no pueden diferenciarse
entre sí, ¿de cuántas maneras diferentes se pueden ordenar?
Por razonar de otra manera, usemos un astuto truco: Supongamos que
la respuesta es N configuraciones distintas. Observa que dada una de
esas configuraciones, si cambiamos bolas del mismo color entre sí,
como son indistinguibles, la configuración se mantiene.
Entonces, multiplicando N por el número de maneras de colocar las
5 canicas rojas entre ellas, las 2 blancas y las 3 azules, es decir:
N·5!2!3!, obtenemos las posibles configuraciones si se diferenciasen
entre sí todas las bolas. Pero si todas las bolas fueran diferentes,
el número de configuraciones sería: 10!. Entonces:
(5!2!3!)N = 10! y despejando N tendremos la respuesta:
N = 10!(5!2!3!).
128
¿De cuántas maneras se pueden dividir 10 objetos en dos grupos
que contengan 4 y 6 objetos respectivamente?
Esto es lo mismo que el número de ordenaciones de 10 objetos, de los
cuales 4 son indistinguibles entre sí y los otros 6 también. Se trata
entonces de una permutación con repetición: 10!/(4!6!) = 210.
El problema también equivale a encontrar el número de selecciones de
4 de 10 objetos (ó 6 de 10), siendo irrelevante el orden de selección. Se
trata por lo tanto de combinaciones sin repetición:
( ) 210
!6!4
!10
)!410(!4
!1010
44,10 ==
−
==C
129
Se necesitan sentar 5 hombres y 4 mujeres en fila, de manera que
las mujeres ocupen los lugares pares. ¿De cuántas maneras
pueden sentarse?
La configuración general pedida será:
H M H M H M H M
Los hombres se pueden sentar de 5! maneras, y las mujeres de 4!.
Cada configuración de los hombres puede darse con cada
configuración de las mujeres. Entonces se tendrán:
Nº maneras = 5!4!= 2.880
130
¿De cuántas maneras posibles se pueden sentar 7 personas
alrededor de una mesa redonda si: a) se pueden sentar en cualquier
lugar, b) 2 personas en particular no se pueden sentar juntas?
) Empecemos con una persona sentada en
ualquier lugar. Entonces las 6 personas restantes
e pueden sentar de 6! = 720 maneras. Y esta es
a respuesta, puesto que si la persona inicial se
hubiera sentado en cualquier otro sitio, bastaría un
giro para alcanzar alguna de las configuraciones contadas.
b) Consideremos a 2 personas en particular como si fuesen una sola.
Entonces, hay 6 personas en total, que se pueden colocar de 5! maneras.
A parte, las 2 personas que consideramos como si fueran una, pueden
ordenarse de 2! maneras. Por consiguiente, el número de maneras de
organizar a 7 personas con 2 en particular sentadas juntas es: 5!·2! = 240.
Usando a), las maneras pedidas serán: 730 - 240 = 480 maneras.
131
¿De cuántas maneras se puede formar un comité de 5 personas
a partir de un grupo de 9?
( ) 126
)!59(!5
!99
55,9 =
−
==C
Si quiero alquilar tres pelis, ¿cuántas posibilidades tengo si en el
videoclub sólo hay 200 películas?
( ) 1313400
)!3200(!3
!200200
33,200 =
−
==C
132
Desde un grupo de 5 matemáticos y 7 físicos se quiere formar un
comité de 2 matemáticos y 3 físicos. ¿De cuántas maneras se puede
hacer si:
a) se puede incluir cualquier matemático y cualquier físico,
b) un físico en particular debe estar en el comité y
c) dos matemáticos en particular no pueden pertenecer al comité?
a) Se pueden seleccionar 2 matemáticos de 5 de C(5,2) maneras y a los
3 físicos de C(7,3) maneras. El número total es el producto = 10·35 = 350.
b) Análogamente: los posibles matemáticos coinciden con los de antes:
C(5,2); y los físicos esta vez se cogen 2 de los 6 que quedan: C(6,2).
Por lo tanto, el total será: C(5,2)·C(6,2) = 10·15 = 150.
c) Ahora sólo tendremos dos matemáticos a escoger entre 3: C(3,2).
Los físicos serán como en a). En total tendremos:
C(3,2)·C(7,3) = 3·35 = 105.
133
¿Cuántas ensaladas diferentes puedo hacer con lechuga, tomate,
cebolla, aceitunas y atún?
1ª Forma: Se pueden seleccionar 1 de los 5 ingredientes, 2 de los 5, ...
hasta coger 5 de los 5. El número de ensaladas distintas es: C(5,1)+
+C(5,2)+C(5,3)+C(5,4)+C(5,5)=5+10+10+5+1=31.
2ª Forma: Cada ingrediente puede tratarse de 2 maneras, se puede
escoger o rechazar. Puesto que cada 2 formas de tratar a un ingrediente
está asociada con las 2 formas de tratar a cada uno de los otros vegetales,
el número de maneras de tratar a los 5 ingredientes es 25
. Pero dentro de
las 25
maneras se incluye el caso de no coger ningún ingrediente. Por
lo tanto:
Número de ensaladas = 25
-1 = 31.
134
¿Cuántas palabras de 4 consonantes diferentes y 3 vocales distintas
se pueden formar a partir de 7 consonantes y 5 vocales?
(No hace falta que tengan sentido)
Se pueden seleccionar 4 consonantes diferentes de C(7,4) maneras y
las 3 vocales de C(5,3) maneras. Además, las 7 letras resultantes
(4 consonantes y 3 vocales) pueden ordenarse entre sí de 7! maneras.
Por lo tanto:
# de palabras = C(7,4)·C(5,3)·7! = 35·10·5040 = 1764000
135
136
137
¿De cuántas formas distintas se pueden acertar 9 resultados en una
quiniela futbolística de 15 resultados?
SOLUCIÓN:
1
15 resultados X (3 valores)
2
Los 9 resultados acertados se pueden elegir de formas
distintas. En cada
resultado, las opciones de fallo son 2, por lo que para cada una de las
formas de acierto, los seis resultados se pueden fallar de 2·2·2·2·2·2=26
formas distintas.
En total tendremos formas distintas de acertar 9 resultados =
320320 formas
5005
9
15
=





6
2·
9
15






138
139
140
Sigue en la siguiente diapositiva
141
142
Sigue en la siguiente diapositiva
143
144
Se distribuyen 100 sillas auxiliares entre 5 aulas de modo que
las dos mayores, reciben, entre las dos, 50 sillas ¿De cuántas
formas distintas se puede hacer el reparto?
SOLUCIÓN:
A y B : aulas mayores.
50 sillas: asignación de las letras A o B a cada una de las 50 sillas.
Como las sillas son iguales no hay orden en esta asignación y cada
distribución es una combinación con repetición de orden 50 con los
elementos A y B.
Análogamente, las formas de distribuir las otras 50 sillas son:
y el reparto se puede efectuar de 51·1326= 67626 formas distintas.
51
50
51
50
1502
50,2 =





=




 −+
=R
C
1326
2
52
50
1503
50,3 =





=




 −+
=R
C
145
Un banco tiene que elegir 5 cargos directivos: director,
subdirector, interventor, tesorero y gerente, entre 8 personas, de
las cuales 3 son hombres (A,E,O) y 5 mujeres (X,Y,Z,V,W).
Se pide averiguar de cuántas formas puede hacerse la elección si:
a) Los hombre A y E no pueden estar juntos en la misma elección.
b) Entran los 3 hombres.
c) Entran 3 mujeres y 2 hombres.
d) Entran al menos 3 mujeres.
SOLUCIÓN:
a) Contamos las elecciones: - A pero no con E.
- E pero no con A.
- sin A ni E.
Elecciones con A = ( Elecciones con E) : hay que elegir otra 4 de entre
6 de = 15 formas distintas. Ahora debemos asignas cargos. Cada
asignación de cargos a los directivos elegidos es una permutación de
las cinco personas elegidas. Por tanto, el número de elecciones con A
es:






4
6
1800!5·
4
6
=





146
Elecciones sin A ni E: de forma análoga
Por tanto las opciones sin A ni E juntos es:
b) Si entran los 3 hombres quedan 2 puestos para las 5 mujeres, que se pueden elegir de
maneras. Considerando la asignación de cargos directivos resultan
c) Los hombres se eligen de formas y las mujeres de formas. Por tanto el número de
elecciones en este caso es:
d) Contamos separadamente cuando entran 3 mujeres, cuando entran cuatro y cuando entran cinco:
720!5·
5
6
=





posibles.elecciones1200!5·
2
5
=





4320!5·
5
6
!5·
4
6
!5·
4
6
=





+





+





552012018003600!5!5·
4
5
1
3
!5·
3
5
2
3
=++=+











+

















2
5
3600!5·
3
5
2
3
=

















2
3






3
5
147
Un equipo de baloncesto dispone de 12 jugadores: 3 bases, 4
aleros y 5 pívots. ¿Cuántos equipos diferentes puede presentar el
entrenador como quinteto titular? Se recuerda que de forma
simplificada un equipo de baloncesto consta de un base, dos
aleros y dos pívots.
SOLUCIÓN:
Hay que elegir 1 base, 2 aleros y 2 pívots de un total de 3 bases, 4
aleros y 5 pivots, donde el orden no influye en cada uno de los puestos
correspondientes sino las personas en juego.
El entrenador puede presentar:
3·6·10= 180 equipos ó quintetos titulares.
pívotsC
alerosC
basesC
10
2
5
6
2
4
3
1
3
2,5
2,4
1,3
=





=
=





=
=





=
148
Calcular el número de sucesiones que se pueden formar con 3
aes, 5 bes y 8 ces. ¿ Y si no puede haber dos bes consecutivas?
¿Y si no hay dos iguales consecutivas?
SOLUCIÓN:
A) Cada una de las sucesiones sin condiciones adicionales es una
permutación de aaabbbbbcccccccc, por lo que su número es:
Para que las letras b no aparezcan consecutivas, deben colocarse,
entre dos términos de una de las sucesiones de aes y ces. Como hay
11 símbolos en esas sucesiones el número de huecos donde se
pueden colocar las bes es 12. Debemos elegir 5 de estos 12 huecos.
Se puede hacer de
720720
!8!5!3
!16,8,5,3
16 ==P
formas130680
!8!3
!11
5
12
:por tantoes,sucesionesdenúmeroEl
distintas.formas792
5
12
=





=





149
c) No se permiten letras iguales consecutivas. Fijémonos en la colocación de las ces. El número de
ces es la suma del nº de aes y bes. 2 opciones:
- Si c sólo aparece en uno de los extremos:
c-c-c-c-c-c-c-c-
eligiendo 3 huecos de los 8 posibles para colocar las 3 aes, tendremos la sucesión descrita:
El nº de sucesiones de este tipo es
- Si c aparece en los 2 extremos, una colocación será:
c- -c-c-c-c-c-c-c
donde en las posiciones – podemos colocar a o b.
El doble hueco - - puede aparecer en 7 posiciones y se puede llenar con ab o con ba, es decir,
se presenta 2·7 posibilidades. Luego hay que elegir dos huecos entre seis para colocar las
restantes aes. En total, el nº de sucesiones en este caso es
El nº de sucesiones sin letras iguales consecutivas es:






3
8
·2






2
6
·7·2
332210112
2
6
·14
3
8
·2 =+=





+





150
151
152
153
154
Un borracho camina por una acera. Todos los pasos que da son de
a misma longitud. Sabiendo que tiene la misma probabilidad de
avanzar que de retroceder. ¿De cuántas formas puede dar 2n pasos
que le devuelvan a la puerta del bar?
Nota: Usar como notación 1 = paso adelante, -1 = paso atrás.

Más contenido relacionado

La actualidad más candente

tarea 1, ejercicios de probabilidad con respuestas
tarea 1, ejercicios de probabilidad con respuestastarea 1, ejercicios de probabilidad con respuestas
tarea 1, ejercicios de probabilidad con respuestasIPN
 
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1Bertha Vega
 
Solucionario determinantes
Solucionario determinantesSolucionario determinantes
Solucionario determinantesalfonnavarro
 
Aplicaciones integral
Aplicaciones integralAplicaciones integral
Aplicaciones integral10lozada
 
Ejercicios probabilidaes
Ejercicios probabilidaesEjercicios probabilidaes
Ejercicios probabilidaesYesseniab
 
Teoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a ProbabilidadTeoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a ProbabilidadEnely Freitez
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesVirgilio Granda
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011Carlos Farley Zamudio Melo
 
ANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIOANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIOCESAR V
 
Alg lineal unidad 3
Alg lineal unidad 3Alg lineal unidad 3
Alg lineal unidad 3migwer
 
Permutaciones y combinaciones
Permutaciones y combinacionesPermutaciones y combinaciones
Permutaciones y combinacionesCarlos Acevedo
 
probabilidad un tema mas
probabilidad un tema mas probabilidad un tema mas
probabilidad un tema mas Alain Cervantes
 
Tarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuestaTarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuestaIPN
 
Ejercicios de distribución binomial
Ejercicios de distribución binomialEjercicios de distribución binomial
Ejercicios de distribución binomialMariangel Carrillo
 
Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)Norman Edilberto Rivera Pazos
 

La actualidad más candente (20)

tarea 1, ejercicios de probabilidad con respuestas
tarea 1, ejercicios de probabilidad con respuestastarea 1, ejercicios de probabilidad con respuestas
tarea 1, ejercicios de probabilidad con respuestas
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
ED Ejercicios complementarios cap 1 aplicaciones de las ed orden uno parte 1
 
Solucionario determinantes
Solucionario determinantesSolucionario determinantes
Solucionario determinantes
 
Distribucion de variable aleatoria discreta
Distribucion de variable aleatoria discretaDistribucion de variable aleatoria discreta
Distribucion de variable aleatoria discreta
 
Aplicaciones integral
Aplicaciones integralAplicaciones integral
Aplicaciones integral
 
Ejercicios probabilidaes
Ejercicios probabilidaesEjercicios probabilidaes
Ejercicios probabilidaes
 
Teoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a ProbabilidadTeoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
Teoria de Conjunto y Técnicas de Conteo aplicado a Probabilidad
 
Ejercicios en integral
Ejercicios en integralEjercicios en integral
Ejercicios en integral
 
Permutaciones
PermutacionesPermutaciones
Permutaciones
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
 
ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011ejercicios-resueltos-integrales-dobles-y-triples-2011
ejercicios-resueltos-integrales-dobles-y-triples-2011
 
Estadistica resueltas
Estadistica resueltasEstadistica resueltas
Estadistica resueltas
 
ANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIOANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIO
 
Alg lineal unidad 3
Alg lineal unidad 3Alg lineal unidad 3
Alg lineal unidad 3
 
Permutaciones y combinaciones
Permutaciones y combinacionesPermutaciones y combinaciones
Permutaciones y combinaciones
 
probabilidad un tema mas
probabilidad un tema mas probabilidad un tema mas
probabilidad un tema mas
 
Tarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuestaTarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuesta
 
Ejercicios de distribución binomial
Ejercicios de distribución binomialEjercicios de distribución binomial
Ejercicios de distribución binomial
 
Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)Métodos de solución de ecuaciones lineales (cuadro comparativo)
Métodos de solución de ecuaciones lineales (cuadro comparativo)
 

Similar a 1 combinatoria

Técnicas de conteo
Técnicas de conteoTécnicas de conteo
Técnicas de conteoPepé Torres
 
Técnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioTécnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioeduargom
 
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptx
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptxMatematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptx
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptxJOSE ANTONIO MELGAR CAMAYO
 
Introducción al Análisis Combinatorio ac1 ccesa007
Introducción al Análisis  Combinatorio ac1 ccesa007Introducción al Análisis  Combinatorio ac1 ccesa007
Introducción al Análisis Combinatorio ac1 ccesa007Demetrio Ccesa Rayme
 
Analisis Uni
Analisis UniAnalisis Uni
Analisis UniIsidoro
 
Analisis Combinatorio
Analisis CombinatorioAnalisis Combinatorio
Analisis Combinatorioguest5dcb8426
 
Apoyo para unidad 2
Apoyo para unidad 2Apoyo para unidad 2
Apoyo para unidad 2matedivliss
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatorioBryan Huaylas
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01profraromero
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Christian Infante
 
Analisis combinatorio probabilidades
Analisis combinatorio probabilidadesAnalisis combinatorio probabilidades
Analisis combinatorio probabilidadesπ -
 
Analisis combinatorio.ppt
Analisis combinatorio.pptAnalisis combinatorio.ppt
Analisis combinatorio.pptSandritoLinarez
 
Tarea #4
Tarea #4Tarea #4
Tarea #4itzelk
 
Técnicas de enumeración o conteo
Técnicas de enumeración o conteoTécnicas de enumeración o conteo
Técnicas de enumeración o conteoYefri Garcia
 

Similar a 1 combinatoria (20)

Técnicas de conteo
Técnicas de conteoTécnicas de conteo
Técnicas de conteo
 
Técnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioTécnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorio
 
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptx
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptxMatematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptx
Matematica 5to - Unidad 07 - ANALISIS COMBINATORIO Y PROBABILIDAD.pptx
 
Introducción al Análisis Combinatorio ac1 ccesa007
Introducción al Análisis  Combinatorio ac1 ccesa007Introducción al Análisis  Combinatorio ac1 ccesa007
Introducción al Análisis Combinatorio ac1 ccesa007
 
Temas de probabilidad
Temas de probabilidadTemas de probabilidad
Temas de probabilidad
 
Analisis Uni
Analisis UniAnalisis Uni
Analisis Uni
 
Analisis Combinatorio
Analisis CombinatorioAnalisis Combinatorio
Analisis Combinatorio
 
Apoyo para unidad 2
Apoyo para unidad 2Apoyo para unidad 2
Apoyo para unidad 2
 
Técnicas de conteo
Técnicas de conteoTécnicas de conteo
Técnicas de conteo
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatorio
 
Tema1
Tema1Tema1
Tema1
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01
 
Analisis combinatorio probabilidades
Analisis combinatorio probabilidadesAnalisis combinatorio probabilidades
Analisis combinatorio probabilidades
 
Analisis combinatorio.ppt
Analisis combinatorio.pptAnalisis combinatorio.ppt
Analisis combinatorio.ppt
 
Tarea #4
Tarea #4Tarea #4
Tarea #4
 
Exposicion
ExposicionExposicion
Exposicion
 
Técnicas de enumeración o conteo
Técnicas de enumeración o conteoTécnicas de enumeración o conteo
Técnicas de enumeración o conteo
 
Técnicas de conteo
Técnicas de conteoTécnicas de conteo
Técnicas de conteo
 

Más de ortari2014

áReas integrales definidas áreas de regiones delimitadas por gráficas_ bach...
áReas  integrales definidas  áreas de regiones delimitadas por gráficas_ bach...áReas  integrales definidas  áreas de regiones delimitadas por gráficas_ bach...
áReas integrales definidas áreas de regiones delimitadas por gráficas_ bach...ortari2014
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectorialesortari2014
 
Problemas resueltos integrales dobles y triples
Problemas resueltos integrales dobles y triplesProblemas resueltos integrales dobles y triples
Problemas resueltos integrales dobles y triplesortari2014
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polaresortari2014
 
áLgebra lineal
áLgebra    linealáLgebra    lineal
áLgebra linealortari2014
 
5 integración múltiple
5 integración múltiple5 integración múltiple
5 integración múltipleortari2014
 
234441331 909-problemas-de-calculo-integral-2-pdf
234441331 909-problemas-de-calculo-integral-2-pdf234441331 909-problemas-de-calculo-integral-2-pdf
234441331 909-problemas-de-calculo-integral-2-pdfortari2014
 
125866390 ejercicios-resueltos-integrales-dobles(1)
125866390 ejercicios-resueltos-integrales-dobles(1)125866390 ejercicios-resueltos-integrales-dobles(1)
125866390 ejercicios-resueltos-integrales-dobles(1)ortari2014
 

Más de ortari2014 (9)

áReas integrales definidas áreas de regiones delimitadas por gráficas_ bach...
áReas  integrales definidas  áreas de regiones delimitadas por gráficas_ bach...áReas  integrales definidas  áreas de regiones delimitadas por gráficas_ bach...
áReas integrales definidas áreas de regiones delimitadas por gráficas_ bach...
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectoriales
 
Problemas resueltos integrales dobles y triples
Problemas resueltos integrales dobles y triplesProblemas resueltos integrales dobles y triples
Problemas resueltos integrales dobles y triples
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares
 
áLgebra lineal
áLgebra    linealáLgebra    lineal
áLgebra lineal
 
5 integración múltiple
5 integración múltiple5 integración múltiple
5 integración múltiple
 
234441331 909-problemas-de-calculo-integral-2-pdf
234441331 909-problemas-de-calculo-integral-2-pdf234441331 909-problemas-de-calculo-integral-2-pdf
234441331 909-problemas-de-calculo-integral-2-pdf
 
125866390 ejercicios-resueltos-integrales-dobles(1)
125866390 ejercicios-resueltos-integrales-dobles(1)125866390 ejercicios-resueltos-integrales-dobles(1)
125866390 ejercicios-resueltos-integrales-dobles(1)
 
Leccion3
Leccion3Leccion3
Leccion3
 

Último

proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechaproyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechanitoagurto67
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASAntoineMoltisanti
 
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptxFESARAUGUSTOFANDIORI
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónDanielGrajeda7
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)JonathanCovena1
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfANEP - DETP
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdfnataliavera27
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxPabloPazmio14
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)portafoliodigitalyos
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoasadvavillacorte123
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRDanielGrajeda7
 
Presentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesPresentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesGustavo Cano
 

Último (20)

3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechaproyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
 
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTEPLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
PLAN DE MONITOREO Y ACOMAPÑAMIENTO DOCENTE
 
4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDAS
 
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu Remodelación
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
Lec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuarioLec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuario
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoas
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
Presentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clasesPresentación Pedagoía medieval para exposición en clases
Presentación Pedagoía medieval para exposición en clases
 

1 combinatoria

  • 1. 1 Estadística Aplicada http:/matap.dmae.upm.es Manuel Abejón (Grupos 2 y 3) Bartolo Luque (Grupo 1) Apuntes y formulario (M. Cordero y J. Olarrea) en publicaciones: Programa y texto básico que fijan el contenido y el nivel de conocimientos a efectos de enseñanza y exámenes.
  • 2. 2 Estadística Aplicada Todas las transparencias del curso están accesibles en pdf en: http:/matap.dmae.upm.es/bartolo.html Sección: Docencia-Estadística Aplicada
  • 3. 3 Estadística Aplicada El examen y el criterio de evaluación serán comunes. Cada profesor corregirá a su(s) grupo(s). La nota final podrá ser mejorada hasta en un factor de 1,25 en función de trabajos no obligatorios realizados a lo largo del curso.
  • 4. 4 “La combinatoria trata, ante todo, de contar el número de maneras en que unos objetos dados pueden organizarse de una determinada forma.” Introducción a la combinatoria Ian Anderson “La tercera prioridad de la campaña es dar la primera prioridad a la enseñanza.” Web oficial de George W. Bush 1.Combinatoria El arte de contar
  • 5. 5 En 1858 el egiptólogo escocés A. Henry Rhind compró en Luxor (Egipto) el papiro que actualmente se conoce como papiro Rhind o de Ahmes, encontrado en las ruinas de un antiguo edificio de Tebas. Fue escrito por el escriba Ahmes aproximadamente en el año 1650 antes de nuestra era. Comienza con la frase: “Cálculo exacto para entrar en conocimiento de todas las cosas existentes y de todos los oscuros secretos y misterios.” El papiro mide unos 6 m de largo y 33 cm de ancho. Representa la mejor fuente de información sobre matemática egipcia antigua conocida. El papiro Rhind (problema 79)
  • 6. 6 Escrito en hierático, consta de 87 problemas y su resolución. Nos da información sobre cuestiones aritméticas básicas, fracciones, cálculo de áreas, volúmenes, progresiones, repartos proporcionales, reglas de tres, ecuaciones lineales y trigonometría básica. El problema 79 es de combinatoria. Veamos una versión “moderna”... El papiro Rhind (problema 79)
  • 7. 7 Según iba a St. Ives me crucé con un hombre con 7 esposas. Cada esposa tenía 7 sacos, cada saco tenía 7 gatos, cada gato tenía 7 gatitos. Gatitos, gatos, sacos y esposas. ¿Cuántos iban a St. Ives? St. Ives Mother Goose (La mamá oca de San Ives) La regla del producto
  • 8. 8 You are eating at Emile’s restaurant and the waiter informs you that you have (a) two choices for appetizers: soup or juice; (b) three for the main course: a meat, fish, or vegetable dish; and (c) two for dessert: ice cream or cake. How many possible choices do you have for your complete meal? El total de posibilidades será: 2 . 3 . 2 = 12
  • 9. 9 Principio multiplicativo (ilustración gráfica) El primer elemento puede escogerse de dos formas distintas: a1 y a2. El segundo de tres maneras distintas: b1, b2 y b3. El tercer elemento puede escogerse en dos modos distintos: c1 y c2. El total de posibilidades será: 2 . 3 . 2 = 12 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 b1 b2 b3 b1 b3b2 a1 a2
  • 10. 10 Alfabeto Braille ¿Cuántos símbolos distintos pueden representarse?       6364222222 654321 →=×××××
  • 11. 11 La regla del producto o principio multiplicativo Si una elección tiene m alternativas posibles y otra n, entonces la realización de ambas tiene m x n. 15 214 14 101,54334.332.961.518.999. 21122111111 ×≈ =×=×××××     Mozart compuso un vals con 11 posibilidades distintas para 14 de los 16 compases y 2 posibilidades para cada uno de los restantes. ¿Se habrán llegado a escuchar alguna vez todas las realizaciones posibles?
  • 12. 12 ¿De cuántas formas se pueden escoger dos fichas de dominó de las 28 que hay, teniendo en cuenta el orden, y de forma que se puedan aplicar una a la otra (es decir, de modo que se encuentre el mismo número de tantos en ambas fichas)?
  • 13. 13 Escojamos la primera ficha. Esto se puede hacer de 28 maneras: En 7 casos la ficha elegida será un “doble”, es decir, tendrá la forma 00, 11, 22, 33, 44, 55, 66. Y en 21 casos será una ficha con distinto número de tantos. Por ejemplo 05, 13, 46, etc. En el primer caso (ficha doble), la segunda ficha se puede elegir de 6 maneras. Por ejemplo, si en el primer paso fue elegida la ficha 11. En el segundo se puede tomar una de las fichas 10, 12, 13, 14, 15 o 16.
  • 14. 14 En el segundo caso, la segunda ficha se puede escoger de 12 maneras. Por ejemplo para la ficha 35 servirán las 03, 13, 23, 33, 43, 63, 50, 51, 52, 54, 55, 56. Según la regla del producto, en el primer caso obtenemos 7 x 6 = 42 elecciones, y en el segundo, 21 x 12 = 252. Así que en total tendremos 42 + 252 = 294 formas.
  • 15. 15 ¿Cuántas fotografías distintas podemos hacer cambiando a los personajes de posición? ¿Cuántas permutaciones son posibles? 1 7 64 5 32        040.51234567 7654321 =×××××× 040.5!7 =
  • 16. 16 Permutaciones (sin repetición) Dados n objetos distintos, llamamos permutación a una ordenación particular de los n objetos en una fila. Ejemplo: Hay 6 posibles permutaciones con las tres letras a, b, c: abc, acb, bac, bca, cab, cba. El número de permutaciones de n objetos diferentes tomados todos a la vez es n! (se lee “n factorial” o “factorial de n”). Usando la regla del producto: hay n posibles objetos para la primera plaza de la fila, n-1 objetos posibles para ocupar la segunda, etc... !123)2()1( nnnnPn =⋅⋅⋅⋅−⋅−⋅= 
  • 17. 17 Con las letras de la palabra DISCO, ¿cuántas palabras distintas (con o sin sentido) se pueden formar? 120!55 ==P Evidentemente, al tratarse de palabras el orden importa. Tenemos que formar palabras de cinco letras con cinco elementos: {D, I, S, C, O}, que no están repetidos. El cálculo del número de permutaciones “n!” se cree que apareció por primera vez en la India. Se tiene constancia de ejemplos del año 300 antes de nuestra era. En el siglo XI la "fórmula general" era bien conocida en la India y los países árabes.
  • 18. 18 (a) n! y (n! + 1) no tienen factores comunes. (b) O bien (n! + 1) es primo o bien es factorizable: (b.1) Si (n! + 1) es primo queda demostrada la afirmación. (b.2) Si (n! + 1) puede descomponerse en factores, por (a) ninguno de ellos puede dividir a n!. De modo que cualquier factor de (n! + 1) estará entre n y (n! + 1). (b.2.1) Si el factor es primo queda demostrada la afirmación. (b.2.2) Si el factor no es primo, entonces por el mismo argumento (b.2), será mayor que n y podemos volver a descomponerlo hasta encontrar finalmente un primo mayor que n. Existencia de infinitos números primos Podemos encontrar uno de los primeras aplicaciones del factorial en una prueba de Euclides de la existencia de infinitos números primos. Euclides argumentaba que siempre existe al menos un primo entre n y (n! + 1) de la siguiente manera:
  • 19. 19 ¿Cuál es el número de posibles ordenaciones de una baraja de póker de 52 cartas? El resultado es 52!, que es aproximadamente 8 × 1067 . Observa que a partir de una simple baraja obtenemos un enorme número, superior, por ejemplo, al cuadrado del número de Avogadro: 6,02 × 1023 . Explosión combinatoria
  • 20. 20 Fórmula de Stirling n n enn − + ⋅⋅ 2 1 2~! π La demostración de la fórmula de Stirling puede encontrarse en la mayoría de textos de análisis. Vamos a verificar la bondad de la aproximación usando el programa StirlingApproximations, que imprime: (a) n!, (b) la aproximación de Stirling y (c) el cociente de ambos valores. Observemos como ese cociente se acerca a 1 a medida que n crece. Se dice entonces que la aproximación es asintótica. A veces, al resolver un problema de combinatoria, es mejor encontrar una aproximación asintótica formada por funciones cuyo comportamiento es fácil de comprender que la solución exacta, cuyo comportamiento escapa a nuestra intuición. James Stirling presentó su fórmula en “Methodus Differentialis” publicado en 1730.
  • 21. 21 Supongamos que los siete personajes de Star Treck se hacen fotografías en fila en todas las permutaciones posibles. ¿En cuántos casos Data y Picard aparecen juntos? Pensemos que Data y Picard son siameses o que van dentro de un saco. El número de posibles fotografías sería entonces de: 6! = 720. Pero además, para cada una de esas fotografías, Data puede estar a la derecha o a la izquierda de Picard. Luego el resultado es: 2· 6! = 1440.
  • 22. 22 (1) La relación de vecindad se conserva en las permutaciones cíclicas y en caso de una simetría. Varias personas se sientan a una mesa redonda. Consideraremos que dos formas de sentarse coinciden si cada persona tiene los mismos vecinos en ambos lados. ¿De cuántos modos diferentes se pueden sentar 4 personas? ¿Y 7? ¿Y n? En el caso de 4 personas, tendremos 4 permutaciones cíclicas y una simetría especular para cada una: 2 x 4 = 8 transformaciones que conserven la relación de vecindad.
  • 23. 23 Espejo Permutaciones cíclicas Permutaciones simétricas Como el número total de permutaciones de 4 personas es igual a 4! = 24, tendremos 24 / 8 = 3 formas distintas de sentarse.
  • 24. 24 (2) Si hay 7 personas alrededor de la mesa, tendremos 7! / (7 x 2) = 360 modos. (3) Y, en general, en el caso de n personas: n! / (n x 2) formas.
  • 25. 25 En una reunión deben intervenir 5 personas: A, B, C, D y E. ¿De cuántas maneras se pueden distribuir en la lista de oradores, con la condición de que B no debe intervenir antes que A? El número total de posibles listas de oradores distintas es 5!. Podemos asociar a cada permutación del tipo: (...A...B...) la misma permutando (...B...A...). Esta última no nos vale. De modo que por cada par hay sólo una manera que satisface la condición planteada. Tendremos 5! / 2 = 60 maneras.
  • 26. 26 El mismo problema, pero con la condición de que A deba intervenir inmediatamente antes que B. Si A interviene inmediatamente antes que B, podemos considerarlos como si fuesen un solo orador. Es decir, ahora sólo contamos las permutaciones tipo: ...AB... Tendremos entonces: 4! = 24 formas.
  • 27. 27 Emparejamientos Dados 2n objetos distintos, ¿cuántas maneras hay de formar n parejas? Intentemos agrupar los 2n objetos usando n pares de paréntesis: ( , ) ( , ) ( , ) ... ( , ) Hay 2n espacios vacíos y 2n objetos, luego los podemos colocar de (2n)! maneras distintas. Pero para cada paréntesis tenemos 2! = 2 ordenaciones posibles que han de contarse como una sola (dan lugar al mismo par), debemos dividir entre 2 · 2 · ... · 2 = 2n .
  • 28. 28 El orden en que hemos colocado los paréntesis tampoco nos importa, y como hay n! maneras distintas de hacerlo, cada emparejamiento posible ha sido obtenido de hecho n! veces. Entonces el número de parejas distintas es: !2 )!2( n n n
  • 29. 29 Generalicemos el problema: dados m·n objetos, ¿cuántas maneras hay de formar n conjuntos de m objetos? Agrupemos los m·n objetos usando n paréntesis: ( , , ... , ) ( , , ... , ) ( , , ... , ) ... (, , ... , ) Hay m·n espacios vacíos y m·n objetos, luego los podemos colocar de (m·n)! maneras distintas. Pero para cada paréntesis tenemos m! ordenaciones posibles que han de contarse como una sola (dan lugar a la misma m-terna ). Luego hemos de dividir entre m! · m! · ... · m! = (m!)n .
  • 30. 30 El orden en que hemos colocado los paréntesis tampoco nos importa, y como hay n! maneras distintas de hacerlo, cada emparejamiento posible ha sido obtenido de hecho n! veces. Entonces el número de maneras es: !)!( )!( nm nm n ⋅
  • 31. 31 Un comentarista deportivo español (o sea, de fútbol) pedía en antena que, para conseguir el equipo ideal de entre sus 20 jugadores, un entrenador probara todas las posibilidades para dar con el 10 ideal (el portero lo daba por indiscutible). ¿Le daría tiempo en una liga? 2.800670.442.571121...181920 factores10 =⋅⋅⋅⋅⋅    Variaciones (sin repetición)
  • 32. 32 Variaciones (sin repetición) Según la regla del producto, las maneras de escoger r elementos distintos de entre un total de n según un determinado orden, será igual al producto de: Esta expresión se conoce como variaciones de n elementos tomados de r en r, y se representa por Vn,r . Habitualmente se expresa como: 123...)1()( 123...)2()1( ⋅⋅⋅⋅−−⋅− ⋅⋅⋅⋅−⋅−⋅ = − = rnrn nnn r)!(n n! Vn,r 1121...181920 !10 !20 !)1020( !20 10,20 ⋅⋅⋅⋅⋅== − =V En el problema anterior: )1(...)2()1(, +−⋅⋅−⋅−⋅= rnnnnV rn
  • 33. 33 ¿Cuantos números de tres cifras distintas y significativas se pueden formar con las nueve cifras del sistema decimal 1, 2, 3, 4, 5, 6, 7, 8, 9? ¿Y si admitimos el 0? 5047893,9 =⋅⋅=V Si admitimos el 0, como primera opción seguimos teniendo 9 números, pero ahora como segundo número podemos usar también el 0, luego tenemos 9 posibles candidatos...: 641899 =⋅⋅ Al tratarse de números el orden importa y además nos dice "cifras distintas" luego no pueden repetirse.
  • 34. 34 Raymond Queneau escribió el libro de poemas llamado “Cent mille milliards de poèmes”. Una obra de poesía combinatoria. Constaba de 10 páginas. En cada página aparecía un soneto. Cada soneto está formado por 14 versos. Según Queneau es posible escoger como primer verso cualquiera de los primeros versos de los 10 sonetos originales, como segundo verso, el segundo verso de cualquiera de los 10 sonetos originales y así sucesivamente hasta el verso 14. Y el soneto resultante tiene sentido. ¿Hace justicia el título al libro? 14 14 10101010 =×××     Variaciones con repetición
  • 35. 35 Variaciones con repetición Según la regla del producto, las maneras de escoger r elementos de entre un total de n según un determinado orden, y con la posibilidad de repetir los elementos en cada elección, son: Esta expresión se conoce como variaciones con repetición y se representa como: r rn nVR =, e lee: “variaciones con repetición de n elementos tomados de r en r”. r nn...··n·n·n =
  • 36. 36 ¿Cuantos números de tres cifras significativas se pueden formar con las nueve cifras del sistema decimal 1, 2, 3, 4, 5, 6, 7, 8, 9? ¿Y si admitimos el 0? 72993 3,9 ==VR Si admitimos el 0, como primera opción seguimos teniendo 9 números. Pero ahora como segundo número podemos usar también el 0, luego tenemos 10 posibles candidatos e ídem para el tercero: 90010109 =⋅⋅ Al tratarse de números el orden importa y además nos dice que las "cifras se pueden repetir”:
  • 37. 37 Combinaciones (sin repetición) ¿Cuántas posibles combinados de dos bebidas podemos hacer con ginebra, vodka y tequila? Si el orden importara tendríamos 3 · 2 = 6. Pero en realidad: (g, v) = (v, g), (g, t) = (t, g) y (t, v) = (v, t), porque el orden no importa. De modo que debemos dividir entre 2: 6 / 2 = 3. ¿Cuántas posibles combinados de tres bebidas podemos hacer con ginebra, vodka, tequila y ron? De nuevo, si el orden importara tendríamos 4 · 3 · 2 = 24. Pero en realidad: (g, v, t) = (g, t, v) = (v, g, t) = etc..., porque el orden no importa. De modo que debemos dividir entre 3!: 24 / 3! = 4.
  • 38. 38 Combinaciones (sin repetición) ¿Cuántas posibles configuraciones de r elementos podemos construir desde un conjunto de n elementos diferentes, sin que importe el orden y no sea posible la repetición? Si el orden importara tendríamos n · (n-1) ·.....· (n - r + 1) posibilidades. Las podemos partir en clases, de forma que en cada clase estén aquellas configuraciones que sean la misma salvo el orden. Como hemos escogido r elementos, cada clase estará formada por las r! formas distintas de ordenar esos elementos. )!(! !)1(....)1(· rnr n r! rnnn − = +−⋅⋅−
  • 39. 39 Este número se conoce como las combinaciones de n elementos tomadas de k en k y se denota por: )!(! ! ),( rnr n r n rnCCr n − =      == 506.142 )!530(!5 !30 5 30 )5,30( = − =      =C Cuantos grupos de 5 alumnos pueden formarse con los 30 alumnos de una clase. (Un grupo es distinto si se diferencia por lo menos en un alumno). No importa el orden. No puede haber dos alumnos iguales (no hay clones) en un grupo, luego no hay repetición.
  • 40. 40 ¿Cuántas manos distintas pueden darse a 4 jugadores con 5 cartas cada uno y una baraja de 52 cartas? (Intenta primero una respuesta a ojo). El primer jugador puede recibir C(52, 5) manos distintas. Una vez el primer jugador tiene su mano el segundo puede recibir C(47, 5) manos distintas (5 cartas de las 47 restantes). El tercero: C(42, 5) y el cuarto: C(37, 5). Por la regla del producto tendremos un total de: !32!5 !37 !37!5 !42 !42!5 !47 !47!5 !52 )5,37()5,42()5,47()5,52( ×××=CCCC 24 101.52404.020.034.843.475.641.478.262. !32!5!5!5!5 !52 ⋅≈==
  • 41. 41 ¿De cuántas maneras distintas podemos pintar una tira de cinco casillas, pintando 2 de rojo y 3 de azul? Respuesta: Combinaciones de 5 elementos tomados de 2 en 2. O de 5 elementos tomados de 3 en 3: C(5,2) = C(5,3) = 10.
  • 42. 42 Hogar, dulce hogar Cine ¿Cuántos caminos distintos podemos recorrer desde hogar a cine? (Cada movimiento debe acercarnos al cine). Cualquier posible recorrido consiste en 8 movimientos a la derecha (1) y 4 movimientos hacia arriba (0). La solución es, por tanto: 495 !4!8 !12 4 12 8 12 ==      =      011010111110
  • 43. 43 Ejemplo: para generar el 5º elemento en la fila #7, sumamos el 4º y 5º elemento en la fila #6. El triángulo de Pascal (o de Tartaglia)
  • 44. 44 Números combinatorios 10 2 5 =      Fila 5, posición 2: 120 7 10 =      Fila 10, posición 7:
  • 47. 47 ),( 1 1 1 ),1()1,1( rnC r n r n r n rnCrnC =      =      − +      − − =−+−− Demostrar la identidad de Pascal: Demostración: ( ) ( ) ( ) = −− − + −− − =−+−− !!1 )!1( !1! )!1( ),1()1,1( rrn n rrn n rnCrnC ( ) ( ) =      − + −− − r rn rrn n 1 !1! !)1( ( ) ( ) ( ) ),( !! ! !1! !)1( rnC rrn n r n rrn n = − = −− −
  • 48. 48 La suma de fila enésima es el número total de subconjuntos posibles de un conjunto de n elementos = 2n 32215101051 5 ==+++++ ( ) n n r n nnnn rnC 2 210 , 0 =      ++      +      +      =∑=  Fila 5:
  • 49. 49 1 2 3 4 5 6 7 8 .... .... .... 1 2 3 4 5 6 7 8 .... .... .... .... .... .... N 2N
  • 50. 50 1 2 3 4 5 6 7 8 .... .... .... 1 2 3 4 5 6 7 8 .... .... .... .... .... .... N 2N
  • 51. 51 Imaginemos una bola cayendo por el triángulo de Pascal. Cada fila que baja puede caer hacia la derecha o hacia la izquierda. ¿Cuántos posibles caminos nos llevan a la posición 2 de la fila 7? 21 )!27(!2 !7 2 7 = − =     Respuesta: ¿Por qué? Imaginemos que la bola va siempre a la izquierda, 7 veces a la izquierda. Acabaremos en la posición 0 de la fila 7. Si va 5 veces a la izquierda y 2 a la derecha, independientemente del orden en que lo haga, acabará en la posición 2 de la fila 7.
  • 52. 52 (1) La buena de la señora Evita Gastos pretendía pasar de largo junto a la máquina de chicles de bola sin que sus gemelitos se dieran cuenta. Primer gemelo: ¡Mamá yo quiero un chicle! Segundo gemelo: ¡Mamá, yo también. Y lo quiero del mismo color que el de Toñito!
  • 53. 53 La máquina, tiene chicles de bola de color rojo y verde. Cada chicle cuesta 1 euro. No hay forma de saber el color de la próxima bola. Si la Sra. Gastos quiere estar segura de sacar dos bolas iguales, ¿cuántos euros tiene que estar dispuesta a gastar? "El peor de los casos posibles." 1 2 3
  • 54. 54 (2) Supongamos ahora que la máquina contiene 6 bolas rojas, 4 verdes y 5 azules. ¿Cuántas monedas necesita la señora Evita Gastos para estar segura de conseguir dos bolas iguales? Generaliza a n conjuntos de bolas, donde cada conjunto es de un color. El peor de los casos posibles. 1 2 3 4 ....... + 1 1 2 n n+1
  • 55. 55 (3) Ahora pasa por delante de la máquina la señora Bolsaprieta con sus trillizos. La máquina contiene ahora 6 bolas rojas, 4 verdes y 1 azul. ¿Cuántas monedas necesita la señora para estar segura de conseguir tres bolas iguales? 1 2 3 4 5 6
  • 56. 56 Podríamos haber atacado el problema en forma bruta. Asignando a cada bola una letra y examinando cada una de las: 800.916.39!11 = posibles extracciones para determinar cuál presenta una secuencia inicial máxima antes de que aparezcan 3 bolas idénticas. La idea “¡ajá!” consiste en establecer el caso más “desfavorable”. ¡Ajá!, Martin Gardner
  • 57. 57 Prueba ahora con este: En una misma caja hay 10 pares de calcetines rojos y 10 pares verdes, y en otra caja hay 10 pares de guantes de color rojos y otros tantos pares verdes.¿Cuántos calcetines y guantes es necesario sacar como máximo al azar (pero con la mejor estrategia) de cada caja, para estar seguro de conseguir un par de calcetines y un par de guantes de un mismo color? CR CV (CR o CV) 1 2 3 Rd GRd GRd GRd GRd GVi GVi GVi GVi GVi (GRi o GVd) 2 3 4 5 6 7 8 9 10 11 CR+GVd GVd GVd GVd GVd CRi 14 15 16 17 18 19 Si seguimos sacando calcetines podemos sacar hasta 8 rojos más.
  • 58. 58 El principio del palomar establece que si n palomas se distribuyen en m palomares, y si n > m, entonces al menos habrá un palomar con más de una paloma. Por ejemplo: si se toman trece personas, al menos dos habrán nacido el mismo mes. El primer enunciado del principio se cree que proviene de Dirichlet en 1834 con el nombre de Schubfachprinzip ("principio de los cajones"). Principio del palomar o de los cajones de Dirichlet En promedio la cabeza de una persona tiene entorno a 150.000 cabellos. ¿Existen dos personas en Madrid con la misma cantidad de pelos en el coco? Peter Gustav Lejeune Dirichlet (1805 -1859)
  • 59. 59 ¿Cuántas palabras distintas (con o sin sentido) podemos construir utilizando todas las letras de MISSISSIPPI ? S = { 1⋅M, 4⋅I, 4⋅S, 2⋅P } Llenemos las 11 casillas:
  • 60. 60 S = { 1⋅M, 4⋅I, 4⋅S, 2⋅P } MM         1 11 # de posibilidades para M: IIII II II         4 10 × # de posibilidades para I: SS SS SS         4 6 SS × # de posibilidades para S: PP PP         2 2 × # de posibilidades para P: 34.650
  • 61. 61 Permutaciones con repetición Si n objetos pueden dividirse en r clases con ni objetos idénticos en cada clase (i = 1, 2, ..., r), es decir, tal que Entonces el número de permutaciones posibles es: nnnn nnn n PR r r nnn n r =+++ =   21 21 ,...,, con !!! !21 .21 nnnn r =+++  ¿Por qué?
  • 62. 62 =      −−−−       −− ⋅      − ⋅      − r r n nnnn n nnn n nn n n 121 3 21 2 1 1   !!! ! 21 rnnn n  = Recuerda el problema de MISSISSIPPI... ( ) ( ) ( ) = −−⋅⋅⋅−−− −⋅⋅⋅−−− ⋅ ⋅⋅⋅ −−− −− ⋅ −− − ⋅ − = − − !)!( )!( !! )!( !! )!( !! ! 1!0 121 121 3321 21 221 1 11 rrr r nnnnnn nnnn nnnnn nnn nnnn nn nnn n   
  • 63. 63 ¿De cuántas maneras distintas pueden colocarse en línea nueve bolas de las que 4 son blancas, 3 amarillas y 2 azules? 1260 !2!3!4 !92,3,4 9 ==PR El orden importa por ser de distinto color, pero hay bolas del mismo color (están repetidas y son indistinguibles) y colocamos 9 bolas en línea y tenemos 9 bolas para colocar.
  • 64. 64 ADN (Ácido Desoxirribonucleico) Cadena de cuatro posibles bases: Timina (T), Citosina (C), Adenina (A) y Guanina (G) Ejemplo de cadena de ADN: TTCGCAAAAAGAATC ADN y ARN
  • 65. 65 Alga (P. salina): 6,6x105 bases de longitud. Moho (D. discoideum): 5,4x107 bases de longitud. Mosca de la fruta (D. melanogaster): 1,4x108 bases Gallo (G. domesticus): 1,2x109 bases
  • 66. 66 Humanos (H. sapiens): 3,3x109 bases. ¿Cuántas cadenas distintas de esta longitud son posibles? 98 899 1098,1106,63 106,610106,6103,3 10)10( )2(24 ⋅⋅ ⋅⋅⋅ = ≈==
  • 67. 67 RNA es una molécula mensajera. Lee las bases del ADN y las copia exactamente iguales, excepto para el caso de la timina (T) que reemplaza por la base uracilo (U). ADN y ARN
  • 68. 68 Algunas enzimas rompen las cadenas de ARN en los lugares donde detectan una G. Otras enzimas lo hacen para C o U. Consideremos la cadena: CCGGUCCGAAAG Si aplicamos una G-enzima romperá la cadena en los fragmentos: CCG|G|UCCG|AAAG CCG, G, UCCG, AAAG Gracias a la G-enzima podemos conocer estos fragmentos pero no el orden en que aparecen en la cadena original. Tijeras moleculares
  • 69. 69 Cada permutación nos proporciona una posible cadena. Como por ejemplo, ésta (que no es la original): UCCGGCCGAAAG En el ejemplo, ¿cuántas posibles cadenas podemos construir con estos cuatro fragmentos? 4 x 3 x 2 x 1 = 4! = 24 posibles cadenas.
  • 70. 70 Cadena original: CCGGUCCGAAAG Supongamos que aplicamos las enzimas U y C. Dispondremos de los U,C-fragmentos: C, C, GGU, C, C, GAAAG ¿Cuántas cadenas supuestas cadenas originales podemos formar con estos fragmentos? ¿Es 6! = 720 la respuesta correcta?
  • 71. 71 Las dos primeras cadenas y la cuarta y quinta son la misma (C), de modo que no podemos distinguirlas... El número de posibles fragmentos no será 6! = 720. Tenemos 6 posiciones (hay 6 fragmentos) y asignamos 4 posiciones de tipo C, uno de tipo GGU y uno de tipo GAAAG. El número de posibilidades es: PR(6;4,1,1) = 6!/4!1!1! = 30 Pero el resultado es incorrecto, aunque no por nuestro argumento combinatorio... ¿Por qué? C, C, GGU, C, C, GAAAG
  • 72. 72 Observemos que el fragmento GAAAG no acaba en U o C. De modo que necesariamente es el final. Así que tenemos realmente que posicionar 5 fragmentos. El número de posibles cadenas con esos 5 fragmentos es: PR(5;4,1) = 5 Las posibles cadenas son: (1) CCCCGGU, (2) CCCGGUC, (3) CCGGUCC, (4) CGGUCCC y (5) GGUCCCC a las que hay que añadir GAAAG al final.
  • 73. 73 De modo que tenemos 24 posibles cadenas a partir de los G-fragmentos y 5 con los U,C-fragmentos. Pero no hemos combinado los conocimientos de los G y U,C-fragmentos. G-fragmentos: CCG, G, UCCG, AAAG U,C-fragmentos: C, C, GGU, C, C, GAAAG ¿Cuáles de las 5 cadenas posibles de los U,C-fragmentos están en acuerdo con los G-fragmentos?
  • 74. 74 CCCGGUCGAAAG CCGGUCCGAAAG CGGUCCCGAAAG GGUCCCCGAAAG CCCCGGUGAAAG → no, ya que CCCCG es un G- fragmento y no aparece entre los posibles. ¿Hay más casos semejantes? Comparando las 4 posibles cadenas de ARN restantes con los fragmentos U,C-fragmentos, solo la tercera: CCGGUCCGAAAG es compatible. Y hemos recuperado así la cadena inicial.
  • 75. 75 Por cierto, ¿cuántas cadenas posibles de ARN pueden construirse con las mismas 12 bases: 4 Cs, 4 Gs, 3 As y 1 U? PR(12;4,4,3,1) = 138 600
  • 76. 76 La “Estratagema de fragmentación” que hemos descrito brevemente fue usada por primera vez por R.W. Holley en Cornell en 1965 para determinar una secuencia de ARN. El método fue superado casi inmediatamente por otros mucho más eficientes. Esto era un ejemplo de secuenciación de una cadena de ARN dada la completa digestión por enzimas. No es siempre posible establecer sin ambigüedad la cadena original por este método.
  • 77. 77 El binomio de Newton (a + b)2 = (a + b) (a + b). Todos los posibles productos son: aa, ab, ba, bb. (a + b)2 = a2 + 2ab + b2 . (a + b)3 = (a + b) (a + b) (a + b). Todos los posibles productos son: aaa, aab, aba, baa, abb, bab, bba, bbb. (a + b)3 = a3 + 3a2 b + 3ab2 + b3 . (a + b)4 = a4 + 4a3 b + 6a2 b2 + 4ab3 + b4 . C(4,0) = 1; C(4,1) = 4; C(4,2) = 6; C(4,3) = 4; C(4,4) = 1
  • 78. 78 Teorema del binomio ( ) ( ) jjn n j n yxjnCyx − = ∑=+ 0 , nnnnn y n n yx n n yx n yx n x n       +      − ++      +      +      = −−− 11221 1 ... 210 ( )( ) ( )( ) ( ) ( )( )k n k kkn n k n knCknC 1,11,110 00 −=−=−+= ∑∑ = − = ( ) ( ) 0,1 0 =−∑= knC n k k Demostrar:
  • 79. 79 Generalización del binomio de Newton Vamos a encontrar una fórmula similar a la del binomio de Newton para (a + b + c)n . Aplicando la propiedad distributiva a: (a + b + c)n = (a + b + c) (a + b + c) ... (a + b + c) tendremos todos los posibles productos ah bk cm tales que h + k + m = n escogidas sobre: S = {n ·a, n · b, n · c}. De modo que: mkh nmkh mkh n cba mkh n cba ∑ =++ =++ ,, !!! ! )(  Coeficientes Multinomiales
  • 80. 80 Queremos pintar r pelotas con n colores. Es como agrupar r pelotas en n montones, alguno de los cuales puede estar vacíos. Supongamos n = 4 y r = 5, por ejemplo. La configuración 1 1 0 1 0 1 0 1 significa: hay tantas bolas como 1s y 0 = “pasa al siguiente color”. Hay 2 bolas del primer color, 1 bola del segundo color, 1 bola del tercer color y 1 bola del cuarto color. ¿Qué significa: 1 1 1 1 1 0 0 0 y 0 0 1 1 1 1 1 0? Siempre hay 5 unos y 3 ceros (cambios de color). En el caso general, f(n, r) será el número de maneras de disponer r unos y n-1 ceros en una secuencia que consta de n – 1 + r símbolos en total. f(n, r) = # de maneras de escoger n-1 lugares entre n + r – 1 o f(n, r) = # de maneras de escoger r lugares entre n + r – 1 Combinaciones con repetición
  • 81. 81 Combinaciones con repetición ¿Cuántas combinaciones con repetición de 2 elementos sobre el conjunto: S = {∞⋅a, ∞⋅b, ∞⋅c , ∞⋅d} son posibles? Tenemos 4 “colores” (n = 4) y 2 “bolas” (r = 2). Tenemos 2 1’s y 4–1=3 0’s: 11000 = {a, a} 10100 = {a, b} 10010 = {a, c} 10001 = {a, d} 01100 = {b, b} 01010 = {b, c} 01001 = {b, d} 00110 = {c, c} 00101 = {c, d} 00011 = {d, d}
  • 82. 82 Combinaciones con repetición Un total de 10 posibilidades: {a, a}, {a, b}, {a, c}, {a, d}, {b, b}, {b, c}, {b, d}, {c, c}, {c, d}, {d, d}. 10 )!25(!2 !5 2 5 2 2141 = − =      =      +− =      +− r rn
  • 83. 83 Combinaciones con repetición El número de r-combinaciones de un conjunto con n objetos distintos, cada uno repetido infinitamente, es:       +− == r rn rnCRCRn r 1 ),(
  • 84. 84 En una confitería hay cinco tipos diferentes de pasteles. ¿De cuántas formas se pueden elegir cuatro pasteles? 70 4 8 4 1454 5 =      =      −+ =CR No importa el orden (son pasteles). Puede haber dos o más pasteles repetidos (hasta cuatro), luego se trata de combinaciones con repetición:
  • 85. 85 Ejemplo. (El número de soluciones enteras) ¿Cuántas soluciones tiene la ecuación diofántica: donde x1 , x2 y x3 son enteros no negativos? 11321 =++ xxx Solución: Tenemos que seleccionar un total de 11 objetos (unidades) para formar 3 conjuntos (3 números). Es equivalente a pintar 11 bolas con 3 colores. En cada selección tenemos x1 elementos en el primer conjunto, x2 elementos en el segundo conjunto y x3 elementos en el tercero. El número de soluciones posibles es: C(3 + 11 - 1, 11) = 78
  • 86. 86
  • 87. 87 ¿De cuántas formas posibles podemos ordenar una baraja de n cartas? f(n) = n! Cuando encontramos soluciones como estas se denominan fórmulas cerradas (que pueden expresarse como composición de funciones sencillas). Hemos visto las permutaciones, variaciones o combinaciones. Pero en general esta aproximación no siempre es posible o práctica. En ese caso podemos encontrar la solución como una ecuación de recurrencia o como una función generatriz. Veamos como funcionarían para las combinaciones con repetición.
  • 88. 88 Supongamos que tenemos r pelotas de golf, indistinguibles entre sí, cada una de las cuales debe ser pintada con cualquiera de n colores disponibles. ¿De cuántas formas las podemos colorear? Denotemos como x1 al número de pelotas pintadas con el primer color, como x2 al número de pelotas pintadas con el segundo color, etc. Entonces: x1 +x2 +...+ xn = r. Llamemos a la solución f(n,r). Entonces: (a) Si sólo dispusiéramos de un color (n = 1) las r pelotas sólo podrían pintarse de una manera: f(1,r) = 1 para todo r ≥ 1. (b) Si dispusiéramos de n colores para una sola pelota, tendríamos n formas de colorear posibles: f(n, 1) = n para todo n ≥ 1. Combinaciones con repetición
  • 89. 89 (1) Enfoque por recurrencias: Consideremos f(n, r) y centrémosnos en el n-ésimo color. Una vez pintadas las r pelotas, podemos o no haber usado el n-ésimo color. Si no lo ha sido, sólo han entrado en juego n - 1 colores, y entonces las formas posibles de colorear en ese caso son: f(n - 1, r). Y si el n-ésimo color ha sido utilizado, al menos una de las r bolas habrá sido pintada con él y quedaran r - 1 pelotas que pueden estar coloreadas con n colores, es decir f(n, r - 1), por lo tanto: f(n, r) = f(n - 1, r) + f(n, r - 1) Solucionar el problema consiste en resolver esta ecuación de recurrencia con las condiciones iniciales: f(1,r) = 1 para todo r ≥ 1, f(n, 1) = n para todo n ≥ 1.
  • 90. 90 (2) Enfoque por funciones generatrices: nn n xxxx x x xxx xnfxnfnfxxx − − −=++++ −= − =++++ +++=++++ )1(...)1( )1( 1 1 ...1 ...)2,()1,()0,(...)1( 32 132 232 Función generatriz de los números f(n, r).
  • 91. 91 ¿De cuántas maneras podemos partir un conjunto de n objetos en k subconjuntos disjuntos? Por ejemplo: Sea S = {1, 2, 3, 4}. ¿De cuántas maneras podemos partir S en dos subconjuntos disjuntos ninguno vacío? {1}, {2, 3, 4} {2}, {1, 3, 4} {3}, {1, 2, 4} {4}, {1, 2, 3} {1, 2}, {3, 4} {1, 3}, {2, 4} {1, 4}, {2, 3} El número de maneras de partir un conjunto de n elementos en k subconjuntos, ninguno vacío, es igual a S(n, k), donde los S(n, k) se conocen como los números de Stirling. Y están definidos como: S(n, k) = S(n -1, k - 1) + k S(n - 1, k) S(n, 1) = 1 y S(n, n) = 1, para todo n ≥ 1.
  • 92. 92 El triángulo de los números de Stirling: S(n, k) = S(n - 1, k - 1) + k S(n - 1, k) con S(n, 1) = 1 y S(n, n) = 1, para todo n ≥ 1. n S(n,1) S(n,2) S(n,3) S(n,4) S(n,5) S(n,6) S(n,7) S(n,8) 1 1 2 1 1 3 1 3 1 4 1 7 6 1 5 1 15 25 10 1 6 1 31 90 65 15 1 7 1 63 301 350 140 21 1 8 1 127 966 1701 1050 266 28 1
  • 93. 93 Sucesiones ¿Cuál es la continuación de las siguientes sucesiones infinitas? 1, 2, 4, 8, 16, 32, … 1, 4, 9, 16, 25, 36, ... 1, 1, 2, 3, 5, 8, 13, ... Sucesión geométrica: an = 2n Sucesión de cuadrados: an = n2 Sucesión de Fibonacci: F(n) = F(n - 2) + F(n - 1) 1, 3, 6, 10, 15, 21, 28, ... Números triangulares
  • 95. 95 2 )1( + = nn Tn Demostración visual n n+1 nT nT Tn = 1 + 2 + 3 +............................+ n
  • 96. 96 2 1 nTT nn =+− n n 1−nT nT
  • 97. 97 Número de personas Número de apretones de manos 2 1 3 3 4 6 5 10 6 15 ¿Cuántos apretones de manos distintos pueden darse n personas? Los números triangulares: A-B A-B A-C B-C A-B A-C A-D B-C B-D C-D
  • 98. 98 Principio del palo de hockey (The Hockey Stick Principle) 35201041 =+++ 462252126562161 =+++++
  • 99. 99 Números naturales Números triangulares Por el principio del palo de hockey: 1+1 = 2 1+1+1 = 3 1+1+1+1 = 4 1+2 = 3 1+2+3 = 6 1+2+3+4 = 10
  • 101. 101 The On-Line Encyclopedia of Integer Sequences N. J. A. Sloane (http://www.research.att.com/~njas/sequences/) Sloane, N. J. A. 1973. A Handbook of Integer Sequences. New York: Academic Press. Sloane, N. J. A. 1994. "An On-Line Version of the Encyclopedia of Integer Sequences." The Electronic Journal of Combinatorics. Vol. 1, Feature F1. Sloane, N. J. A., and Simon Plouffe. 1995. The Encyclopedia of Integer Sequences. San Diego: Academic Press. Base de datos con más de 100.000 sucesiones de números enteros. Capaz de identificar una sucesión a partir de sus primeros términos. No solo hay ejemplos de combinatoria o teoría de números, sino también de otras áreas como: diseño de circuitos (combinaciones de funciones booleanas), química (números de ésteres con n átomos de carbono), física (diagramas de Feynman con n vértices) y biología (estructuras secundarias de ARN con n nucleótidos).
  • 102. 102 Como en el caso de la Encyclopedia of Integer Sequences, Simon Plouffe ha desarrollado el Inverse Symbolic Calculator, o ISC. La calculadora es inversa en el sentido de que utiliza como entrada un número y devuelve “de dónde puede surgir”. Por ejemplo, no le preguntamos cuánto vale e/π + 1 y nos devuelve 1.8652559794322, como en una calculadora estándar. Sino al revés: introducimos 1.8652559794322 y nos sugiere e/ π + 1 como posible fuente del mismo. La base de datos de constantes matemáticas de ISC tiene alrededor de 9 millones de entradas y su creador aspira a que tenga hasta 10 millones. Brian Hayes, "A Question of Numbers", American Scientist, January-February 1996 Inverse Symbolic Calculator Simon Plouffe (http://oldweb.cecm.sfu.ca/projects/ISC/)
  • 103. 103 Números poligonales en general, números n-gonales Ejemplo, los número pentagonales son: 1, 5, 12, 22, …
  • 104. 104 ¿Cuál es el sexto número pentagonal? Los números poligonales siempre comienza con el 1. 1 + 5x4 + T4x3 1+20+30 = 51 • Miremos los “palos” que arrancan de ese punto. Hay 4 palos y cada uno mide 5. • Faltan los triángulos. Hay 3 triángulos de orden 4.
  • 105. 105 ¿Cuál es el k-ésimo número n-gonal? Los números n-gonales siempre comienza con el 1. 1 + (k-1) (n-1) + Tk-2 (n-2) • Miremos los “palos” que arrancan de ese punto. Hay n-1 palos y cada uno mide k-1. • Faltan los triángulos. Hay n-2 triángulos de orden k-2.
  • 106. 106 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ... ¿De cuántas formas puede ser dividido en triángulos un polígono convexo al trazar diagonales que no se intersecten? n-gono # diagonales # triángulos cuadrado 1 2 pentágono 2 3 hexágono 3 4 (...) n-gono n-3 n-2 2 5 14 Leonhard Euler: )!1( )104(...1062 − −⋅⋅⋅⋅ n n
  • 107. 107 Eugène Charles Catalan (1814- 1894), matemático belga, propuso el problema en 1838. Números de Catalan Tenemos una cadena de n símbolos, dadas en un orden fijo. Deseamos añadir n-1 paréntesis, de modo que en el interior de cada par de paréntesis izquierdo y derecho haya dos "términos". Estos términos emparejados pueden ser dos letras adyacentes cualesquiera, o una letra y un agrupamiento adyacente encerrado en paréntesis, o dos agrupamientos contiguos. ¿De cuántas formas podemos introducir paréntesis en la cadena?
  • 108. 108 n = 2 números: (12) n = 3 números: (1 (2 3)) ((1 2) 3) n = 4 números: (1 (2 (3 4))) (1 ((2 3) 4)) ((1 2) (3 4)) ((1 (2 3)) 4) (((1 2) 3) 4) n = 5 números: (1 (2 (3 (4 5)))) (1 (2 ((3 4) 5))) (1 ((2 3) (4 5))) (1 ((2 (3 4)) 5)) (1 (((2 3) 4) 5)) ((1 2) (3 (4 5))) ((1 2) ((3 4) 5)) ((1 (2 3)) (4 5)) ((1 (2 (3 4))) 5) ((1 ((2 3) 4)) 5) (((1 2) 3) (4 5)) (((1 2) (3 4)) 5) (((1 (2 3)) 4) 5) ((((1 2) 3) 4) 5) En 1961, H. G. Forder demostró una correspondencia biunívoca entre las triangulaciones de los polígonos y la introducción de paréntesis en las expresiones.
  • 109. 109 El matemático británico Arthur Cayley demostró que los números de Catalan dan el total de árboles (grafos conexos sin loops) que son planares (se puede dibujar en el plano sin que se intersecten las aristas), plantados (tiene un tronco en cuyo extremo se halla la raíz) y trivalentes (en cada nodo exceptuando la raíz y los extremos de las ramas, concurren tres aristas). 2 5 14 42
  • 110. 110 n = 2¿Cuántos caminos distintos puede seguir una torre de ajedrez desde el vértice superior izquierdo al inferior derecho, siempre por debajo de la diagonal y con movimientos posibles al sur y al oeste, en un tablero de lado n? n = 3 n = 4 2 5 14
  • 111. 111 La Combinatoria es una rama de la matemética que estudia colecciones de objetos (normalmente finitos) que satisfacen ciertos criterios. En particular si se trata de contarlos estamos frente a la Combinatoria Enumerativa. Nos hemos centrado casi exclusivamente en ella porque es esencial para cálculos elementales de probabilidad. Pero existen otras ramas bien desarrolladas: el diseño combinatorio, la teoría de matroides, la combinatoria extremal, la optimización combinatoria o el álgebra combinatoria.
  • 112. 112 El señor Asamantecas tiene un asador pequeño, donde apenas caben dos chuletas. Su mujer y su hija Clara se mueren de hambre y están ansiosas por comer cuanto antes. El problema es asar las res chuletas en el mínimo tiempo posible. Sr. Asamantecas: Vamos a ver, hacen falta 20 minutos para asar una chuleta por los dos lados, pues cada uno arda 10. Como puedo preparar dos chuletas a la vez, en 20 minutos puedo tener listas dos. La tercera tardará otros 20 minutos. Así que la comida estará a punto dentro de 40 minutos. Clara: ¡Pero papá! ¡Si puedes hacerlo en mucho menos! Acaba de ocurrírseme cómo ahorrar 10 minutos. ¿Cuál fue la feliz idea que se le ocurrió a Clara? Táctica para chuletas (Optimización combinatoria)
  • 113. 113 Chuletas A, B y C. A1+B1 = 10 min A2+C1 = 10 min B2+C2 = 10 min ---------------------- Total = 30 min Esto es un problema típico de optimización combinatoria en investigación operativa.
  • 114. 114 (2) Un pastor tiene que pasar un lobo, un conejo y una col de una orilla de un río a la otra orilla. Dispone de una barca en la que sólo caben él y una de las tres cosas anteriores. Si deja solos al conejo y al lobo, éste se come a aquél; si deja al conejo con la col, aquél se la come. ¿Cómo debe proceder para llevar las tres cosas a la orilla opuesta? Un par de problemas clásicos de optimización combinatoria más: (1) ¿Cómo harías para traer de un río seis litros de agua, si no tienes a tu disposición, para medir el agua, mas que dos recipientes, uno de cuatro litros y otro de nueve?
  • 116. 116 El problema de los cuatro colores
  • 117. 117 Ars Combinatoria de Ramon Llull
  • 120. 120 ¿Cuántos números de 4 dígitos pueden formarse con los 10 números 0, 1, 2, ..., 9 si: a) se permiten repeticiones, b) no se permiten repeticiones, c) el último número debe ser cero y no se permiten repeticiones? a) El primer número puede ser cualesquiera de los 9 dígitos (el cero no es significativo como primera cifra). El segundo, tercero y cuarto número pueden ser siempre cualquiera de los 10. Por lo tanto habrá: 9·10·10·10 = 9.000 números posibles. b) El primer número puede cualquiera de los 9 (excepto el cero). El segundo puede ser cualquiera de los 9 restantes (ahora el cero se permite). El tercero tendrá 8 posibilidades y el cuarto 7. Por lo que resultan: 9·9·8·7 = 4.536 números.
  • 121. 121 c) Análogamente a antes, el primer dígito se puede escoger de 9 maneras, el segundo de 9 y el tercero de 8. El cuarto, sin embargo, solo tiene una posibilidad: el cero. Entonces, por la regla del producto: Configuraciones posibles = 9·9·8·1 = 648 números. _ _ _ 0
  • 122. 122 ¿De cuántas maneras posibles se pueden sentar 10 personas en una banca si solamente hay 4 puestos disponibles? El primer puesto libre puede ocuparse de 10 maneras, luego el segundo de 9 maneras, el tercero de 8 y el cuarto de 7. El número de ordenaciones de 10 personas tomadas de 4 a la vez será: 50407·8·9·104,10 ==V
  • 123. 123 • Tenemos 6 alumnos de primer curso, 5 de segundo, 4 de tercero, 3 de cuarto, 2 de quinto, 1 de sexto, como candidatos a recibir 5 premios de la Facultad, uno al alumno menos charlatán, otro al más atento, otro al que tiene mejor letra, otro al que asiste más a tutorías y otro al que mejor aparca el coche. Suponiendo que ningún alumno puede recibir más de un premio, se pide: ¿De cuántas maneras se pueden distribuir los premios? Solución: 21 candidatos a 5 premios. Como ningún alumno puede recibir más de un premio, tenemos 21 candidatos para el primer premio, 20 para el segundo... En total 21x20x19x18x17=2.441.880 (distribuciones posibles).
  • 124. 124 En una estantería se quieren colocar 4 libros diferentes de matemáticas, 6 de física y 2 de química. ¿De cuántas maneras distintas se pueden colocar si: a) los libros de cada materia deben quedar juntos, b) sólo los libros de matemáticas deben quedar juntos? a) Por un lado, los libros de matemáticas se pueden colocar de 4! maneras, los de física de 6! y los de química de 2!. Los tres grupos de libros se podrán colocar de 3! maneras. Por consiguiente se obtienen: 4!·6!·2!·3! = 207.360 distintas configuraciones. b) Si consideramos los 4 libros de matemáticas como si fuesen uno solo, entonces tenemos 9 libros, que pueden colocarse de 9! maneras. En todas estas configuraciones los libros de matemáticas estarían juntos. Pero a su vez, éstos se pueden colocar de 4! maneras, por lo que en total se obtienen: 9!·4!= 8.709.120 maneras
  • 125. 125 ¿Cuántas permutaciones pueden formarse con las letras de la palabra BONDAD? Respuesta: 6!/2! ¿De dónde sale ese 2!? Supón que para distinguir la D repetida utilizamos una tilde: BONDAD’ Ahora todas las letras son distintas, luego hay 6! permutaciones posibles. Pero cada par de permutaciones: - - - D - D’ - - - D’- D en realidad son la misma. Por lo tanto debemos dividir por 2 el número total de permutaciones. ¿Y por qué por 2!? Piensa que ocurriría si hubieran tres D's...
  • 126. 126 Ahora este es fácil: una generalización del anterior. ¿Cuántas palabras distintas de 11 letras podemos formar con la palabra CACATUA? La palabra CACATUA consta de 7 letras de las cuales sólo hay 4 tipos distinguibles: 2C, 3A, 1T y 1U. Tendremos entonces que repetir elementos dentro de cada tipo. Por lo tanto se trata de una permutación con repetición: !1!1!3!2 !77 1,1,3,2 =PR
  • 127. 127 En una línea están acomodadas cinco canicas rojas, dos blancas y tres azules. Si las canicas del mismo color no pueden diferenciarse entre sí, ¿de cuántas maneras diferentes se pueden ordenar? Por razonar de otra manera, usemos un astuto truco: Supongamos que la respuesta es N configuraciones distintas. Observa que dada una de esas configuraciones, si cambiamos bolas del mismo color entre sí, como son indistinguibles, la configuración se mantiene. Entonces, multiplicando N por el número de maneras de colocar las 5 canicas rojas entre ellas, las 2 blancas y las 3 azules, es decir: N·5!2!3!, obtenemos las posibles configuraciones si se diferenciasen entre sí todas las bolas. Pero si todas las bolas fueran diferentes, el número de configuraciones sería: 10!. Entonces: (5!2!3!)N = 10! y despejando N tendremos la respuesta: N = 10!(5!2!3!).
  • 128. 128 ¿De cuántas maneras se pueden dividir 10 objetos en dos grupos que contengan 4 y 6 objetos respectivamente? Esto es lo mismo que el número de ordenaciones de 10 objetos, de los cuales 4 son indistinguibles entre sí y los otros 6 también. Se trata entonces de una permutación con repetición: 10!/(4!6!) = 210. El problema también equivale a encontrar el número de selecciones de 4 de 10 objetos (ó 6 de 10), siendo irrelevante el orden de selección. Se trata por lo tanto de combinaciones sin repetición: ( ) 210 !6!4 !10 )!410(!4 !1010 44,10 == − ==C
  • 129. 129 Se necesitan sentar 5 hombres y 4 mujeres en fila, de manera que las mujeres ocupen los lugares pares. ¿De cuántas maneras pueden sentarse? La configuración general pedida será: H M H M H M H M Los hombres se pueden sentar de 5! maneras, y las mujeres de 4!. Cada configuración de los hombres puede darse con cada configuración de las mujeres. Entonces se tendrán: Nº maneras = 5!4!= 2.880
  • 130. 130 ¿De cuántas maneras posibles se pueden sentar 7 personas alrededor de una mesa redonda si: a) se pueden sentar en cualquier lugar, b) 2 personas en particular no se pueden sentar juntas? ) Empecemos con una persona sentada en ualquier lugar. Entonces las 6 personas restantes e pueden sentar de 6! = 720 maneras. Y esta es a respuesta, puesto que si la persona inicial se hubiera sentado en cualquier otro sitio, bastaría un giro para alcanzar alguna de las configuraciones contadas. b) Consideremos a 2 personas en particular como si fuesen una sola. Entonces, hay 6 personas en total, que se pueden colocar de 5! maneras. A parte, las 2 personas que consideramos como si fueran una, pueden ordenarse de 2! maneras. Por consiguiente, el número de maneras de organizar a 7 personas con 2 en particular sentadas juntas es: 5!·2! = 240. Usando a), las maneras pedidas serán: 730 - 240 = 480 maneras.
  • 131. 131 ¿De cuántas maneras se puede formar un comité de 5 personas a partir de un grupo de 9? ( ) 126 )!59(!5 !99 55,9 = − ==C Si quiero alquilar tres pelis, ¿cuántas posibilidades tengo si en el videoclub sólo hay 200 películas? ( ) 1313400 )!3200(!3 !200200 33,200 = − ==C
  • 132. 132 Desde un grupo de 5 matemáticos y 7 físicos se quiere formar un comité de 2 matemáticos y 3 físicos. ¿De cuántas maneras se puede hacer si: a) se puede incluir cualquier matemático y cualquier físico, b) un físico en particular debe estar en el comité y c) dos matemáticos en particular no pueden pertenecer al comité? a) Se pueden seleccionar 2 matemáticos de 5 de C(5,2) maneras y a los 3 físicos de C(7,3) maneras. El número total es el producto = 10·35 = 350. b) Análogamente: los posibles matemáticos coinciden con los de antes: C(5,2); y los físicos esta vez se cogen 2 de los 6 que quedan: C(6,2). Por lo tanto, el total será: C(5,2)·C(6,2) = 10·15 = 150. c) Ahora sólo tendremos dos matemáticos a escoger entre 3: C(3,2). Los físicos serán como en a). En total tendremos: C(3,2)·C(7,3) = 3·35 = 105.
  • 133. 133 ¿Cuántas ensaladas diferentes puedo hacer con lechuga, tomate, cebolla, aceitunas y atún? 1ª Forma: Se pueden seleccionar 1 de los 5 ingredientes, 2 de los 5, ... hasta coger 5 de los 5. El número de ensaladas distintas es: C(5,1)+ +C(5,2)+C(5,3)+C(5,4)+C(5,5)=5+10+10+5+1=31. 2ª Forma: Cada ingrediente puede tratarse de 2 maneras, se puede escoger o rechazar. Puesto que cada 2 formas de tratar a un ingrediente está asociada con las 2 formas de tratar a cada uno de los otros vegetales, el número de maneras de tratar a los 5 ingredientes es 25 . Pero dentro de las 25 maneras se incluye el caso de no coger ningún ingrediente. Por lo tanto: Número de ensaladas = 25 -1 = 31.
  • 134. 134 ¿Cuántas palabras de 4 consonantes diferentes y 3 vocales distintas se pueden formar a partir de 7 consonantes y 5 vocales? (No hace falta que tengan sentido) Se pueden seleccionar 4 consonantes diferentes de C(7,4) maneras y las 3 vocales de C(5,3) maneras. Además, las 7 letras resultantes (4 consonantes y 3 vocales) pueden ordenarse entre sí de 7! maneras. Por lo tanto: # de palabras = C(7,4)·C(5,3)·7! = 35·10·5040 = 1764000
  • 135. 135
  • 136. 136
  • 137. 137 ¿De cuántas formas distintas se pueden acertar 9 resultados en una quiniela futbolística de 15 resultados? SOLUCIÓN: 1 15 resultados X (3 valores) 2 Los 9 resultados acertados se pueden elegir de formas distintas. En cada resultado, las opciones de fallo son 2, por lo que para cada una de las formas de acierto, los seis resultados se pueden fallar de 2·2·2·2·2·2=26 formas distintas. En total tendremos formas distintas de acertar 9 resultados = 320320 formas 5005 9 15 =      6 2· 9 15      
  • 138. 138
  • 139. 139
  • 140. 140 Sigue en la siguiente diapositiva
  • 141. 141
  • 142. 142 Sigue en la siguiente diapositiva
  • 143. 143
  • 144. 144 Se distribuyen 100 sillas auxiliares entre 5 aulas de modo que las dos mayores, reciben, entre las dos, 50 sillas ¿De cuántas formas distintas se puede hacer el reparto? SOLUCIÓN: A y B : aulas mayores. 50 sillas: asignación de las letras A o B a cada una de las 50 sillas. Como las sillas son iguales no hay orden en esta asignación y cada distribución es una combinación con repetición de orden 50 con los elementos A y B. Análogamente, las formas de distribuir las otras 50 sillas son: y el reparto se puede efectuar de 51·1326= 67626 formas distintas. 51 50 51 50 1502 50,2 =      =      −+ =R C 1326 2 52 50 1503 50,3 =      =      −+ =R C
  • 145. 145 Un banco tiene que elegir 5 cargos directivos: director, subdirector, interventor, tesorero y gerente, entre 8 personas, de las cuales 3 son hombres (A,E,O) y 5 mujeres (X,Y,Z,V,W). Se pide averiguar de cuántas formas puede hacerse la elección si: a) Los hombre A y E no pueden estar juntos en la misma elección. b) Entran los 3 hombres. c) Entran 3 mujeres y 2 hombres. d) Entran al menos 3 mujeres. SOLUCIÓN: a) Contamos las elecciones: - A pero no con E. - E pero no con A. - sin A ni E. Elecciones con A = ( Elecciones con E) : hay que elegir otra 4 de entre 6 de = 15 formas distintas. Ahora debemos asignas cargos. Cada asignación de cargos a los directivos elegidos es una permutación de las cinco personas elegidas. Por tanto, el número de elecciones con A es:       4 6 1800!5· 4 6 =     
  • 146. 146 Elecciones sin A ni E: de forma análoga Por tanto las opciones sin A ni E juntos es: b) Si entran los 3 hombres quedan 2 puestos para las 5 mujeres, que se pueden elegir de maneras. Considerando la asignación de cargos directivos resultan c) Los hombres se eligen de formas y las mujeres de formas. Por tanto el número de elecciones en este caso es: d) Contamos separadamente cuando entran 3 mujeres, cuando entran cuatro y cuando entran cinco: 720!5· 5 6 =      posibles.elecciones1200!5· 2 5 =      4320!5· 5 6 !5· 4 6 !5· 4 6 =      +      +      552012018003600!5!5· 4 5 1 3 !5· 3 5 2 3 =++=+            +                  2 5 3600!5· 3 5 2 3 =                  2 3       3 5
  • 147. 147 Un equipo de baloncesto dispone de 12 jugadores: 3 bases, 4 aleros y 5 pívots. ¿Cuántos equipos diferentes puede presentar el entrenador como quinteto titular? Se recuerda que de forma simplificada un equipo de baloncesto consta de un base, dos aleros y dos pívots. SOLUCIÓN: Hay que elegir 1 base, 2 aleros y 2 pívots de un total de 3 bases, 4 aleros y 5 pivots, donde el orden no influye en cada uno de los puestos correspondientes sino las personas en juego. El entrenador puede presentar: 3·6·10= 180 equipos ó quintetos titulares. pívotsC alerosC basesC 10 2 5 6 2 4 3 1 3 2,5 2,4 1,3 =      = =      = =      =
  • 148. 148 Calcular el número de sucesiones que se pueden formar con 3 aes, 5 bes y 8 ces. ¿ Y si no puede haber dos bes consecutivas? ¿Y si no hay dos iguales consecutivas? SOLUCIÓN: A) Cada una de las sucesiones sin condiciones adicionales es una permutación de aaabbbbbcccccccc, por lo que su número es: Para que las letras b no aparezcan consecutivas, deben colocarse, entre dos términos de una de las sucesiones de aes y ces. Como hay 11 símbolos en esas sucesiones el número de huecos donde se pueden colocar las bes es 12. Debemos elegir 5 de estos 12 huecos. Se puede hacer de 720720 !8!5!3 !16,8,5,3 16 ==P formas130680 !8!3 !11 5 12 :por tantoes,sucesionesdenúmeroEl distintas.formas792 5 12 =      =     
  • 149. 149 c) No se permiten letras iguales consecutivas. Fijémonos en la colocación de las ces. El número de ces es la suma del nº de aes y bes. 2 opciones: - Si c sólo aparece en uno de los extremos: c-c-c-c-c-c-c-c- eligiendo 3 huecos de los 8 posibles para colocar las 3 aes, tendremos la sucesión descrita: El nº de sucesiones de este tipo es - Si c aparece en los 2 extremos, una colocación será: c- -c-c-c-c-c-c-c donde en las posiciones – podemos colocar a o b. El doble hueco - - puede aparecer en 7 posiciones y se puede llenar con ab o con ba, es decir, se presenta 2·7 posibilidades. Luego hay que elegir dos huecos entre seis para colocar las restantes aes. En total, el nº de sucesiones en este caso es El nº de sucesiones sin letras iguales consecutivas es:       3 8 ·2       2 6 ·7·2 332210112 2 6 ·14 3 8 ·2 =+=      +     
  • 150. 150
  • 151. 151
  • 152. 152
  • 153. 153
  • 154. 154 Un borracho camina por una acera. Todos los pasos que da son de a misma longitud. Sabiendo que tiene la misma probabilidad de avanzar que de retroceder. ¿De cuántas formas puede dar 2n pasos que le devuelvan a la puerta del bar? Nota: Usar como notación 1 = paso adelante, -1 = paso atrás.