TRIGONOMETRÍA Y GEOMETRÍA
DE GRADOS A RADIANES Y VICEVERSA




                Miembros del equipo

                 Luis Jaime De La Lama
                  Castro
                 Gabriel Balbuena Cerón
QQQ (Qué veo, Qué no veo, Qué infiero)

• Método de aprendizaje Autónomo

Es la identificación de las ideas principales de un texto, respetando
las ideas del autor. Es un procedimiento derivado de la
comprensión de la lectura.


CARACTERÍSTICAS
   Leer de manera general el tema o texto
   Seleccionar las ideas más importantes
   Buscar el significado de las palabras o términos desconocidos
   Eliminar la información poco relevante
   Redactar el informe final conectando las ideas principales.
UNIDADES ANGULARES

En la medición de los ángulos en la trigonometría se ocupa 2unidades que
    son:


1. Radian
2. Grado Sexagesimal
RADIAN
El radián es la unidad de ángulo plano en
  el Sistema Internacional de Unidades.
  Representa el ángulo central en
  una circunferencia y abarca un arco cuya
  longitud es igual a la del radio. Su
  símbolo es rad.
1. La equivalencia entre grados
    sexagesimales y radianes es: π rad =
    180°
El valor de Pi y el resultado de su división con 180 no debe de ser
    redondeado ya que no dará los valores exactos tanto en
    conversión de radianes a grados y grados en radianes.




  1 radián = 180/Pi=57.29577951 Grados (°)
  1 grado = Pi/180=0.017453292 Radianes (rad)
  Pi=3,141592654
GRADO SEXAGESIMAL
El grado sexagesimal, como unidad del sistema de medida
   de ángulos sexagesimal, está definido partiendo de que
   un ángulo recto tiene 90° (90 grados sexagesimales), y
   sus divisores: el minuto sexagesimal y el segundo
   sexagesimal, están definidos del siguiente modo:


1 ángulo recto = 90° (grados sexagesimales).
1 grado sexagesimal = 60′ (minutos sexagesimales).
1 minuto sexagesimal = 60″ (segundos sexagesimales)
RELACIÓN DE GRADOS
   A RADIANES EN LA GEOMETRÍA
Que veo    Que no veo   Que infiero
GRADO CENTESIMAL
El grado centesimal surge de la división del plano cartesiano en
   cuatrocientos ángulos iguales, con vértice común. Cada cuadrante
   posee una amplitud 100 grados centesimales, y la suma de los cuatro
   cuadrantes mide 400 grados centesimales.
Equivalencia entre grados sexagesimales y centesimales
1.   0° = 0g
2.   90° = 100g
3.   180° = 200g
4.   270° = 300g
5.   360° = 400g
 Un ángulo: es la figura formada por dos semirrectas que se
  interceptan en un punto. Las semirrectas son los lados del ángulo
  y el punto de intersección en su vértice
Para convertir de grados a radianes o viceversa, partimos de que
180o equivalen a π radianes; luego planteamos una regla de tres y
resolvemos.

EJEMPLO A: Convertir 38o a radianes.
EJEMPLO B: Convertir 2.4 radianes a grados.
EJEMPLO C: Convertir 90° a radianes
EJEMPLO D: Convertir 180° a grados centesimales
EJEMPLO E: Convertir 43.18 a grados centesimales

Expo jimmy =) 12 octubre =)

  • 1.
    TRIGONOMETRÍA Y GEOMETRÍA DEGRADOS A RADIANES Y VICEVERSA Miembros del equipo  Luis Jaime De La Lama Castro  Gabriel Balbuena Cerón
  • 2.
    QQQ (Qué veo,Qué no veo, Qué infiero) • Método de aprendizaje Autónomo Es la identificación de las ideas principales de un texto, respetando las ideas del autor. Es un procedimiento derivado de la comprensión de la lectura. CARACTERÍSTICAS  Leer de manera general el tema o texto  Seleccionar las ideas más importantes  Buscar el significado de las palabras o términos desconocidos  Eliminar la información poco relevante  Redactar el informe final conectando las ideas principales.
  • 3.
    UNIDADES ANGULARES En lamedición de los ángulos en la trigonometría se ocupa 2unidades que son: 1. Radian 2. Grado Sexagesimal
  • 4.
    RADIAN El radián esla unidad de ángulo plano en el Sistema Internacional de Unidades. Representa el ángulo central en una circunferencia y abarca un arco cuya longitud es igual a la del radio. Su símbolo es rad. 1. La equivalencia entre grados sexagesimales y radianes es: π rad = 180°
  • 5.
    El valor dePi y el resultado de su división con 180 no debe de ser redondeado ya que no dará los valores exactos tanto en conversión de radianes a grados y grados en radianes. 1 radián = 180/Pi=57.29577951 Grados (°) 1 grado = Pi/180=0.017453292 Radianes (rad) Pi=3,141592654
  • 7.
    GRADO SEXAGESIMAL El gradosexagesimal, como unidad del sistema de medida de ángulos sexagesimal, está definido partiendo de que un ángulo recto tiene 90° (90 grados sexagesimales), y sus divisores: el minuto sexagesimal y el segundo sexagesimal, están definidos del siguiente modo: 1 ángulo recto = 90° (grados sexagesimales). 1 grado sexagesimal = 60′ (minutos sexagesimales). 1 minuto sexagesimal = 60″ (segundos sexagesimales)
  • 8.
    RELACIÓN DE GRADOS A RADIANES EN LA GEOMETRÍA Que veo Que no veo Que infiero
  • 9.
    GRADO CENTESIMAL El gradocentesimal surge de la división del plano cartesiano en cuatrocientos ángulos iguales, con vértice común. Cada cuadrante posee una amplitud 100 grados centesimales, y la suma de los cuatro cuadrantes mide 400 grados centesimales. Equivalencia entre grados sexagesimales y centesimales 1. 0° = 0g 2. 90° = 100g 3. 180° = 200g 4. 270° = 300g 5. 360° = 400g
  • 10.
     Un ángulo:es la figura formada por dos semirrectas que se interceptan en un punto. Las semirrectas son los lados del ángulo y el punto de intersección en su vértice
  • 12.
    Para convertir degrados a radianes o viceversa, partimos de que 180o equivalen a π radianes; luego planteamos una regla de tres y resolvemos. EJEMPLO A: Convertir 38o a radianes. EJEMPLO B: Convertir 2.4 radianes a grados. EJEMPLO C: Convertir 90° a radianes EJEMPLO D: Convertir 180° a grados centesimales EJEMPLO E: Convertir 43.18 a grados centesimales