GEOMETRÍA: ÁNGULOS
Conceptos básicos La huella que deja el lápiz al deslizarse pegado al borde de una regla es una   línea recta . La huella que deja el lápiz estando fijo en la escritura, da idea de lo que es un  punto . El geómetra griego Euclides (330 a. C. - 275 a.C.), decía: ¨Punto es lo que no tiene partes”. En realidad, Euclides se refería a punto como algo que no tiene largo ni ancho; o sea, una pequeña marca o señal sin dimensiones largo y ancho como la intersección de dos líneas. Los puntos se denotan con letras mayúsculas y las rectas con letras minúsculas cursivas, solas o con subíndices. ...   1 0 2 3 4 5 6 7 8    3  2 A B
Una línea recta tiene largo pero no tiene ancho. El largo de una línea recta no tiene fin; o sea, la línea recta es ilimitada. En los trazos se trabaja con partes de línea determinadas por dos puntos de ella, estas partes se llaman  segmentos  y a los puntos que los determinan se les llama  extremos  del segmento.  A los segmentos se les denota con las letras de sus extremos colocándoles una raya encima. Por ejemplo,  denota al segmento determinado por los puntos  A   y  B , los cuales son extremos del segmento. La notación  se lee “segmento  A ,  B” .  Cualquier punto de una línea recta, determina en ella, dos   rayos  o   semirrectas ; en cuyo caso al punto se le llama  extremo  del rayo o de la semirrecta.  A O B A A B C D O B O
Un  ángulo   es una figura geométrica formada por dos semirrectas que tienen un extremo común llamado  vértice  del ángulo. Las semirrectas que forman un ángulo, se llaman  lados   del ángulo.  A O B m  AOB   se lee “ángulo A, O, B”  m   se lee “ángulo m” A 135  O B 135  A O B
ANGULO .-Es la abertura formado por dos rayos divergentes que tienen un extremo común que se denomina vértice. ELEMENTOS DE UN ANGULO:  LADO LADO VÉRTICE  Medida del Angulo convexo Medida del Angulo cóncavo O A B
 0º <    < 180º 0º  <     <  90º CLASIFICACIÓN SEGÚN SU MEDIDA a)  ÁNGULO CONVEXO a.1)  ÁNGULO AGUDO 
   = 90º 90º  <     <  180º a.2)  ÁNGULO RECTO a.3)  ÁNGULO OBTUSO  
         = 90º    +    = 180º CLASIFICACIÓN SEGÚN SU SUMA a)  ÁNGULOS COMPLEMENTARIOS b)  ÁNGULOS SUPLEMENTARIOS    
CLASIFICACIÓN SEGÚN SU POSICIÓN a)  ÁNGULOS ADYACENTES b)  ÁNGULOS CONSECUTIVOS ÁNGULOS OPUESTOS POR EL VÉRTICE Son congruentes Puede formar más ángulos Un lado común       
01.   Ángulos alternos internos: m   3 = m   5;  m   4 = m   6 02.   Ángulos alternos externos: m   1 = m   7;  m   2 = m   8 03.   Ángulos conjugados internos: m   3+m   6=m   4+m   5=180° 04.   Ángulos conjugados externos: m   1+m   8=m   2+m   7=180° 05.   Ángulos correspondientes: m   1 = m   5;  m   4 = m   8 m   2 = m   6;  m   3 = m   7 ÁNGULOS ENTRE DOS RECTAS PARALELAS  Y UNA RECTA SECANTE 1 2 3 4 5 6 7 8
Los ángulos por su medida se clasifican en  agudos ,  rectos ,  extendidos  o  colineales  y  entrantes .  Un ángulo  agudo   mide menos de 90 o Un ángulo  recto  mide 90 o Un ángulo  obtuso  mide más de 90 o Un ángulo  entrante  mide más de 180 o Un ángulo  extendido  mide  180 o RESUMIENDO
Los ángulos por su posición en las figuras se clasifican en  adyacentes ,  opuestos por el vértice ,  alterno-internos ,  alterno-externos ,  correspondientes ,  colaterales-internos ,  y  colaterales-externos .  a c b d y n x m  son opuestos por el vértice   son alterno-internos   son correspondientes  son alterno-externos  son adyacentes  son colaterales-internos  son colaterales-externos
Los ángulos opuestos por el vértice son congruentes c b a Demostración: Porque forman un ángulo extendido ¿Por qué? ¿Por qué? ¿Por qué? < a +  < c = 180º < b +  < c = 180º < a +  < c = < b + < c  < a = < b
Paralelas Los rayos de luz que irradia un foco en los faros de un automóvil se reflejan como rayos  paralelos   desde el espejo curvo integrado a cada faro como se muestra en la figura adjunta  Foco Si el terreno es plano, las vías rectas del tren son  paralelas .  En regiones planas, dos rectas son  paralelas  si no se cortan.  En un curso formal de geometría euclidiana se demuestra la siguiente propiedad :  1  2
Los ángulos alterno-internos entre paralelas, tienen la misma medida. a b Si  l  1   ∕∕  l 2   entonces  < a =  < b l  1 l   2
Triángulos La figura geométrica formada por segmentos que sólo se tocan una sola vez  en sus extremos sin formar un nuevo segmento, es una  poligonal. Los segmentos se llaman  lados  y sus extremos se llaman  vértices  de la poligonal A B S E D C R Q P Y X W V U Poligonal abierta Poligonal cerrada No es poligonal
Las poligonales cerradas se llaman  polígonos . Los polígonos de tres lados se llaman  triángulos . Los de cuatro se llaman  cuadriláteros , los de cinco  pentágonos , los de seis  hexágonos , los de siete  eptágonos , los de ocho  octágonos , etc. Por costumbre, un polígono que tiene muchos lados se nombra indicando su número de lados, por ejemplo un polígono que tiene 9 lados, se nombra  polígono de nueve lados  . Y así sucesivamente. Un polígono es  regular  si sus lados son iguales entre sí; y si no, es  irregular . Los triángulos se clasifican en: El  isósceles   tiene dos lados congruentes El  equilátero   tiene sus tres lados congruentes El  escaleno   no tiene lados congruentes
Los triángulos tienen la propiedad de ser  indeformables , por ello se les usa en la industria para dar consistencia a las estructuras de edificios, puentes, aviones, torres, etc.  Los triángulos se denotan con el símbolo  seguido de las tres letras de los vértices. Y se lee:  triángulo A, B, C. El triángulo adjunto se denota así: “ Δ ” Δ   ABC A C B
En todo triángulo, la suma de sus ángulos interiores es igual a 180 o . a c b n m Trazo auxiliar: Para demostrar esta propiedad, por el vértice opuesto a la base del triángulo, trace una paralela a la base y observe que se forman los ángulo  m  y  n  respectivamente alterno-internos con los ángulos  a  y  c  en la base del triángulo. Demostración: Por construcción los ángulos  a  y  m , y los ángulos  c  y  n  son alterno-internos entre paralelas, entonces: Pero los ángulos  m ,  b  y  n  forman un ángulo extendido, entonces: Sustituyendo a  m  y  n  por  a  y  c  respectivamente se tiene: Δ  a +  Δ  b +  Δ  c = 180º Δ  a =  Δ  m  y  Δ  c =  Δ  n Δ  m +  Δ  b +  Δ  n = 180º Δ  a +  Δ  b +  Δ  c = 180º
Un polígono es  convexo  si el segmento que une a cualquiera de dos puntos en el interior del polígono, está totalmente en el interior; y si no, es  cóncavo . Es  convexo Es  cóncavo En un polígono convexo, al unir un vértice con los vértices restantes que no está unido,  ¿cuántos triángulos se forman?  Observe:
En la figura que sigue   son bisectrices y  Calcule la medida de todos los ángulos de la figura. La  bisectriz  de un ángulo es el rayo o semirrecta que  divide al   ángulo  en  dos  ángulos de  igual medida. 30º 20º Δ  ACB= 30º  y  Δ  ABC = 20º 130º K 75º 95º 85º C E D B A
Calcule el valor de  x  y de  y  en cada figura. A B C O x y x y 25 o x y 40 o 80 o 30 o
Se tienen ángulos adyacentes AOB y BOC (AOB<BOC), se traza la bisectriz OM del ángulo AOC; si los ángulos BOC y BOM miden 60° y 20°  respectivamente. Calcule la medida del ángulo AOB. De la figura:    = 60° - 20° Luego: X = 40° - 20°    = 40° X = 20° Problema RESOLUCIÓN A B O C M   60° 20° X
Fin

Introducción a La Geometria 8º BáSico

  • 1.
  • 2.
    Conceptos básicos Lahuella que deja el lápiz al deslizarse pegado al borde de una regla es una línea recta . La huella que deja el lápiz estando fijo en la escritura, da idea de lo que es un punto . El geómetra griego Euclides (330 a. C. - 275 a.C.), decía: ¨Punto es lo que no tiene partes”. En realidad, Euclides se refería a punto como algo que no tiene largo ni ancho; o sea, una pequeña marca o señal sin dimensiones largo y ancho como la intersección de dos líneas. Los puntos se denotan con letras mayúsculas y las rectas con letras minúsculas cursivas, solas o con subíndices. ...   1 0 2 3 4 5 6 7 8    3  2 A B
  • 3.
    Una línea rectatiene largo pero no tiene ancho. El largo de una línea recta no tiene fin; o sea, la línea recta es ilimitada. En los trazos se trabaja con partes de línea determinadas por dos puntos de ella, estas partes se llaman segmentos y a los puntos que los determinan se les llama extremos del segmento. A los segmentos se les denota con las letras de sus extremos colocándoles una raya encima. Por ejemplo, denota al segmento determinado por los puntos A y B , los cuales son extremos del segmento. La notación se lee “segmento A , B” . Cualquier punto de una línea recta, determina en ella, dos rayos o semirrectas ; en cuyo caso al punto se le llama extremo del rayo o de la semirrecta. A O B A A B C D O B O
  • 4.
    Un ángulo es una figura geométrica formada por dos semirrectas que tienen un extremo común llamado vértice del ángulo. Las semirrectas que forman un ángulo, se llaman lados del ángulo. A O B m  AOB se lee “ángulo A, O, B”  m se lee “ángulo m” A 135  O B 135  A O B
  • 5.
    ANGULO .-Es laabertura formado por dos rayos divergentes que tienen un extremo común que se denomina vértice. ELEMENTOS DE UN ANGULO:  LADO LADO VÉRTICE  Medida del Angulo convexo Medida del Angulo cóncavo O A B
  • 6.
     0º <  < 180º 0º <  < 90º CLASIFICACIÓN SEGÚN SU MEDIDA a) ÁNGULO CONVEXO a.1) ÁNGULO AGUDO 
  • 7.
    = 90º 90º <  < 180º a.2) ÁNGULO RECTO a.3) ÁNGULO OBTUSO  
  • 8.
      = 90º  +  = 180º CLASIFICACIÓN SEGÚN SU SUMA a) ÁNGULOS COMPLEMENTARIOS b) ÁNGULOS SUPLEMENTARIOS    
  • 9.
    CLASIFICACIÓN SEGÚN SUPOSICIÓN a) ÁNGULOS ADYACENTES b) ÁNGULOS CONSECUTIVOS ÁNGULOS OPUESTOS POR EL VÉRTICE Son congruentes Puede formar más ángulos Un lado común       
  • 10.
    01. Ángulos alternos internos: m  3 = m  5; m  4 = m  6 02. Ángulos alternos externos: m  1 = m  7; m  2 = m  8 03. Ángulos conjugados internos: m  3+m  6=m  4+m  5=180° 04. Ángulos conjugados externos: m  1+m  8=m  2+m  7=180° 05. Ángulos correspondientes: m  1 = m  5; m  4 = m  8 m  2 = m  6; m  3 = m  7 ÁNGULOS ENTRE DOS RECTAS PARALELAS Y UNA RECTA SECANTE 1 2 3 4 5 6 7 8
  • 11.
    Los ángulos porsu medida se clasifican en agudos , rectos , extendidos o colineales y entrantes . Un ángulo agudo mide menos de 90 o Un ángulo recto mide 90 o Un ángulo obtuso mide más de 90 o Un ángulo entrante mide más de 180 o Un ángulo extendido mide 180 o RESUMIENDO
  • 12.
    Los ángulos porsu posición en las figuras se clasifican en adyacentes , opuestos por el vértice , alterno-internos , alterno-externos , correspondientes , colaterales-internos , y colaterales-externos . a c b d y n x m son opuestos por el vértice son alterno-internos son correspondientes son alterno-externos son adyacentes son colaterales-internos son colaterales-externos
  • 13.
    Los ángulos opuestospor el vértice son congruentes c b a Demostración: Porque forman un ángulo extendido ¿Por qué? ¿Por qué? ¿Por qué? < a + < c = 180º < b + < c = 180º < a + < c = < b + < c < a = < b
  • 14.
    Paralelas Los rayosde luz que irradia un foco en los faros de un automóvil se reflejan como rayos paralelos desde el espejo curvo integrado a cada faro como se muestra en la figura adjunta Foco Si el terreno es plano, las vías rectas del tren son paralelas . En regiones planas, dos rectas son paralelas si no se cortan. En un curso formal de geometría euclidiana se demuestra la siguiente propiedad :  1  2
  • 15.
    Los ángulos alterno-internosentre paralelas, tienen la misma medida. a b Si l 1 ∕∕ l 2 entonces < a = < b l 1 l 2
  • 16.
    Triángulos La figurageométrica formada por segmentos que sólo se tocan una sola vez en sus extremos sin formar un nuevo segmento, es una poligonal. Los segmentos se llaman lados y sus extremos se llaman vértices de la poligonal A B S E D C R Q P Y X W V U Poligonal abierta Poligonal cerrada No es poligonal
  • 17.
    Las poligonales cerradasse llaman polígonos . Los polígonos de tres lados se llaman triángulos . Los de cuatro se llaman cuadriláteros , los de cinco pentágonos , los de seis hexágonos , los de siete eptágonos , los de ocho octágonos , etc. Por costumbre, un polígono que tiene muchos lados se nombra indicando su número de lados, por ejemplo un polígono que tiene 9 lados, se nombra polígono de nueve lados . Y así sucesivamente. Un polígono es regular si sus lados son iguales entre sí; y si no, es irregular . Los triángulos se clasifican en: El isósceles tiene dos lados congruentes El equilátero tiene sus tres lados congruentes El escaleno no tiene lados congruentes
  • 18.
    Los triángulos tienenla propiedad de ser indeformables , por ello se les usa en la industria para dar consistencia a las estructuras de edificios, puentes, aviones, torres, etc. Los triángulos se denotan con el símbolo seguido de las tres letras de los vértices. Y se lee: triángulo A, B, C. El triángulo adjunto se denota así: “ Δ ” Δ ABC A C B
  • 19.
    En todo triángulo,la suma de sus ángulos interiores es igual a 180 o . a c b n m Trazo auxiliar: Para demostrar esta propiedad, por el vértice opuesto a la base del triángulo, trace una paralela a la base y observe que se forman los ángulo m y n respectivamente alterno-internos con los ángulos a y c en la base del triángulo. Demostración: Por construcción los ángulos a y m , y los ángulos c y n son alterno-internos entre paralelas, entonces: Pero los ángulos m , b y n forman un ángulo extendido, entonces: Sustituyendo a m y n por a y c respectivamente se tiene: Δ a + Δ b + Δ c = 180º Δ a = Δ m y Δ c = Δ n Δ m + Δ b + Δ n = 180º Δ a + Δ b + Δ c = 180º
  • 20.
    Un polígono es convexo si el segmento que une a cualquiera de dos puntos en el interior del polígono, está totalmente en el interior; y si no, es cóncavo . Es convexo Es cóncavo En un polígono convexo, al unir un vértice con los vértices restantes que no está unido, ¿cuántos triángulos se forman? Observe:
  • 21.
    En la figuraque sigue son bisectrices y Calcule la medida de todos los ángulos de la figura. La bisectriz de un ángulo es el rayo o semirrecta que divide al ángulo en dos ángulos de igual medida. 30º 20º Δ ACB= 30º y Δ ABC = 20º 130º K 75º 95º 85º C E D B A
  • 22.
    Calcule el valorde x y de y en cada figura. A B C O x y x y 25 o x y 40 o 80 o 30 o
  • 23.
    Se tienen ángulosadyacentes AOB y BOC (AOB<BOC), se traza la bisectriz OM del ángulo AOC; si los ángulos BOC y BOM miden 60° y 20° respectivamente. Calcule la medida del ángulo AOB. De la figura:  = 60° - 20° Luego: X = 40° - 20°  = 40° X = 20° Problema RESOLUCIÓN A B O C M   60° 20° X
  • 24.