SlideShare una empresa de Scribd logo
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
1
INVESTIGACIÓN Y DESARROLLO DE
TECNOLOGÍAS DOPPLER DE ULTRASONIDO
PARA MEDICIÓN DE FLUJO SANGUÍNEO EN
CIRUGÍA CARDIOVASCULAR
Especialidad: Comunicaciones y Electrónica
Subespecialidad: Ultrasonido Doppler
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
Demetrio Fabián García Nocetti
Doctor en Ingeniería de Sistemas Computacionales y
Automatización
Fecha de ingreso: 28 de junio de 2016
Ciudad de México
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
2
Contenido
Resumen ejecutivo 3
Abstract 3
Objetivo 4
Alcance 4
1. Introducción 5
2. Antecedentes 6
3. Ultrasonido Doppler 6
4. Sistema Doppler Ultrasónico 8
4.1. Reflejantes 9
4.2. Detector Doppler Ultrasónico 9
4.3. Procesamiento de Señales Doppler 12
5. Pruebas y Resultados 14
6. Conclusiones 16
7. Referencias 16
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
3
Resumen Ejecutivo
Este trabajo describes un sistema Doppler ultrasónico para medir flujo sanguíneo. El
sistema fue desarrollado para ser usado en la valoración de cirugía de implantes coronarios.
La cuantificación del flujo sanguíneo en estos implantes en una tarea importante para
reducir el riesgo en el proceso quirúrgico, reduciendo el riesgo tanto del proceso
posquirúrgico como de muerte. El sistema se basa en una arquitectura abierta que es portátil
y de bajo costo, incorporando las ventajas de sistemas cerrados de hardware dedicado. Cuenta
con una interfaz gráfica de usuario para controlar y monitorear todo el sistema. Incorpora un
detector Doppler ultrasónico de flujo bidireccional, condicionamiento de señal, detección de la
dirección, procesamiento de señal, despliegue de espectrograma, cálculo de parámetros y un
subsistema manejador de base de datos completan el sistema. La señal Doppler es procesada
utilizando un número de métodos de estimación espectral, tanto clásicos como paramétricos,
teniendo la facilidad de incorporar métodos alternativos de mayor resolución. El sistema está
siendo evaluado en cirugías de revascularización coronaria.
Palabras clave: Ultrasonido Doppler, flujometría sanguínea, procesamiento de señal,
estimación espectral, revascularización coronaria, flujo bidireccional.
Abstract
This work describes a Doppler ultrasound system for measuring blood flow. The system
developed is intended to be used for assessing coronary implants and bypass operations.
Quantifying the blood flow through these implants/bypasses is an important task to ensure
the chirurgical process, thus, reducing both the post-chirurgical and death risks. The system
is based on an open architecture that is portable and low-cost, incorporating the advantages
of expensive systems with dedicated hardware. A graphical user interface is provided for
controlling and monitoring the whole system. It incorporates a pulsed-wave bi-directional
Doppler ultrasound flow detector; signal conditioning, detection of direction, signal
processing, spectrogram displaying, parameters calculation, and a database handling
subsystem complete the system. Doppler signal is processed using both Fourier Transform-
based and Parametric Model-based algorithms, having the facility to incorporate alternative
higher-resolution spectral estimation methods. The system is being assessed in coronary
revascularization.
Keywords: Doppler ultrasound, blood flow measurement, signal processing, spectral
estimation, coronary revascularization, bidirectional flow.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
4
Objetivo
Investigar y desarrollar tecnologías Doppler de ultrasonido para medición de flujo
sanguíneo aplicadas a la flujometría sanguínea de implantes cardiovasculares "in situ",
permitiendo al cirujano verificar la cantidad y la calidad del flujo sanguíneo en los injertos
coronarios implantados, disminuyendo el riesgo postoperatorio. La cirugía de
revascularización coronaria, es una cirugía de alto riesgo para el paciente. La determinación
de la permeabilidad de los injertos aorta-coronarios implantados representa una prueba de
valoración del proceso de revascularización.
Alcance
El sistema Doppler ultrasónico se ha utilizado en más de 450 pacientes, realizando alrededor
de 400 bypass coronarios. Se ha reducido el número de complicaciones de un 12% a menos de
un 4%, reduciéndose por tanto la mortalidad quirúrgica de 7.2% a un 5%. Se busca incorporar
otros centros de cirugía cardiovascular, tanto nacionales como internacionales, y se planea
hacer extensiva la aplicación de este tipo de sistema cirugía de trasplantes y al proceso de
revascularización en neurocirugía de malformaciones arterovenosas.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
5
1. Introducción
La cardiopatía isquémica es la principal causa de muerte en muchos países, siendo la
revascularización coronaria (RC) una de las principales alternativas terapéuticas para
reducir la mortalidad y mejorar la calidad de vida de los pacientes. La esencia de esta
solución es garantizar el flujo sanguíneo hacia el músculo cardiaco que en una persona sana
se realiza a través de las arterias coronarias. Problemas diversos como altos niveles de
colesterol en sangre, traen como consecuencia la reducción del diámetro de dichas arterias
y la variación de la elasticidad de las mismas, reduciendo el flujo de la sangre, cual conduce
con frecuencia al infarto. La técnica quirúrgica de puentes coronarios consiste en una
derivación del flujo sanguíneo a través de caminos paralelos mediante el implante de otras
arterias o venas del cuerpo humano, tales como la mamaria, la radial o la safena. Para
verificar la calidad del implante se requiere, por un lado, poder estimar en forma
cuantitativa el gasto a través del flujo sanguíneo en el injerto y por otro lado determinar la
calidad del mismo. Con esto se puede aumentar la confiabilidad en el diagnóstico y el
control del flujo en el sistema vascular, reduciendo la probabilidad de riesgo postoperatorio
y por tanto disminuyendo la posibilidad de muerte del paciente.
Este trabajo se orienta a la investigación y el desarrollo de tecnologías Doppler de
ultrasonido aplicadas a la flujometría sanguínea de implantes cardiovasculares "in situ",
permitiendo al cirujano verificar la cantidad y la calidad del flujo sanguíneo en los injertos
coronarios recién implantados, disminuyendo en forma importante el riesgo postoperatorio.
La cirugía de revascularización coronaria, como tratamiento de la cardiopatía isquémica, es
una cirugía de alta complejidad y riesgo para el paciente. La determinación de la
permeabilidad de los injertos aorta-coronarios implantados mediante el uso de esta
tecnología representa una prueba de valoración del proceso de revascularización.
Como resultado de estas actividades se ha desarrollado un sistema Doppler ultrasónico que
se basa en una arquitectura portátil y modular que integra las ventajas de sistemas de alto
costo y de hardware dedicado. El sistema incorpora un detector Doppler ultrasónico de
flujo sanguíneo bidireccional, de onda pulsada. Los procesos de acondicionamiento de
señal, detección de la dirección, procesamiento de señales, despliegue de espectrograma,
cálculo de parámetros y un subsistema de manejo de base de datos, completan el sistema.
Cuenta con una interfaz gráfica de usuario para controlar e interactuar con el sistema. La
señal Doppler se procesa utilizando diferentes tipos de algoritmos de estimación espectral,
incluyendo métodos clásicos basados en la Transformada de Fourier y en métodos
paramétricos, teniendo la posibilidad de incorporar métodos alternativos de mayor
resolución basados en distribuciones tiempo-frecuencia. Actualmente el sistema está siendo
evaluado en un número de operaciones quirúrgicas de implantes coronarios.
La tecnología asociada con este sistema ha sido desarrollada, bajo mi dirección, por un
grupo de trabajo integrado por los académicos Julio Solano, Ernesto Rubio, Martín Fuentes,
Antonio Contreras, Mónica Vázquez, Sergio Padilla, entre otros, del Departamento de
Ingeniería de Sistemas Computacionales y Automatización (DISCA), del Instituto de
Investigaciones en Matemáticas Aplicadas y en Sistemas (lIMAS), de la Universidad
Nacional Autónoma de México (UNAM).
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
6
2. Antecedentes
Las tecnologías ultrasónicas han sido utilizadas exitosamente en el desarrollo de instrumentos
para diagnóstico médico: en obstetricia, cardiología y el sistema vascular periférico, entre
otros. Dichos instrumentos permiten generar tanto la imagen de alguna estructura interna del
cuerpo, como la respuesta espectral asociada al flujo sanguíneo de alguna arteria, a partir de la
acción de transductores ultrasónicos colocados externamente [1]. El diagnóstico mediante
ultrasonido es una técnica muy bien establecida y ampliamente utilizada en casi todas las
áreas de la medicina. Aunque inicialmente su desarrollo se enfocó a la obstetricia,
rápidamente se le encontró un importante uso en cardiología [2]. El uso de instrumentos
basados en el efecto Doppler ha permitido extraer información de fase de los ecos de
estructuras en movimiento en el cuerpo (principalmente sangre) produciendo imágenes y
espectrogramas, que se utilizan para estimar parámetros de presión y flujo [3]. Algunas
aplicaciones clínicas incluyen la detección, mapeo y estimación de velocidad de flujo
cardiaco; el diagnóstico del sistema vascular periférico (principalmente aterosclerosis),
padecimientos venosos (trombosis venosa profunda) y el diagnóstico de tumores (por
medio de la detección de pequeños vasos asociados con la neo-vascularización) [4].
El desarrollo continuo de las técnicas de Doppler pulsado, así como de los métodos de
procesamiento de señales e imágenes ha generado un notable incremento en el uso del
ultrasonido abriendo nuevas posibilidades y desplazando otros métodos invasivos hasta
ahora utilizados. Tal es el caso de la detección y evaluación del flujo sanguíneo en vasos. El
sistema Doppler ultrasónico, tanto continuo como pulsado, en su forma simple o en
conjunto con la imagen, ha sido ampliamente usado como un método no-invasivo [5]. La
frecuencia Doppler es proporcional a la velocidad media de la sangre dentro del volumen
muestreado y dado que el flujo sanguíneo arterial es pulsátil, la señal Doppler presenta un
espectrograma cuyas frecuencias varían en el tiempo. En condiciones ideales el espectro de
potencia Doppler tiene una forma similar a un histograma de la velocidad de la sangre
dentro del volumen muestreado. De esta forma el análisis de la señal Doppler produce
información relativa a la evolución de la distribución de velocidad de las partículas
sanguíneas en el vaso en estudio. Un incremento en el ancho de banda de las frecuencias
Doppler, como resultado de turbulencia en el flujo sanguíneo, puede estar asociado con la
presencia de anomalías en el flujo sanguíneo y ser utilizado para detectar algunas patologías
como lesiones estenóticas.
3. Ultrasonido Doppler
El proceso de detección de la señal ultrasónica de flujo sanguíneo por efecto Doppler,
consiste en que al irradiar las partículas que componen la sangre con un haz ultrasónico, de
frecuencia fija fo, las ondas ultrasónicas inciden en el torrente sanguíneo y la velocidad con
que se mueven dichas partículas modifica la frecuencia de la señal emitida, produciendo
una señal de eco (RF) con frecuencias muy próximas a dicha señal, la cual está compuesta
por una serie de frecuencias que representan el perfil de velocidades del flujo sanguíneo.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
7
Este principio de detección se ilustra en la figura 1, donde la señal Doppler ultrasónica de
flujo sanguíneo se encuentra contenida en la señal recibida [2][3].
Figura 1. Detección de la señal Doppler de ultrasonido asociada con el flujo sanguíneo.
Las señales Doppler ultrasónicas de flujo se representan típicamente en la forma de un
espectrograma como se muestra en la figura 2, donde el eje horizontal en el Tiempo[s], el
eje vertical es la Frecuencia [kHz] o Velocidad [mm/s] y las amplitudes de las frecuencias
son representadas mediante una escala de colores [1].
Figura 2. Espectrograma de la señal Doppler ultrasónica de un ciclo cardiaco (ventana
Hanning de 512 puntos, segmentos de 10 ms, amplitud de la señal escalada en un rango
dinámico de 12 dB)
En el cuerpo humano, algunas arterias del sistema vascular, pueden presentar flujo en
sentido directo o inverso, tal es el caso de la arteria humeral y la arteria femoral. Una curva
típica de frecuencia media de una arteria femoral durante un ciclo cardiaco se muestra en la
figura 3, donde también se puede observar en el sonograma que el flujo sanguíneo presenta
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
8
dos sentidos en su dirección respecto a la posición del transductor, convencionalmente las
frecuencias positivas corresponden al flujo directo y las negativas, al flujo inverso.
Figura 3. Curva típica de frecuencia media del flujo sanguíneo de una arteria femoral
durante un ciclo cardiaco y su sonograma correspondiente
4. Sistema Doppler Ultrasónico
Un sistema Doppler ultrasónico que se basa en una arquitectura portátil y modular, que
integra las ventajas de sistemas de alto costo y de hardware dedicado. El sistema incorpora
un detector Doppler ultrasónico de flujo sanguíneo bidireccional, de onda pulsada. Los
procesos de acondicionamiento de señal, detección de la dirección, procesamiento de
señales, despliegue de espectrograma, cálculo de parámetros y un subsistema de manejo de
base de datos, completan el sistema. Cuenta además con una interfaz gráfica de usuario
para controlar e interactuar con el sistema, figura 4.
Figure 4. Sistema Doppler ultrasónico para medición de flujo sanguíneo.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
9
4.1 Reflejantes
La presencia de reflejantes es fundamental para la generación de la señal Doppler. En el
caso de la sangre, éstos son en su gran mayoría conformados por células rojas (eritrocitos, 5
x 106/mm3), y aunque otros componentes también dispersan el ultrasonido, en el rango de
frecuencias de diagnóstico, su contribución es despreciable [1], figura 5.
Figura 5. Composición de la sangre
4.2 Detector Doppler ultrasónico
Los detectores Doppler ultrasónicos de flujo sanguíneo se pueden clasificar de acuerdo a
su modo de operación en dos tipos: Modo Continuo y Modo Pulsado. A su vez pueden
ser no-direccional o bi-direccional. Este último entrega señales que mediante un
procesamiento adicional permite la separación del sentido de la dirección del flujo [1]. El
detector Doppler más simple que se desarrolló operó en modo continuo y uso dos cerámicas
piezoeléctricas (PZT) una para transmitir y otra para recibir continuamente las ondas
ultrasónicas. Estos dispositivos no tienen la capacidad para delimitar el volumen de
muestreo deseado, como se muestra en la figura 6(a). Nótese que el transductor emite una
señal con frecuencia fija, irradiando sobre 2 vasos colocados en el campo de acción del haz
ultrasónico. La onda ultrasónica recibida contiene la información mezclada del flujo de
ambos vasos. Por lo que resulta imposible detectar la información correspondiente a cada
vaso. En este trabajo se ha desarrollado el denominado detector Doppler pulsado, ver figura
6(b), el cual requiere de una sola cerámica en el transductor, que se usa para emitir y
recibir las ondas ultrasónicas.
Figura 6. Modo de operación de los detectores Doppler: a) continuo y b) pulsado.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
10
La mayoría de los sistemas de flujometría Doppler ultrasónicos que detectan el sentido del
flujo, utiliza las señales producto de la demodulación homodina en cuadratura como parte
de los métodos para la detección de dicho sentido, por ejemplo: Phasing Filter Technique
(PFT), Extended Weaver Receiver Technique (EWRT), Complex Fast Fourier Transform
(CFFT), Hilbert Transform Method (HTM), Spectral Translocation Method (STM) y Time
Varying Filter (TVF) [6][7][8]. La demodulación homodina en cuadratura consiste en
generar, a partir de la señal RF recibida por el transductor, dos señales –una en fase y otra
en cuadratura- con el propósito de separar el sentido del flujo. Estas señales idealmente
deben conservar una fase relativa de 90 grados e igual amplitud en toda la banda. Sin
embargo, en condiciones reales dichas características son difíciles de alcanzar debido
principalmente a las tolerancias implícitas de los componentes electrónicos, generando la
aparición de artefactos que dificultan la detección del sentido real de la dirección del flujo.
Por otra parte, el proceso de la demodulación heterodina para la detección del sentido del
flujo directo e inverso de una señal Doppler ultrasónica, consiste en trasladar la frecuencia
de la portadora a una frecuencia denominada frecuencia heterodina (fH), cuyo valor debe ser
mayor o igual al ancho de banda de la señal Doppler (BW) y aplicar un filtro paso bajas con
frecuencia de corte de un valor igual a la suma del valor de la frecuencia heterodina más el
ancho de banda de la señal Doppler (fH + BW), como se observa en la figura 7. De esta
manera el sentido de la dirección representado en la señal Doppler queda separada por la
frecuencia heterodina.
Figura 7. Diagrama de bloques de la detección del sentido del flujo
con demodulación heterodina
Con el objeto de tener un resultado convencional, donde frecuencias positivas se asocian a
flujo directo y frecuencias negativas a flujo inverso, la frecuencia fH del espectro resultante
se debe trasladar al origen. es importante señalar que para obtener resultados equivalentes
en la separación del sentido del flujo, la frecuencia de muestreo utilizada en demodulación
heterodina es el doble de aquella que se utilizaría en demodulación homodina en
cuadratura. Lo anterior se ilustra en la figura 8.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
11
Figure 8. Espectro de la señal Doppler utilizando: a) demodulación homodina en
cuadratura; y b) demodulación heterodina.
Debido a que este trabajo está orientado a la medición de flujo sanguíneo, los casos de
estudio aquí descritos, consideran un ancho de banda BW=10 kHz. Esto se debe a que la
velocidad media (v) del flujo sanguíneo está en el rango de 20 mm/s a 700 mm/s, la
velocidad del ultrasonido (c) en la sangre es de 1570 m/s y la frecuencia de transmisión del
transductor (f0) está en el intervalo de 4 MHz a 10 MHz [9]. Así, la frecuencia de la señal
Doppler (fd) está dada por:
donde θ es el ángulo entre el transductor y el sentido del flujo sanguíneo. Para el caso de la
demodulación homodina la frecuencia de muestreo debe ser al menos 20 kHz; mientras que
para el caso de la demodulación heterodina debe ser al menos de 40 kHz, dado que la
información de interés en este último caso se encuentra en fH + BW, donde fH = 10 kHz.
Se propone la implementación de un detector Doppler de flujo sanguíneo, en modo
pulsado, usando demodulación heterodina, el cual forma parte de un sistema Doppler para
la medición de flujo sanguíneo bi-direccional, que será utilizado para valorar las
condiciones de flujo en el proceso de cirugía de revascularización coronaria [10].
Figura 9. Diagrama del detector Doppler de flujo sanguíneo en modo pulsado con
demodulación heterodina
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
12
En la figura 9 se muestra el diagrama de las etapas que integran el detector propuesto:
transductor, oscilador, control, transmisor, amplificador RF, demodulador heterodino, filtro
paso bajas y amplificador de audio frecuencia (AF). El demodulador heterodino se basa en
un circuito mezclador Very High Frequency (VHF), doblemente balanceado y de baja
potencia [10]. El circuito se ilustra en el diagrama de bloques de la figura 10.
Figura 10. Diagrama de bloques del demodulador heterodino.
4.3 Procesamiento de Señales Doppler
Para medir la velocidad de la sangre y monitorear su flujo, es necesario determinar la
frecuencia de la señal Doppler, para lo cual existen varios métodos. Un método
convencional para determinar y desplegar el contenido espectral de la señal Doppler es el
empleo de un analizador de espectro de la señal en tiempo real. El contenido de frecuencias
de la señal puede ser mostrado como una gráfica de amplitud de las componentes
espectrales de la señal contra frecuencia (espectro de frecuencia) para cada intervalo de
muestreo, figura 11. Debido a que la velocidad de la sangre dentro de las arterias es
periódica, la señal Doppler es ciclo-estacionaria y por tal razón, el espectro Doppler de cada
intervalo de muestreo, presenta variaciones en la frecuencia media y en la forma durante
todo el ciclo cardiaco. Lo anterior hace que se utilicen intervalos muy pequeños (5-10 ms)
en los que la señal Doppler puede considerarse estacionaria para su análisis espectral.
Figura 11. Contenido espectral de una señala Doppler y su espectragrama
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
13
La estimación de la densidad de potencia espectral de una señal Doppler es típicamente
realizada aplicando métodos basados en la Transformada de Fourier (TF), sin embargo
diversos trabajos de investigación han conducido a la realización de métodos alternativos
de estimación espectral, tales como métodos paramétricos[11], así como métodos basados
en distribuciones tiempo-frecuencia [12] que ofrecen una importante mejora en la
resolución de frecuencia comparada con los métodos tradicionales basados en TF.
El procesamiento considera diferentes métodos de estimación espectral y calcula
automáticamente diversos parámetros o índices útiles para los especialistas en
cardiocirugía, tales como: índice de pulsatilidad -PI, índice de resistencia –RI y flujo
volumétrico, entre otros. Los módulos de procesamiento por ejemplo puede procesar las
señales Doppler utilizando algoritmos basados en CFFT (Transformada Rápida de Fourier
Compleja) [13] o bien algoritmos paramétricos autoregresivos (AR-Covarianza modificada)
[14], para visualizar los espectrogramas correspondientes. La figura 12 muestra ejemplos
de espectrogramas desplegando ventanas de 512 puntos con un frecuencia de muestreo de
11025 muestras/seg. Una ventana Hanning fue usada con un traslape de 5 ms para reducir
el ruido numérico.
(a)
(b)
Figura 12. Espectrogramas correspondientes a 6 ciclos cardiacos utilizando
(a) FT-based y (b) AR-Covarianza modificada.
ˆPAR fn( )=
ˆσ 2
1+ˆa1[]⋅e− j2π fn
+…+ˆa p[ ]⋅e− j2π fnp
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
14
La señal Doppler es adquirida en tiempo real y segmentada en ventanas traslapadas de 2-20
ms, considerándola “cuasi estacionaria” y posteriormente procesadas con el método de
estimación correspondiente. La figura 13 muestra un aspecto de la interfaz gráfica de
usuario del sistema.
Figura 13. Interfaz Gráfica de Usuario.
5. Pruebas y Resultados
Para el desarrollo de las pruebas del sistema en el laboratorio “in vitro” se desarrolló un
“phantom” de un sistema cardiovascular, que incluyó una bomba controlada
electrónicamente, que emula diferentes regímenes de flujo y ritmos cardiacos a través de
conductos de diámetro en el rango de 2-4 mm, figura 14. Un modelo de fluido sanguíneo
fue usado para reproducir el efecto Doppler, al hacer incidir el haz generado por el sensor
ultrasónico sobre el torrente del modelo.
La aplicación asociada con este desarrollo permite al usuario seleccionar el diámetro de la
arteria, la frecuencia del transductor y el ángulo de prueba. Permite también al usuario
seleccionar la ganancia del amplificador, el rango dinámico y el método de estimación
espectral correspondiente, de tal manera que el cirujano pueda visualizar el espectrograma
en un monitor, figura 15. La aplicación incorpora un sistema de base de datos para capturar
cada procedimiento quirúrgico que se realice durante la operación, de tal manera que se
pueda tener acceso a esta información para un cualquier tipo de posprocesamiento.
Adquisición en tiempo real
Segmento de señal de
Tv=20 ms
256 muestras
Tm = 20mS / 256
Tm = 78.125 uS
Fm = 12800 Hz
Fmin = 1/ Tv = 50 Hz
Fmax = Fm / 2 = 6400 Hz
F1 = 50 Hz
F2 = 100 Hz
F3 = 150 Hz
.
.
.
F128= 6400 Hz
Una señal Doppler de flujo sanguíneo se
considera cuasi estacionaria si se procesa
en segmentos cortos de 2 a 20 ms
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
15
Figure 14. Sistema Doppler ultrasónico probado “in vitro”.
.
Figure 15. Sistema Doppler ultrasónico probado “in vivo”.
Pruebas de prototipos in vivo
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
16
6. Conclusiones
Un sistema Doppler ultrasónico para medición de flujo sanguíneo ha sido presentado. El
sistema se ha desarrollado para su uso en cirugía de implantes coronarios “bypasses”. La
determinación de la permeabilidad, de los injertos aorta-coronarios implantados, mediante
el uso de esta tecnología representa una prueba de valoración del proceso de
revascularización. En particular la cuantificación del flujo sanguíneo en estos implantes en
una tarea importante para reducir el riesgo en el proceso quirúrgico. Tanto el espectrograma
asociado al flujo, como los parámetros obtenidos por el sistema proveen información
cuantitativa y cualitativa del flujo sanguíneo, pudiendo detectarse posibles errores durante
la cirugía tales como estenosis internas conocidas como “flaps” en el nuevo injerto
implantado.
El sistema se basa en una arquitectura modular, portátil y de bajo costo, incorporando las
ventajas de sistemas cerrados de hardware dedicado. Cuenta con una interfaz gráfica de
usuario para controlar y monitorear todo el sistema. Las señales Doppler son procesadas
utilizando un número de métodos de estimación espectral, tanto clásicos como paramétricos,
teniendo la facilidad de incorporar métodos alternativos de mayor resolución.
El sistema ha sido probado con éxito primero “in vitro, mediante el uso de un “phantom” y
también durante cirugías “in vivo”, aportando información importante sobre la calidad del
flujo, y proporcionando al cirujano cardiovascular una herramienta para la detección de
anomalías durante la cirugía de implantes coronarios.
A la fecha este sistema se ha utilizado en más de 450 pacientes, realizando alrededor de 1,400
bypass coronarios. De acuerdo con estadísticas preliminares del grupo de cirujanos
cardiovasculares que se ha utilizado este sistema, se ha reducido el número de complicaciones
de un 12% a menos de un 4%, reduciéndose por tano la mortalidad quirúrgica de 7.2% a un
5%.
En una nueva etapa se busca incorporar otros centros de cirugía cardiovascular, tanto
nacionales como internacionales, y se planea hacer extensiva la aplicación de este tipo de
sistema cirugía de trasplantes (riñón, hígado y corazón) y al proceso de revascularización en
neurocirugía de malformaciones arterovenosas.
7. Referencias
1. Evans DH, McDicken WN. Doppler ultrasound, physics, instrumentation, and signal
processing, John Wiley & Sons Ltd., Second Edition, 2000.
2. Cavaye MD, White RA. Arterial Imaging -Modern and Developing Technology.
Chapman & Hall Medical, London.1993.
3. Powis RL, Powis WJ. A Thinker’s Guide to Ultrasonic Imaging. Urban and
Schwarzenberg. 1984.
4. Fish PJ. Physics and Instrumentation of Diagnostic Medical Ultrasound, John Wiley &
Sons, Chichester, U.K. 1990.
Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular
Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido,
Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras
17
5. Nelson TR, Pretorius DH. The Doppler signal: Where does it come from and what does
it mean?,” Am. J. Roent., vol. 151, pp. 439-447, 1988. DOI: 10.2214/ajr.151.3.439.
6. Aydin RN. Time varying filtering approach for simulation of ultrasonic Doppler
signals,” J. Comp. Sim. & Mod. Med., vol. 1, no. 1, pp. 67-76, 2000.
7. Aydin RN. Computerized Graft Monitoring. Thesis submitted to the University of
Leicester for the degree of Doctor of Philosophy. 1994.
8. Aydin RN, Evans DH. Quadrature to directional format conversion of Doppler signals
using digital methods,” Phys. Meas., vol. 15, pp. 181-199, 1994. DOI: 10.1088/0967-
3334/15/2/007.
9. Atkinson P. A fundamental interpretation of ultrasonic Doppler velocimeter,”
Ultrasound Med. Biol., vol. 2, no. 2, pp. 107-111, 1976. DOI:
http://dx.doi.org/10.1016/0301-5629(76)90018-1.
10. García F., Solano J., Fuentes M., Rubio E. “Detección del sentido del flujo sanguíneo
utilizando demodulación heterodina para un sistema Doppler ultrasónico y su
validación mediante simulación”. Revista Mexicana de Ingeniería Biomédica, Vol. 36,
No. 1, Ene-Abr 2015, pp. 23-31. ISSN 0188-9532.
11. Solano J, García NDF, Ruano MG. High Performance Parallel-DSP Computing in
Model-based Spectral Estimation. Microprocessors and Microsystems (Elsevier), 1999;
23(6): 337-344.
12. García NF, Solano GJ, Rubio AE, Moreno HE. Parallel Computing in Time-Frequency
Distributions for Doppler Ultrasound Blood Flow Instrumentation. Revista Mexicana
de Ingeniería Biomédica 2001; XXII(1): 12-19.
13. J.A. Jensen, Estimation of Blood Velocities Using Ultrasound, Cambridge Univ. Press,
UK, 1996.
14. M.G. Ruano, D.F. Garcıa Nocetti, P.J. Fish, P.J. Fleming, Alternative parallel
implementations of an AR-modified covariance spectral estimator for diagnostic
ultrasonic blood flow studies, Parallel Comput. 19 (1993) 463–476.

Más contenido relacionado

La actualidad más candente

Introducción a Mecánica de fluidos
Introducción a  Mecánica de fluidosIntroducción a  Mecánica de fluidos
Introducción a Mecánica de fluidosEdisson Paguatian
 
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018Vtg, capacidad de cierre ypletismografia clase 7 oct 2018
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018Teito17
 
Contracción y excitación del musculo liso
Contracción y excitación del musculo lisoContracción y excitación del musculo liso
Contracción y excitación del musculo lisoFrancisco Burgos
 
Ley De Gases Y Sus Aplicaciones
Ley De Gases Y Sus AplicacionesLey De Gases Y Sus Aplicaciones
Ley De Gases Y Sus AplicacionesJessi1991
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gasesMaría Mena
 
APARATO RESPIRATORIO. EFECTOS DE LA ALTURA
APARATO RESPIRATORIO. EFECTOS DE LA ALTURAAPARATO RESPIRATORIO. EFECTOS DE LA ALTURA
APARATO RESPIRATORIO. EFECTOS DE LA ALTURARicardo Benza
 
Propiedades fisicas de los fluidos
Propiedades fisicas de los fluidosPropiedades fisicas de los fluidos
Propiedades fisicas de los fluidosBk Huerta
 
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...ivan_ronu
 

La actualidad más candente (20)

Ventilacion pulmonar
Ventilacion pulmonarVentilacion pulmonar
Ventilacion pulmonar
 
Sinapsis e impulso nervioso
Sinapsis e impulso nerviosoSinapsis e impulso nervioso
Sinapsis e impulso nervioso
 
retorno venoso
retorno venosoretorno venoso
retorno venoso
 
Introducción a Mecánica de fluidos
Introducción a  Mecánica de fluidosIntroducción a  Mecánica de fluidos
Introducción a Mecánica de fluidos
 
Biofisica
BiofisicaBiofisica
Biofisica
 
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018Vtg, capacidad de cierre ypletismografia clase 7 oct 2018
Vtg, capacidad de cierre ypletismografia clase 7 oct 2018
 
Principio de pascal
Principio de pascalPrincipio de pascal
Principio de pascal
 
Contracción y excitación del musculo liso
Contracción y excitación del musculo lisoContracción y excitación del musculo liso
Contracción y excitación del musculo liso
 
Perfusion Pulmonar
Perfusion PulmonarPerfusion Pulmonar
Perfusion Pulmonar
 
Ley De Gases Y Sus Aplicaciones
Ley De Gases Y Sus AplicacionesLey De Gases Y Sus Aplicaciones
Ley De Gases Y Sus Aplicaciones
 
Hormona insulina~
Hormona insulina~Hormona insulina~
Hormona insulina~
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
APARATO RESPIRATORIO. EFECTOS DE LA ALTURA
APARATO RESPIRATORIO. EFECTOS DE LA ALTURAAPARATO RESPIRATORIO. EFECTOS DE LA ALTURA
APARATO RESPIRATORIO. EFECTOS DE LA ALTURA
 
Gases (biofisica)
Gases (biofisica)Gases (biofisica)
Gases (biofisica)
 
Test de caminata de los seis minutos
Test de caminata de los seis minutos Test de caminata de los seis minutos
Test de caminata de los seis minutos
 
Hemodinamica
HemodinamicaHemodinamica
Hemodinamica
 
Quimiotransduccion
QuimiotransduccionQuimiotransduccion
Quimiotransduccion
 
Propiedades fisicas de los fluidos
Propiedades fisicas de los fluidosPropiedades fisicas de los fluidos
Propiedades fisicas de los fluidos
 
Ley de Boyle en el Cuerpo humano.pdf
Ley de Boyle en el Cuerpo humano.pdfLey de Boyle en el Cuerpo humano.pdf
Ley de Boyle en el Cuerpo humano.pdf
 
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...
COMO Y CUANTO EJERCICIO DEBEMOS HACER? EL COLEGIO AMERICANO DE MEDICINA DEL D...
 

Destacado

Mello anthony despierta charlas sobre la espiritualidad [doc]
Mello anthony   despierta charlas sobre la espiritualidad [doc]Mello anthony   despierta charlas sobre la espiritualidad [doc]
Mello anthony despierta charlas sobre la espiritualidad [doc]Mario Paternina
 
Training Schrijven voor het Web
Training Schrijven voor het WebTraining Schrijven voor het Web
Training Schrijven voor het WebSimone Levie
 
De Reis van de Heldin december 2015
De Reis van de Heldin december 2015De Reis van de Heldin december 2015
De Reis van de Heldin december 2015Peter de Kuster
 
Error messages
Error messagesError messages
Error messagesrtinkelman
 
Gfpi f-019 guia de aprendizaje 01 tda orientar fpi
Gfpi f-019 guia de aprendizaje 01 tda orientar fpiGfpi f-019 guia de aprendizaje 01 tda orientar fpi
Gfpi f-019 guia de aprendizaje 01 tda orientar fpilisbet bravo
 
JULIOPARI - Elaborando un Plan de Negocios
JULIOPARI - Elaborando un Plan de NegociosJULIOPARI - Elaborando un Plan de Negocios
JULIOPARI - Elaborando un Plan de NegociosJulio Pari
 
El emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certEl emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certMaestros Online
 
INVESTIGACIÓN DEPRESION EN ADOLESCENTES
INVESTIGACIÓN DEPRESION EN ADOLESCENTESINVESTIGACIÓN DEPRESION EN ADOLESCENTES
INVESTIGACIÓN DEPRESION EN ADOLESCENTESOLIVER JIMENEZ
 
Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefrloggen
 
Como hacer un plan de negocios
Como hacer un plan de negociosComo hacer un plan de negocios
Como hacer un plan de negociosXPINNERPablo
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het webSimone Levie
 
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA... ..
 
Estrategias competitivas básicas
Estrategias competitivas básicasEstrategias competitivas básicas
Estrategias competitivas básicasLarryJimenez
 

Destacado (20)

Mello anthony despierta charlas sobre la espiritualidad [doc]
Mello anthony   despierta charlas sobre la espiritualidad [doc]Mello anthony   despierta charlas sobre la espiritualidad [doc]
Mello anthony despierta charlas sobre la espiritualidad [doc]
 
Estrategias de porter
Estrategias de porterEstrategias de porter
Estrategias de porter
 
Training Schrijven voor het Web
Training Schrijven voor het WebTraining Schrijven voor het Web
Training Schrijven voor het Web
 
De Reis van de Heldin december 2015
De Reis van de Heldin december 2015De Reis van de Heldin december 2015
De Reis van de Heldin december 2015
 
Error messages
Error messagesError messages
Error messages
 
Gfpi f-019 guia de aprendizaje 01 tda orientar fpi
Gfpi f-019 guia de aprendizaje 01 tda orientar fpiGfpi f-019 guia de aprendizaje 01 tda orientar fpi
Gfpi f-019 guia de aprendizaje 01 tda orientar fpi
 
Geheugen verbeteren
Geheugen verbeterenGeheugen verbeteren
Geheugen verbeteren
 
JULIOPARI - Elaborando un Plan de Negocios
JULIOPARI - Elaborando un Plan de NegociosJULIOPARI - Elaborando un Plan de Negocios
JULIOPARI - Elaborando un Plan de Negocios
 
De impact van adhd
De impact van adhdDe impact van adhd
De impact van adhd
 
PMP Sonora Saludable 2010 2015
PMP Sonora Saludable 2010   2015  PMP Sonora Saludable 2010   2015
PMP Sonora Saludable 2010 2015
 
El emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certEl emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional cert
 
INVESTIGACIÓN DEPRESION EN ADOLESCENTES
INVESTIGACIÓN DEPRESION EN ADOLESCENTESINVESTIGACIÓN DEPRESION EN ADOLESCENTES
INVESTIGACIÓN DEPRESION EN ADOLESCENTES
 
Tears In The Rain
Tears In The RainTears In The Rain
Tears In The Rain
 
Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitief
 
Como hacer un plan de negocios
Como hacer un plan de negociosComo hacer un plan de negocios
Como hacer un plan de negocios
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het web
 
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
 
Estrategias competitivas básicas
Estrategias competitivas básicasEstrategias competitivas básicas
Estrategias competitivas básicas
 
Cápsula 1. estudios de mercado
Cápsula 1. estudios de mercadoCápsula 1. estudios de mercado
Cápsula 1. estudios de mercado
 
Rodriguez alvarez
Rodriguez alvarezRodriguez alvarez
Rodriguez alvarez
 

Similar a Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para medición de flujo sanguíneo en cirugía cardiovascular

ESTUDIO PESA CNIC-SANTANDER
ESTUDIO PESA CNIC-SANTANDERESTUDIO PESA CNIC-SANTANDER
ESTUDIO PESA CNIC-SANTANDERBANCO SANTANDER
 
Estudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosEstudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosSarai Ortiz Ashaw
 
Estudios venosos diagnosticos
Estudios venosos diagnosticosEstudios venosos diagnosticos
Estudios venosos diagnosticosFernando Sáez
 
aplicaciones de la informatica en el hospital
aplicaciones de la informatica en el hospitalaplicaciones de la informatica en el hospital
aplicaciones de la informatica en el hospitalmontesg90
 
Estudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosEstudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosGreace Espino
 
Dosier informativo resum_octubre2012
Dosier informativo resum_octubre2012Dosier informativo resum_octubre2012
Dosier informativo resum_octubre2012UDETMA - IRB Lleida
 
Que datos realmente le interesan y son esenciales para el cirujano vascular.
Que datos realmente le interesan y son esenciales para el cirujano vascular.Que datos realmente le interesan y son esenciales para el cirujano vascular.
Que datos realmente le interesan y son esenciales para el cirujano vascular.Enrique Luis Ferracani
 
Que datos de ulrasonido linteresan y son eseciales al cirujano vascular
 Que datos de ulrasonido  linteresan y son eseciales al cirujano vascular Que datos de ulrasonido  linteresan y son eseciales al cirujano vascular
Que datos de ulrasonido linteresan y son eseciales al cirujano vascularEnrique Luis Ferracani
 
Angiografia digital informe
Angiografia digital informeAngiografia digital informe
Angiografia digital informe1986jean
 
Introducción al Doppler de Arterias y Venasf
Introducción al Doppler de Arterias y VenasfIntroducción al Doppler de Arterias y Venasf
Introducción al Doppler de Arterias y VenasfTony Terrones
 
Diagnósticos venosos no invasivos
Diagnósticos venosos no invasivosDiagnósticos venosos no invasivos
Diagnósticos venosos no invasivosMarilinRobinson1
 
Valoración por imagenes de la ateromatosis carotídea
Valoración  por imagenes de la ateromatosis carotídeaValoración  por imagenes de la ateromatosis carotídea
Valoración por imagenes de la ateromatosis carotídeaMarcelo Langleib
 
TICS EN LA MEDICINA
TICS EN LA MEDICINATICS EN LA MEDICINA
TICS EN LA MEDICINALuisa Acosta
 

Similar a Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para medición de flujo sanguíneo en cirugía cardiovascular (20)

ESTUDIO PESA CNIC-SANTANDER
ESTUDIO PESA CNIC-SANTANDERESTUDIO PESA CNIC-SANTANDER
ESTUDIO PESA CNIC-SANTANDER
 
Estudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosEstudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No Invasivos
 
Estudios venosos diagnosticos
Estudios venosos diagnosticosEstudios venosos diagnosticos
Estudios venosos diagnosticos
 
Ci futuro v(1)
Ci futuro v(1)Ci futuro v(1)
Ci futuro v(1)
 
aplicaciones de la informatica en el hospital
aplicaciones de la informatica en el hospitalaplicaciones de la informatica en el hospital
aplicaciones de la informatica en el hospital
 
Ultrasonografía de doppler neuropsicologia Psicofisiologia
Ultrasonografía de doppler  neuropsicologia Psicofisiologia Ultrasonografía de doppler  neuropsicologia Psicofisiologia
Ultrasonografía de doppler neuropsicologia Psicofisiologia
 
Estudios Diagnóstivos Venosos no invasivos.pdf
Estudios Diagnóstivos Venosos no invasivos.pdfEstudios Diagnóstivos Venosos no invasivos.pdf
Estudios Diagnóstivos Venosos no invasivos.pdf
 
Estudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No InvasivosEstudios Diagnósticos Venosos No Invasivos
Estudios Diagnósticos Venosos No Invasivos
 
2016 Conferencia intervencionismo por Ultrasonido sin videos
2016 Conferencia intervencionismo por Ultrasonido sin videos2016 Conferencia intervencionismo por Ultrasonido sin videos
2016 Conferencia intervencionismo por Ultrasonido sin videos
 
Infografía – Angiógrafo – Hospital La Serena
Infografía – Angiógrafo – Hospital La SerenaInfografía – Angiógrafo – Hospital La Serena
Infografía – Angiógrafo – Hospital La Serena
 
Dosier informativo resum_octubre2012
Dosier informativo resum_octubre2012Dosier informativo resum_octubre2012
Dosier informativo resum_octubre2012
 
Lourdes
LourdesLourdes
Lourdes
 
Que datos realmente le interesan y son esenciales para el cirujano vascular.
Que datos realmente le interesan y son esenciales para el cirujano vascular.Que datos realmente le interesan y son esenciales para el cirujano vascular.
Que datos realmente le interesan y son esenciales para el cirujano vascular.
 
Que datos de ulrasonido linteresan y son eseciales al cirujano vascular
 Que datos de ulrasonido  linteresan y son eseciales al cirujano vascular Que datos de ulrasonido  linteresan y son eseciales al cirujano vascular
Que datos de ulrasonido linteresan y son eseciales al cirujano vascular
 
Angiografia digital informe
Angiografia digital informeAngiografia digital informe
Angiografia digital informe
 
Introducción al Doppler de Arterias y Venasf
Introducción al Doppler de Arterias y VenasfIntroducción al Doppler de Arterias y Venasf
Introducción al Doppler de Arterias y Venasf
 
Diagnósticos venosos no invasivos
Diagnósticos venosos no invasivosDiagnósticos venosos no invasivos
Diagnósticos venosos no invasivos
 
Valoración por imagenes de la ateromatosis carotídea
Valoración  por imagenes de la ateromatosis carotídeaValoración  por imagenes de la ateromatosis carotídea
Valoración por imagenes de la ateromatosis carotídea
 
Angio tc cerebral
Angio tc cerebralAngio tc cerebral
Angio tc cerebral
 
TICS EN LA MEDICINA
TICS EN LA MEDICINATICS EN LA MEDICINA
TICS EN LA MEDICINA
 

Más de Academia de Ingeniería de México

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Academia de Ingeniería de México
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureAcademia de Ingeniería de México
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?Academia de Ingeniería de México
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableAcademia de Ingeniería de México
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Academia de Ingeniería de México
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Academia de Ingeniería de México
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoAcademia de Ingeniería de México
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesAcademia de Ingeniería de México
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Academia de Ingeniería de México
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Academia de Ingeniería de México
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoAcademia de Ingeniería de México
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Academia de Ingeniería de México
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Academia de Ingeniería de México
 

Más de Academia de Ingeniería de México (20)

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
 
Nanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materialsNanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materials
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructure
 
Engineering the Future
Engineering the FutureEngineering the Future
Engineering the Future
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?
 
Impact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge PerformanceImpact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge Performance
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
 
El mundo real y la interdisciplina
El mundo real y la interdisciplinaEl mundo real y la interdisciplina
El mundo real y la interdisciplina
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...
 
Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénico
 
El camino real de la plata
El camino real de la plataEl camino real de la plata
El camino real de la plata
 
Importancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profundaImportancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profunda
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
 

Último

DISEÑO DE LOSAS EN UNA DIRECCION (CONCRETO ARMADO II )
DISEÑO DE LOSAS EN UNA DIRECCION  (CONCRETO ARMADO II )DISEÑO DE LOSAS EN UNA DIRECCION  (CONCRETO ARMADO II )
DISEÑO DE LOSAS EN UNA DIRECCION (CONCRETO ARMADO II )FELIXGUMERCINDOFLORE
 
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagnetico
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagneticoPresentaciónReto_Equipo6 Explicacion del reto de freno electromagnetico
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagneticoa00834109
 
ANÁLISIS MASAS PATRIMONIALES y financieros
ANÁLISIS MASAS PATRIMONIALES y financierosANÁLISIS MASAS PATRIMONIALES y financieros
ANÁLISIS MASAS PATRIMONIALES y financierosDaniel Gonzalez
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.thatycameron2004
 
PETROLEO triptico para estudiantes de educacion
PETROLEO triptico para estudiantes de educacionPETROLEO triptico para estudiantes de educacion
PETROLEO triptico para estudiantes de educacionctrlc3
 
Criterios de la primera y segunda derivada
Criterios de la primera y segunda derivadaCriterios de la primera y segunda derivada
Criterios de la primera y segunda derivadaYoverOlivares
 
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdfIMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdfJonathanFernandoRodr
 
CONTROL DE MOTORES DE CORRIENTE ALTERNA PPT
CONTROL DE MOTORES DE CORRIENTE ALTERNA  PPTCONTROL DE MOTORES DE CORRIENTE ALTERNA  PPT
CONTROL DE MOTORES DE CORRIENTE ALTERNA PPTLuisLobatoingaruca
 
4.Clase-DIAGRAMAS DE FLUJO DFD Programacion.pptx
4.Clase-DIAGRAMAS DE FLUJO DFD  Programacion.pptx4.Clase-DIAGRAMAS DE FLUJO DFD  Programacion.pptx
4.Clase-DIAGRAMAS DE FLUJO DFD Programacion.pptxalejandroconfor23
 
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppteduardosanchezyauri1
 
&PLC Ladder.pdf automatización industrial
&PLC Ladder.pdf automatización industrial&PLC Ladder.pdf automatización industrial
&PLC Ladder.pdf automatización industrialjulianmayta1
 
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingErgonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingGonzalo141557
 
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.ppt
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.pptPERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.ppt
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.pptJorgeST4
 
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOS
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOSAnálisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOS
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOSppame8010
 
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTAS
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTASGUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTAS
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTASClaudiaRamirez765933
 
problemas consolidación Mecánica de suelos
problemas consolidación Mecánica de suelosproblemas consolidación Mecánica de suelos
problemas consolidación Mecánica de suelosTefyReyes2
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadKevinCabrera96
 
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOLNORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOLPol Peña Quispe
 

Último (20)

DISEÑO DE LOSAS EN UNA DIRECCION (CONCRETO ARMADO II )
DISEÑO DE LOSAS EN UNA DIRECCION  (CONCRETO ARMADO II )DISEÑO DE LOSAS EN UNA DIRECCION  (CONCRETO ARMADO II )
DISEÑO DE LOSAS EN UNA DIRECCION (CONCRETO ARMADO II )
 
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagnetico
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagneticoPresentaciónReto_Equipo6 Explicacion del reto de freno electromagnetico
PresentaciónReto_Equipo6 Explicacion del reto de freno electromagnetico
 
ANÁLISIS MASAS PATRIMONIALES y financieros
ANÁLISIS MASAS PATRIMONIALES y financierosANÁLISIS MASAS PATRIMONIALES y financieros
ANÁLISIS MASAS PATRIMONIALES y financieros
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.
 
PETROLEO triptico para estudiantes de educacion
PETROLEO triptico para estudiantes de educacionPETROLEO triptico para estudiantes de educacion
PETROLEO triptico para estudiantes de educacion
 
Criterios de la primera y segunda derivada
Criterios de la primera y segunda derivadaCriterios de la primera y segunda derivada
Criterios de la primera y segunda derivada
 
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdfIMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
 
DESVIACION
DESVIACION DESVIACION
DESVIACION
 
CONTROL DE MOTORES DE CORRIENTE ALTERNA PPT
CONTROL DE MOTORES DE CORRIENTE ALTERNA  PPTCONTROL DE MOTORES DE CORRIENTE ALTERNA  PPT
CONTROL DE MOTORES DE CORRIENTE ALTERNA PPT
 
4.Clase-DIAGRAMAS DE FLUJO DFD Programacion.pptx
4.Clase-DIAGRAMAS DE FLUJO DFD  Programacion.pptx4.Clase-DIAGRAMAS DE FLUJO DFD  Programacion.pptx
4.Clase-DIAGRAMAS DE FLUJO DFD Programacion.pptx
 
Becas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdfBecas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdf
 
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt
699423025-ANALISIS-DE-TRABAJO-SEGURO-ATS-PPT.ppt
 
&PLC Ladder.pdf automatización industrial
&PLC Ladder.pdf automatización industrial&PLC Ladder.pdf automatización industrial
&PLC Ladder.pdf automatización industrial
 
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworkingErgonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
Ergonomía_MÉTODO_ROSA. Evaluación de puesto de trabajo de oficina - coworking
 
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.ppt
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.pptPERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.ppt
PERMEABILIDAD-DE-LOS-SUELOS-OKOK-ppt.ppt
 
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOS
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOSAnálisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOS
Análisis Combinatorio ,EJERCICIOS Y PROBLEMAS RESUELTOS
 
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTAS
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTASGUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTAS
GUIA DE SEGURIDAD PARA MAQUINAS Y HERRAMIENTAS
 
problemas consolidación Mecánica de suelos
problemas consolidación Mecánica de suelosproblemas consolidación Mecánica de suelos
problemas consolidación Mecánica de suelos
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
 
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOLNORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
 

Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para medición de flujo sanguíneo en cirugía cardiovascular

  • 1. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 1 INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍAS DOPPLER DE ULTRASONIDO PARA MEDICIÓN DE FLUJO SANGUÍNEO EN CIRUGÍA CARDIOVASCULAR Especialidad: Comunicaciones y Electrónica Subespecialidad: Ultrasonido Doppler Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras Demetrio Fabián García Nocetti Doctor en Ingeniería de Sistemas Computacionales y Automatización Fecha de ingreso: 28 de junio de 2016 Ciudad de México
  • 2. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 2 Contenido Resumen ejecutivo 3 Abstract 3 Objetivo 4 Alcance 4 1. Introducción 5 2. Antecedentes 6 3. Ultrasonido Doppler 6 4. Sistema Doppler Ultrasónico 8 4.1. Reflejantes 9 4.2. Detector Doppler Ultrasónico 9 4.3. Procesamiento de Señales Doppler 12 5. Pruebas y Resultados 14 6. Conclusiones 16 7. Referencias 16
  • 3. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 3 Resumen Ejecutivo Este trabajo describes un sistema Doppler ultrasónico para medir flujo sanguíneo. El sistema fue desarrollado para ser usado en la valoración de cirugía de implantes coronarios. La cuantificación del flujo sanguíneo en estos implantes en una tarea importante para reducir el riesgo en el proceso quirúrgico, reduciendo el riesgo tanto del proceso posquirúrgico como de muerte. El sistema se basa en una arquitectura abierta que es portátil y de bajo costo, incorporando las ventajas de sistemas cerrados de hardware dedicado. Cuenta con una interfaz gráfica de usuario para controlar y monitorear todo el sistema. Incorpora un detector Doppler ultrasónico de flujo bidireccional, condicionamiento de señal, detección de la dirección, procesamiento de señal, despliegue de espectrograma, cálculo de parámetros y un subsistema manejador de base de datos completan el sistema. La señal Doppler es procesada utilizando un número de métodos de estimación espectral, tanto clásicos como paramétricos, teniendo la facilidad de incorporar métodos alternativos de mayor resolución. El sistema está siendo evaluado en cirugías de revascularización coronaria. Palabras clave: Ultrasonido Doppler, flujometría sanguínea, procesamiento de señal, estimación espectral, revascularización coronaria, flujo bidireccional. Abstract This work describes a Doppler ultrasound system for measuring blood flow. The system developed is intended to be used for assessing coronary implants and bypass operations. Quantifying the blood flow through these implants/bypasses is an important task to ensure the chirurgical process, thus, reducing both the post-chirurgical and death risks. The system is based on an open architecture that is portable and low-cost, incorporating the advantages of expensive systems with dedicated hardware. A graphical user interface is provided for controlling and monitoring the whole system. It incorporates a pulsed-wave bi-directional Doppler ultrasound flow detector; signal conditioning, detection of direction, signal processing, spectrogram displaying, parameters calculation, and a database handling subsystem complete the system. Doppler signal is processed using both Fourier Transform- based and Parametric Model-based algorithms, having the facility to incorporate alternative higher-resolution spectral estimation methods. The system is being assessed in coronary revascularization. Keywords: Doppler ultrasound, blood flow measurement, signal processing, spectral estimation, coronary revascularization, bidirectional flow.
  • 4. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 4 Objetivo Investigar y desarrollar tecnologías Doppler de ultrasonido para medición de flujo sanguíneo aplicadas a la flujometría sanguínea de implantes cardiovasculares "in situ", permitiendo al cirujano verificar la cantidad y la calidad del flujo sanguíneo en los injertos coronarios implantados, disminuyendo el riesgo postoperatorio. La cirugía de revascularización coronaria, es una cirugía de alto riesgo para el paciente. La determinación de la permeabilidad de los injertos aorta-coronarios implantados representa una prueba de valoración del proceso de revascularización. Alcance El sistema Doppler ultrasónico se ha utilizado en más de 450 pacientes, realizando alrededor de 400 bypass coronarios. Se ha reducido el número de complicaciones de un 12% a menos de un 4%, reduciéndose por tanto la mortalidad quirúrgica de 7.2% a un 5%. Se busca incorporar otros centros de cirugía cardiovascular, tanto nacionales como internacionales, y se planea hacer extensiva la aplicación de este tipo de sistema cirugía de trasplantes y al proceso de revascularización en neurocirugía de malformaciones arterovenosas.
  • 5. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 5 1. Introducción La cardiopatía isquémica es la principal causa de muerte en muchos países, siendo la revascularización coronaria (RC) una de las principales alternativas terapéuticas para reducir la mortalidad y mejorar la calidad de vida de los pacientes. La esencia de esta solución es garantizar el flujo sanguíneo hacia el músculo cardiaco que en una persona sana se realiza a través de las arterias coronarias. Problemas diversos como altos niveles de colesterol en sangre, traen como consecuencia la reducción del diámetro de dichas arterias y la variación de la elasticidad de las mismas, reduciendo el flujo de la sangre, cual conduce con frecuencia al infarto. La técnica quirúrgica de puentes coronarios consiste en una derivación del flujo sanguíneo a través de caminos paralelos mediante el implante de otras arterias o venas del cuerpo humano, tales como la mamaria, la radial o la safena. Para verificar la calidad del implante se requiere, por un lado, poder estimar en forma cuantitativa el gasto a través del flujo sanguíneo en el injerto y por otro lado determinar la calidad del mismo. Con esto se puede aumentar la confiabilidad en el diagnóstico y el control del flujo en el sistema vascular, reduciendo la probabilidad de riesgo postoperatorio y por tanto disminuyendo la posibilidad de muerte del paciente. Este trabajo se orienta a la investigación y el desarrollo de tecnologías Doppler de ultrasonido aplicadas a la flujometría sanguínea de implantes cardiovasculares "in situ", permitiendo al cirujano verificar la cantidad y la calidad del flujo sanguíneo en los injertos coronarios recién implantados, disminuyendo en forma importante el riesgo postoperatorio. La cirugía de revascularización coronaria, como tratamiento de la cardiopatía isquémica, es una cirugía de alta complejidad y riesgo para el paciente. La determinación de la permeabilidad de los injertos aorta-coronarios implantados mediante el uso de esta tecnología representa una prueba de valoración del proceso de revascularización. Como resultado de estas actividades se ha desarrollado un sistema Doppler ultrasónico que se basa en una arquitectura portátil y modular que integra las ventajas de sistemas de alto costo y de hardware dedicado. El sistema incorpora un detector Doppler ultrasónico de flujo sanguíneo bidireccional, de onda pulsada. Los procesos de acondicionamiento de señal, detección de la dirección, procesamiento de señales, despliegue de espectrograma, cálculo de parámetros y un subsistema de manejo de base de datos, completan el sistema. Cuenta con una interfaz gráfica de usuario para controlar e interactuar con el sistema. La señal Doppler se procesa utilizando diferentes tipos de algoritmos de estimación espectral, incluyendo métodos clásicos basados en la Transformada de Fourier y en métodos paramétricos, teniendo la posibilidad de incorporar métodos alternativos de mayor resolución basados en distribuciones tiempo-frecuencia. Actualmente el sistema está siendo evaluado en un número de operaciones quirúrgicas de implantes coronarios. La tecnología asociada con este sistema ha sido desarrollada, bajo mi dirección, por un grupo de trabajo integrado por los académicos Julio Solano, Ernesto Rubio, Martín Fuentes, Antonio Contreras, Mónica Vázquez, Sergio Padilla, entre otros, del Departamento de Ingeniería de Sistemas Computacionales y Automatización (DISCA), del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (lIMAS), de la Universidad Nacional Autónoma de México (UNAM).
  • 6. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 6 2. Antecedentes Las tecnologías ultrasónicas han sido utilizadas exitosamente en el desarrollo de instrumentos para diagnóstico médico: en obstetricia, cardiología y el sistema vascular periférico, entre otros. Dichos instrumentos permiten generar tanto la imagen de alguna estructura interna del cuerpo, como la respuesta espectral asociada al flujo sanguíneo de alguna arteria, a partir de la acción de transductores ultrasónicos colocados externamente [1]. El diagnóstico mediante ultrasonido es una técnica muy bien establecida y ampliamente utilizada en casi todas las áreas de la medicina. Aunque inicialmente su desarrollo se enfocó a la obstetricia, rápidamente se le encontró un importante uso en cardiología [2]. El uso de instrumentos basados en el efecto Doppler ha permitido extraer información de fase de los ecos de estructuras en movimiento en el cuerpo (principalmente sangre) produciendo imágenes y espectrogramas, que se utilizan para estimar parámetros de presión y flujo [3]. Algunas aplicaciones clínicas incluyen la detección, mapeo y estimación de velocidad de flujo cardiaco; el diagnóstico del sistema vascular periférico (principalmente aterosclerosis), padecimientos venosos (trombosis venosa profunda) y el diagnóstico de tumores (por medio de la detección de pequeños vasos asociados con la neo-vascularización) [4]. El desarrollo continuo de las técnicas de Doppler pulsado, así como de los métodos de procesamiento de señales e imágenes ha generado un notable incremento en el uso del ultrasonido abriendo nuevas posibilidades y desplazando otros métodos invasivos hasta ahora utilizados. Tal es el caso de la detección y evaluación del flujo sanguíneo en vasos. El sistema Doppler ultrasónico, tanto continuo como pulsado, en su forma simple o en conjunto con la imagen, ha sido ampliamente usado como un método no-invasivo [5]. La frecuencia Doppler es proporcional a la velocidad media de la sangre dentro del volumen muestreado y dado que el flujo sanguíneo arterial es pulsátil, la señal Doppler presenta un espectrograma cuyas frecuencias varían en el tiempo. En condiciones ideales el espectro de potencia Doppler tiene una forma similar a un histograma de la velocidad de la sangre dentro del volumen muestreado. De esta forma el análisis de la señal Doppler produce información relativa a la evolución de la distribución de velocidad de las partículas sanguíneas en el vaso en estudio. Un incremento en el ancho de banda de las frecuencias Doppler, como resultado de turbulencia en el flujo sanguíneo, puede estar asociado con la presencia de anomalías en el flujo sanguíneo y ser utilizado para detectar algunas patologías como lesiones estenóticas. 3. Ultrasonido Doppler El proceso de detección de la señal ultrasónica de flujo sanguíneo por efecto Doppler, consiste en que al irradiar las partículas que componen la sangre con un haz ultrasónico, de frecuencia fija fo, las ondas ultrasónicas inciden en el torrente sanguíneo y la velocidad con que se mueven dichas partículas modifica la frecuencia de la señal emitida, produciendo una señal de eco (RF) con frecuencias muy próximas a dicha señal, la cual está compuesta por una serie de frecuencias que representan el perfil de velocidades del flujo sanguíneo.
  • 7. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 7 Este principio de detección se ilustra en la figura 1, donde la señal Doppler ultrasónica de flujo sanguíneo se encuentra contenida en la señal recibida [2][3]. Figura 1. Detección de la señal Doppler de ultrasonido asociada con el flujo sanguíneo. Las señales Doppler ultrasónicas de flujo se representan típicamente en la forma de un espectrograma como se muestra en la figura 2, donde el eje horizontal en el Tiempo[s], el eje vertical es la Frecuencia [kHz] o Velocidad [mm/s] y las amplitudes de las frecuencias son representadas mediante una escala de colores [1]. Figura 2. Espectrograma de la señal Doppler ultrasónica de un ciclo cardiaco (ventana Hanning de 512 puntos, segmentos de 10 ms, amplitud de la señal escalada en un rango dinámico de 12 dB) En el cuerpo humano, algunas arterias del sistema vascular, pueden presentar flujo en sentido directo o inverso, tal es el caso de la arteria humeral y la arteria femoral. Una curva típica de frecuencia media de una arteria femoral durante un ciclo cardiaco se muestra en la figura 3, donde también se puede observar en el sonograma que el flujo sanguíneo presenta
  • 8. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 8 dos sentidos en su dirección respecto a la posición del transductor, convencionalmente las frecuencias positivas corresponden al flujo directo y las negativas, al flujo inverso. Figura 3. Curva típica de frecuencia media del flujo sanguíneo de una arteria femoral durante un ciclo cardiaco y su sonograma correspondiente 4. Sistema Doppler Ultrasónico Un sistema Doppler ultrasónico que se basa en una arquitectura portátil y modular, que integra las ventajas de sistemas de alto costo y de hardware dedicado. El sistema incorpora un detector Doppler ultrasónico de flujo sanguíneo bidireccional, de onda pulsada. Los procesos de acondicionamiento de señal, detección de la dirección, procesamiento de señales, despliegue de espectrograma, cálculo de parámetros y un subsistema de manejo de base de datos, completan el sistema. Cuenta además con una interfaz gráfica de usuario para controlar e interactuar con el sistema, figura 4. Figure 4. Sistema Doppler ultrasónico para medición de flujo sanguíneo.
  • 9. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 9 4.1 Reflejantes La presencia de reflejantes es fundamental para la generación de la señal Doppler. En el caso de la sangre, éstos son en su gran mayoría conformados por células rojas (eritrocitos, 5 x 106/mm3), y aunque otros componentes también dispersan el ultrasonido, en el rango de frecuencias de diagnóstico, su contribución es despreciable [1], figura 5. Figura 5. Composición de la sangre 4.2 Detector Doppler ultrasónico Los detectores Doppler ultrasónicos de flujo sanguíneo se pueden clasificar de acuerdo a su modo de operación en dos tipos: Modo Continuo y Modo Pulsado. A su vez pueden ser no-direccional o bi-direccional. Este último entrega señales que mediante un procesamiento adicional permite la separación del sentido de la dirección del flujo [1]. El detector Doppler más simple que se desarrolló operó en modo continuo y uso dos cerámicas piezoeléctricas (PZT) una para transmitir y otra para recibir continuamente las ondas ultrasónicas. Estos dispositivos no tienen la capacidad para delimitar el volumen de muestreo deseado, como se muestra en la figura 6(a). Nótese que el transductor emite una señal con frecuencia fija, irradiando sobre 2 vasos colocados en el campo de acción del haz ultrasónico. La onda ultrasónica recibida contiene la información mezclada del flujo de ambos vasos. Por lo que resulta imposible detectar la información correspondiente a cada vaso. En este trabajo se ha desarrollado el denominado detector Doppler pulsado, ver figura 6(b), el cual requiere de una sola cerámica en el transductor, que se usa para emitir y recibir las ondas ultrasónicas. Figura 6. Modo de operación de los detectores Doppler: a) continuo y b) pulsado.
  • 10. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 10 La mayoría de los sistemas de flujometría Doppler ultrasónicos que detectan el sentido del flujo, utiliza las señales producto de la demodulación homodina en cuadratura como parte de los métodos para la detección de dicho sentido, por ejemplo: Phasing Filter Technique (PFT), Extended Weaver Receiver Technique (EWRT), Complex Fast Fourier Transform (CFFT), Hilbert Transform Method (HTM), Spectral Translocation Method (STM) y Time Varying Filter (TVF) [6][7][8]. La demodulación homodina en cuadratura consiste en generar, a partir de la señal RF recibida por el transductor, dos señales –una en fase y otra en cuadratura- con el propósito de separar el sentido del flujo. Estas señales idealmente deben conservar una fase relativa de 90 grados e igual amplitud en toda la banda. Sin embargo, en condiciones reales dichas características son difíciles de alcanzar debido principalmente a las tolerancias implícitas de los componentes electrónicos, generando la aparición de artefactos que dificultan la detección del sentido real de la dirección del flujo. Por otra parte, el proceso de la demodulación heterodina para la detección del sentido del flujo directo e inverso de una señal Doppler ultrasónica, consiste en trasladar la frecuencia de la portadora a una frecuencia denominada frecuencia heterodina (fH), cuyo valor debe ser mayor o igual al ancho de banda de la señal Doppler (BW) y aplicar un filtro paso bajas con frecuencia de corte de un valor igual a la suma del valor de la frecuencia heterodina más el ancho de banda de la señal Doppler (fH + BW), como se observa en la figura 7. De esta manera el sentido de la dirección representado en la señal Doppler queda separada por la frecuencia heterodina. Figura 7. Diagrama de bloques de la detección del sentido del flujo con demodulación heterodina Con el objeto de tener un resultado convencional, donde frecuencias positivas se asocian a flujo directo y frecuencias negativas a flujo inverso, la frecuencia fH del espectro resultante se debe trasladar al origen. es importante señalar que para obtener resultados equivalentes en la separación del sentido del flujo, la frecuencia de muestreo utilizada en demodulación heterodina es el doble de aquella que se utilizaría en demodulación homodina en cuadratura. Lo anterior se ilustra en la figura 8.
  • 11. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 11 Figure 8. Espectro de la señal Doppler utilizando: a) demodulación homodina en cuadratura; y b) demodulación heterodina. Debido a que este trabajo está orientado a la medición de flujo sanguíneo, los casos de estudio aquí descritos, consideran un ancho de banda BW=10 kHz. Esto se debe a que la velocidad media (v) del flujo sanguíneo está en el rango de 20 mm/s a 700 mm/s, la velocidad del ultrasonido (c) en la sangre es de 1570 m/s y la frecuencia de transmisión del transductor (f0) está en el intervalo de 4 MHz a 10 MHz [9]. Así, la frecuencia de la señal Doppler (fd) está dada por: donde θ es el ángulo entre el transductor y el sentido del flujo sanguíneo. Para el caso de la demodulación homodina la frecuencia de muestreo debe ser al menos 20 kHz; mientras que para el caso de la demodulación heterodina debe ser al menos de 40 kHz, dado que la información de interés en este último caso se encuentra en fH + BW, donde fH = 10 kHz. Se propone la implementación de un detector Doppler de flujo sanguíneo, en modo pulsado, usando demodulación heterodina, el cual forma parte de un sistema Doppler para la medición de flujo sanguíneo bi-direccional, que será utilizado para valorar las condiciones de flujo en el proceso de cirugía de revascularización coronaria [10]. Figura 9. Diagrama del detector Doppler de flujo sanguíneo en modo pulsado con demodulación heterodina
  • 12. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 12 En la figura 9 se muestra el diagrama de las etapas que integran el detector propuesto: transductor, oscilador, control, transmisor, amplificador RF, demodulador heterodino, filtro paso bajas y amplificador de audio frecuencia (AF). El demodulador heterodino se basa en un circuito mezclador Very High Frequency (VHF), doblemente balanceado y de baja potencia [10]. El circuito se ilustra en el diagrama de bloques de la figura 10. Figura 10. Diagrama de bloques del demodulador heterodino. 4.3 Procesamiento de Señales Doppler Para medir la velocidad de la sangre y monitorear su flujo, es necesario determinar la frecuencia de la señal Doppler, para lo cual existen varios métodos. Un método convencional para determinar y desplegar el contenido espectral de la señal Doppler es el empleo de un analizador de espectro de la señal en tiempo real. El contenido de frecuencias de la señal puede ser mostrado como una gráfica de amplitud de las componentes espectrales de la señal contra frecuencia (espectro de frecuencia) para cada intervalo de muestreo, figura 11. Debido a que la velocidad de la sangre dentro de las arterias es periódica, la señal Doppler es ciclo-estacionaria y por tal razón, el espectro Doppler de cada intervalo de muestreo, presenta variaciones en la frecuencia media y en la forma durante todo el ciclo cardiaco. Lo anterior hace que se utilicen intervalos muy pequeños (5-10 ms) en los que la señal Doppler puede considerarse estacionaria para su análisis espectral. Figura 11. Contenido espectral de una señala Doppler y su espectragrama
  • 13. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 13 La estimación de la densidad de potencia espectral de una señal Doppler es típicamente realizada aplicando métodos basados en la Transformada de Fourier (TF), sin embargo diversos trabajos de investigación han conducido a la realización de métodos alternativos de estimación espectral, tales como métodos paramétricos[11], así como métodos basados en distribuciones tiempo-frecuencia [12] que ofrecen una importante mejora en la resolución de frecuencia comparada con los métodos tradicionales basados en TF. El procesamiento considera diferentes métodos de estimación espectral y calcula automáticamente diversos parámetros o índices útiles para los especialistas en cardiocirugía, tales como: índice de pulsatilidad -PI, índice de resistencia –RI y flujo volumétrico, entre otros. Los módulos de procesamiento por ejemplo puede procesar las señales Doppler utilizando algoritmos basados en CFFT (Transformada Rápida de Fourier Compleja) [13] o bien algoritmos paramétricos autoregresivos (AR-Covarianza modificada) [14], para visualizar los espectrogramas correspondientes. La figura 12 muestra ejemplos de espectrogramas desplegando ventanas de 512 puntos con un frecuencia de muestreo de 11025 muestras/seg. Una ventana Hanning fue usada con un traslape de 5 ms para reducir el ruido numérico. (a) (b) Figura 12. Espectrogramas correspondientes a 6 ciclos cardiacos utilizando (a) FT-based y (b) AR-Covarianza modificada. ˆPAR fn( )= ˆσ 2 1+ˆa1[]⋅e− j2π fn +…+ˆa p[ ]⋅e− j2π fnp
  • 14. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 14 La señal Doppler es adquirida en tiempo real y segmentada en ventanas traslapadas de 2-20 ms, considerándola “cuasi estacionaria” y posteriormente procesadas con el método de estimación correspondiente. La figura 13 muestra un aspecto de la interfaz gráfica de usuario del sistema. Figura 13. Interfaz Gráfica de Usuario. 5. Pruebas y Resultados Para el desarrollo de las pruebas del sistema en el laboratorio “in vitro” se desarrolló un “phantom” de un sistema cardiovascular, que incluyó una bomba controlada electrónicamente, que emula diferentes regímenes de flujo y ritmos cardiacos a través de conductos de diámetro en el rango de 2-4 mm, figura 14. Un modelo de fluido sanguíneo fue usado para reproducir el efecto Doppler, al hacer incidir el haz generado por el sensor ultrasónico sobre el torrente del modelo. La aplicación asociada con este desarrollo permite al usuario seleccionar el diámetro de la arteria, la frecuencia del transductor y el ángulo de prueba. Permite también al usuario seleccionar la ganancia del amplificador, el rango dinámico y el método de estimación espectral correspondiente, de tal manera que el cirujano pueda visualizar el espectrograma en un monitor, figura 15. La aplicación incorpora un sistema de base de datos para capturar cada procedimiento quirúrgico que se realice durante la operación, de tal manera que se pueda tener acceso a esta información para un cualquier tipo de posprocesamiento. Adquisición en tiempo real Segmento de señal de Tv=20 ms 256 muestras Tm = 20mS / 256 Tm = 78.125 uS Fm = 12800 Hz Fmin = 1/ Tv = 50 Hz Fmax = Fm / 2 = 6400 Hz F1 = 50 Hz F2 = 100 Hz F3 = 150 Hz . . . F128= 6400 Hz Una señal Doppler de flujo sanguíneo se considera cuasi estacionaria si se procesa en segmentos cortos de 2 a 20 ms
  • 15. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 15 Figure 14. Sistema Doppler ultrasónico probado “in vitro”. . Figure 15. Sistema Doppler ultrasónico probado “in vivo”. Pruebas de prototipos in vivo
  • 16. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 16 6. Conclusiones Un sistema Doppler ultrasónico para medición de flujo sanguíneo ha sido presentado. El sistema se ha desarrollado para su uso en cirugía de implantes coronarios “bypasses”. La determinación de la permeabilidad, de los injertos aorta-coronarios implantados, mediante el uso de esta tecnología representa una prueba de valoración del proceso de revascularización. En particular la cuantificación del flujo sanguíneo en estos implantes en una tarea importante para reducir el riesgo en el proceso quirúrgico. Tanto el espectrograma asociado al flujo, como los parámetros obtenidos por el sistema proveen información cuantitativa y cualitativa del flujo sanguíneo, pudiendo detectarse posibles errores durante la cirugía tales como estenosis internas conocidas como “flaps” en el nuevo injerto implantado. El sistema se basa en una arquitectura modular, portátil y de bajo costo, incorporando las ventajas de sistemas cerrados de hardware dedicado. Cuenta con una interfaz gráfica de usuario para controlar y monitorear todo el sistema. Las señales Doppler son procesadas utilizando un número de métodos de estimación espectral, tanto clásicos como paramétricos, teniendo la facilidad de incorporar métodos alternativos de mayor resolución. El sistema ha sido probado con éxito primero “in vitro, mediante el uso de un “phantom” y también durante cirugías “in vivo”, aportando información importante sobre la calidad del flujo, y proporcionando al cirujano cardiovascular una herramienta para la detección de anomalías durante la cirugía de implantes coronarios. A la fecha este sistema se ha utilizado en más de 450 pacientes, realizando alrededor de 1,400 bypass coronarios. De acuerdo con estadísticas preliminares del grupo de cirujanos cardiovasculares que se ha utilizado este sistema, se ha reducido el número de complicaciones de un 12% a menos de un 4%, reduciéndose por tano la mortalidad quirúrgica de 7.2% a un 5%. En una nueva etapa se busca incorporar otros centros de cirugía cardiovascular, tanto nacionales como internacionales, y se planea hacer extensiva la aplicación de este tipo de sistema cirugía de trasplantes (riñón, hígado y corazón) y al proceso de revascularización en neurocirugía de malformaciones arterovenosas. 7. Referencias 1. Evans DH, McDicken WN. Doppler ultrasound, physics, instrumentation, and signal processing, John Wiley & Sons Ltd., Second Edition, 2000. 2. Cavaye MD, White RA. Arterial Imaging -Modern and Developing Technology. Chapman & Hall Medical, London.1993. 3. Powis RL, Powis WJ. A Thinker’s Guide to Ultrasonic Imaging. Urban and Schwarzenberg. 1984. 4. Fish PJ. Physics and Instrumentation of Diagnostic Medical Ultrasound, John Wiley & Sons, Chichester, U.K. 1990.
  • 17. Investigación y Desarrollo de Tecnologías Doppler de Ultrasonido para Medición de Flujo Sanguíneo en Cirugía Cardiovascular Especialidad: Comunicaciones y Electrónica, Subespecialidad: Ultrasonido, Gran Reto de la Ingeniería Mexicana: Tecnologías Habilitadoras 17 5. Nelson TR, Pretorius DH. The Doppler signal: Where does it come from and what does it mean?,” Am. J. Roent., vol. 151, pp. 439-447, 1988. DOI: 10.2214/ajr.151.3.439. 6. Aydin RN. Time varying filtering approach for simulation of ultrasonic Doppler signals,” J. Comp. Sim. & Mod. Med., vol. 1, no. 1, pp. 67-76, 2000. 7. Aydin RN. Computerized Graft Monitoring. Thesis submitted to the University of Leicester for the degree of Doctor of Philosophy. 1994. 8. Aydin RN, Evans DH. Quadrature to directional format conversion of Doppler signals using digital methods,” Phys. Meas., vol. 15, pp. 181-199, 1994. DOI: 10.1088/0967- 3334/15/2/007. 9. Atkinson P. A fundamental interpretation of ultrasonic Doppler velocimeter,” Ultrasound Med. Biol., vol. 2, no. 2, pp. 107-111, 1976. DOI: http://dx.doi.org/10.1016/0301-5629(76)90018-1. 10. García F., Solano J., Fuentes M., Rubio E. “Detección del sentido del flujo sanguíneo utilizando demodulación heterodina para un sistema Doppler ultrasónico y su validación mediante simulación”. Revista Mexicana de Ingeniería Biomédica, Vol. 36, No. 1, Ene-Abr 2015, pp. 23-31. ISSN 0188-9532. 11. Solano J, García NDF, Ruano MG. High Performance Parallel-DSP Computing in Model-based Spectral Estimation. Microprocessors and Microsystems (Elsevier), 1999; 23(6): 337-344. 12. García NF, Solano GJ, Rubio AE, Moreno HE. Parallel Computing in Time-Frequency Distributions for Doppler Ultrasound Blood Flow Instrumentation. Revista Mexicana de Ingeniería Biomédica 2001; XXII(1): 12-19. 13. J.A. Jensen, Estimation of Blood Velocities Using Ultrasound, Cambridge Univ. Press, UK, 1996. 14. M.G. Ruano, D.F. Garcıa Nocetti, P.J. Fish, P.J. Fleming, Alternative parallel implementations of an AR-modified covariance spectral estimator for diagnostic ultrasonic blood flow studies, Parallel Comput. 19 (1993) 463–476.