Solución Posible: Es cualquier conjunto
de valores de la variable que satisface el
sistema de ecuaciones de la restricción.
Solución Posible Básica: Es aquella
solución posible en la que ninguna
variable toma valores negativos.
Solución Básica Posible Degenerada:
Solución básica posible en la que al
menos una variable toma el valor cero.
Solución Óptima: Es aquella solución
básica posible que optimiza a la función
objetivo
ESTRUCTURA DE UN MODELO DE PL
FUNCIÓN OBJETIVO
Consiste en optimizar el
objetivo que persigue
una situación la cual es
una función lineal de las
diferentes actividades
del problema, la función
objetivo se maximiza o
se minimiza
VARIABLES DE DECISIÓN
. Son las incógnitas del
problema, La definición
de las variables es el
punto clave y
básicamente consiste
en l0s niveles de todas
las actividades que
pueden llevarse a cabo
en el problema a
formular
RESTRICCIONES ESTRUCUTURALES.
Diferentes requisitos que
deben cumplir cualquier
solución para que
pueda llevarse a cabo,
dichas restricciones
pueden ser de
capacidad, mercado,
materia prima, calidad,
balance de materiales,
etc.
CONDICIÓN TÉCNICA.
Todas las variables deben
tomar valores positivos,
GRÁFICA DE
DESIGUALDADES
Y CONTORNOS
Gráfica de la igualdad.
Convierta la desigualdad
en igualdad y grafique la
recta
Escoja un
punto de
ensayo
Evalúe el primer
miembro de la expresión
Determine si el
punto de
ensayo satisface
la desigualdad.
EL MÉTODO GRÁFICO.
El método gráfico es una
forma fácil para resolver
problemas de Programación
Lineal, siempre y cuando el
modelo conste de dos
variables
1. Hallar las restricciones del
problema
2. Las restricciones de no
negatividad Xi ≥ 0 confían
todos los valores posibles.
3. Sustituir ≥ y ≤ por (=) para
cada restricción, con lo cual
se produce la ecuación de
una línea recta
4. Trazar la línea recta
correspondiente a cada
restricción en el plan, el área
correspondiente a cada
restricción lo define el signo
correspondiente a cada
restricción (≥ ó ≤)
5. El espacio en el cual se
satisfacen las tres
restricciones es el área
factible
6. Las líneas paralelas que
representan la función
objetivo se trazan mediante
la asignación de valores
arbitrarios a fin de determinar
la pendiente
7. La solución óptima puede
determinarse al observar la
dirección en la cual aumenta
la función objetivo(Z)
CONJUNTO CONVEXO. Un conjunto C es convexo si el
segmento rectilíneo que une cualquier par de puntos de C
se encuentra totalmente en C
CONJUNTO CONVEXO CONJUNTO NO CONVEXO
VARIABLESDEHOLGURAY
VARIABLESDEEXCEDENTE
Variable de holgura.
Variable agregada al lado izquierdo de una restricción de
"menor o igual que" para convertir la restricción en una
igualdad. El valor de esta variable comúnmente puede
interpretarse como la cantidad de recurso no usado.
6X + 3Y ≤ 12 6X+3Y+h=24
Variable de Excedente.
Variable restada del lado izquierdo de una restricción de
"mayor o igual que" para convertir dicha restricción en
una igualdad. Generalmente el valor de esta variable
puede interpretarse como la cantidad por encima de
algún nivel mínimo requerido.
2X + 3Y ≥14 2X+3Y-h =14
RESTRICCIÓN ACTIVA.
Dada una solución factible, una restricción es activa si al
sustituir el valor de las variables se cumple la igualdad. Es
decir, para esa solución el valor de la holgura o
excedente, según sea el caso es CERO
RESTRICCIÓN INACTIVA.
Dada una solución factible, una restricción es inactiva si al
sustituir el valor de las variables no se cumple la igualdad.
Es decir, para esa solución el valor de la holgura o
excedente, según sea el caso es DIFERENTE A CERO

unidad 2

  • 1.
    Solución Posible: Escualquier conjunto de valores de la variable que satisface el sistema de ecuaciones de la restricción. Solución Posible Básica: Es aquella solución posible en la que ninguna variable toma valores negativos. Solución Básica Posible Degenerada: Solución básica posible en la que al menos una variable toma el valor cero. Solución Óptima: Es aquella solución básica posible que optimiza a la función objetivo
  • 2.
    ESTRUCTURA DE UNMODELO DE PL FUNCIÓN OBJETIVO Consiste en optimizar el objetivo que persigue una situación la cual es una función lineal de las diferentes actividades del problema, la función objetivo se maximiza o se minimiza VARIABLES DE DECISIÓN . Son las incógnitas del problema, La definición de las variables es el punto clave y básicamente consiste en l0s niveles de todas las actividades que pueden llevarse a cabo en el problema a formular RESTRICCIONES ESTRUCUTURALES. Diferentes requisitos que deben cumplir cualquier solución para que pueda llevarse a cabo, dichas restricciones pueden ser de capacidad, mercado, materia prima, calidad, balance de materiales, etc. CONDICIÓN TÉCNICA. Todas las variables deben tomar valores positivos,
  • 3.
    GRÁFICA DE DESIGUALDADES Y CONTORNOS Gráficade la igualdad. Convierta la desigualdad en igualdad y grafique la recta Escoja un punto de ensayo Evalúe el primer miembro de la expresión Determine si el punto de ensayo satisface la desigualdad.
  • 4.
    EL MÉTODO GRÁFICO. Elmétodo gráfico es una forma fácil para resolver problemas de Programación Lineal, siempre y cuando el modelo conste de dos variables 1. Hallar las restricciones del problema 2. Las restricciones de no negatividad Xi ≥ 0 confían todos los valores posibles. 3. Sustituir ≥ y ≤ por (=) para cada restricción, con lo cual se produce la ecuación de una línea recta 4. Trazar la línea recta correspondiente a cada restricción en el plan, el área correspondiente a cada restricción lo define el signo correspondiente a cada restricción (≥ ó ≤) 5. El espacio en el cual se satisfacen las tres restricciones es el área factible 6. Las líneas paralelas que representan la función objetivo se trazan mediante la asignación de valores arbitrarios a fin de determinar la pendiente 7. La solución óptima puede determinarse al observar la dirección en la cual aumenta la función objetivo(Z)
  • 5.
    CONJUNTO CONVEXO. Unconjunto C es convexo si el segmento rectilíneo que une cualquier par de puntos de C se encuentra totalmente en C CONJUNTO CONVEXO CONJUNTO NO CONVEXO
  • 6.
    VARIABLESDEHOLGURAY VARIABLESDEEXCEDENTE Variable de holgura. Variableagregada al lado izquierdo de una restricción de "menor o igual que" para convertir la restricción en una igualdad. El valor de esta variable comúnmente puede interpretarse como la cantidad de recurso no usado. 6X + 3Y ≤ 12 6X+3Y+h=24 Variable de Excedente. Variable restada del lado izquierdo de una restricción de "mayor o igual que" para convertir dicha restricción en una igualdad. Generalmente el valor de esta variable puede interpretarse como la cantidad por encima de algún nivel mínimo requerido. 2X + 3Y ≥14 2X+3Y-h =14 RESTRICCIÓN ACTIVA. Dada una solución factible, una restricción es activa si al sustituir el valor de las variables se cumple la igualdad. Es decir, para esa solución el valor de la holgura o excedente, según sea el caso es CERO RESTRICCIÓN INACTIVA. Dada una solución factible, una restricción es inactiva si al sustituir el valor de las variables no se cumple la igualdad. Es decir, para esa solución el valor de la holgura o excedente, según sea el caso es DIFERENTE A CERO