BACHILLER:
OSKARRAMIREZ C.I:19.265.501
MATEMATICA II
BARQUISIMETO, 2015 SEPTIEMBRE
REPUBLICA BOLIVARIANA DE VENEZUELA
MINI...
La longitud de arco de una curva, también llamada rectificación de una curva, es la
medida de la distancia o camino recorr...
Si la primera derivada de una función es continua en [a,b] se dice que es suave y su
grafica es una curva suave
Imagen 2.0...
Si la función está definida por coordenadas polares donde las coordenadas radiales y
el ángulo polar están relacionados me...
Existen varios tipos de curvas tales como:
CURVA ELEMENTAL:
Un conjunto γ de puntos del espacio se denominará curva elemen...
Un conjunto δ de puntos del espacio se denominara curva simple si es conjunto
conexo y si para todo punto W del mismo exis...
que su longitud de arco está bien definida y es posible calcular su longitud) .La
curva :
Es continua pero no diferenciabl...
CURVA SUAVE:
Se le llama curva suave a la curva que no posee puntos angulosos. Un ejemplo puede
ser el círculo, la elipse,...
Próxima SlideShare
Cargando en…5
×

Longitud de curvas

400 visualizaciones

Publicado el

Longitud de Una Curva

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
400
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
0
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Longitud de curvas

  1. 1. BACHILLER: OSKARRAMIREZ C.I:19.265.501 MATEMATICA II BARQUISIMETO, 2015 SEPTIEMBRE REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACION SUPERIOR UNIVERSIDAD TECNOLOGICA “ANTONIO JOSE DE SUCRE”
  2. 2. La longitud de arco de una curva, también llamada rectificación de una curva, es la medida de la distancia o camino recorrido a lo largo de una curva o dimensión lineal. Históricamente, ha sido difícil determinar esta longitud en segmentos irregulares; aunque fueron usados varios métodos para curvas específicas, la llegada del cálculo trajo consigo la fórmula general para obtener soluciones cerradas para algunos casos. Formula General La longitud de una curva plana se puede aproximar al sumar pequeños segmentos de recta que se ajusten a la curva, esta aproximación será más ajustada entre más segmentos sean y a la vez sean lo más pequeño posible. , escogiendo una familia finita de puntos en C, y aproximar la longitud mediante la longitud de la poligonal que pasa por dichos puntos. Cuantos más puntos escojamos en C, mejor sería el valor obtenido como aproximación de la longitud de C. Imagen 1.0
  3. 3. Si la primera derivada de una función es continua en [a,b] se dice que es suave y su grafica es una curva suave Imagen 2.0 Cuando la curva es suave, la longitud de cada pequeño segmentos de recta se puede calcular mediante el teorema de Pitágoras (dL)2= (dx)2+ (dy)2. Si f es suave en [a,b], la longitud de la curva de f(x) desde a hasta b es: En el caso de una curva definida paramétricamente mediante dos funciones dependientes de t como e , la longitud del arco desde el punto hasta el punto se calcula mediante:
  4. 4. Si la función está definida por coordenadas polares donde las coordenadas radiales y el ángulo polar están relacionados mediante , la longitud del arco comprendido en el intervalo , toma la forma: En la mayoría de los casos, no hay una solución cerrada disponible y será necesario usar métodos de integración numérica. Por ejemplo, aplicar esta fórmula a la circunferencia de una elipse llevará a una integral elíptica de segunda especie. Entre las curvas con soluciones cerradas están la catenaria, el círculo, la cicloide, la espiral logarítmica, laparábola, la parábola semicúbica y la línea recta. Un caso un poco más general que el último, es el caso de coordenadas curvilíneas generales (e incluso el de espacios no euclídeos) caracterizadas por un tensor métrico donde la longitud de una curva viene dada por: Por ejemplo el caso de coordenadas polares se obtiene de este haciendo:
  5. 5. Existen varios tipos de curvas tales como: CURVA ELEMENTAL: Un conjunto γ de puntos del espacio se denominará curva elemental si es la imagen obtenida en el espacio por una aplicación topológica de un segmento abierto de recta. Sea γ una curva elemental y sea a < t < b el segmento abierto del que se obtiene la aplicación f de la curva correspondiente al punto t del segmento. El sistema de igualdades x = f1(t), y= f2(t), z= f3(t) Se denominan ecuaciones de la curva γ en forma paramétrica. CURVA SIMPLE: Las curvas, según esta definición, pueden ser muy intrincadas de muy diverso tipo. Con el objetivo de evitar auto intersecciones, puntos singulares y a los extremos, se define el concepto de curva simple como aquella curva tal que para todo punto p existe un Ω entorno abierto de p para el cual admite una representación de clase con . La definición de Jordan ha sido cuestionada a partir del descubrimiento del italiano Giuseppe Peano. Este matemático demostró en 1890 que un cuadrado relleno entra dentro de la definición de Jordan, pues logró representar todos los puntos del mismo utilizando dicha definición: trazó todos los puntos del cuadrado con una única curva. Pero es claro que un cuadrado no es en el sentido convencional del término, una curva. Debido a ello, y al descubrimiento posterior de otros casos similares a los de Peano, se ha planteado la necesidad de mejorar la definición de la definición de lo que es, matemáticamente, una curva.
  6. 6. Un conjunto δ de puntos del espacio se denominara curva simple si es conjunto conexo y si para todo punto W del mismo existe un entorno tal que la parte de δ comprendida en él forma una curva elemental. CURVA PLANA: En un sistema de coordenadas cartesianas se han representado las curvas de algunas raíces, así como de sus potencias, en el intervalo [0,1]. La diagonal, de ecuación y = x, es eje de simetría entre cada curva y la curva de su inversa. Una curva plana es aquella que reside en un solo plano y puede ser abierta o cerrada. La representación gráfica de una función real de una variable real es una curva plana.6 CURVA DIFERENCIABLE: Una curva se llama diferenciable cuando la función es diferenciable. Si además la función anterior es inyectiva en el intervalo entonces la curva admite un vector tangente único en cada punto y es rectificable (lo cual significa
  7. 7. que su longitud de arco está bien definida y es posible calcular su longitud) .La curva : Es continua pero no diferenciable, por lo que su longitud entre el punto (0,0) y cualquier otro punto de la misma no puede calcularse. CURVA CERRADA: Una curva diferenciable es cerrada cuando cuando . Si además, la función es inyectiva en el intervalo entonces se dice que la curva es una curva cerrada simple. Una curva cerrada simple es homeomorfa al círculo , es decir, tiene la misma topología de un anillo. La curva dada por: Es una curva diferenciable cerrada, de hecho dicha curva resulta ser una elipse de semiejes a y b. Se llama curva cerrada aquella curva homeomorfa con una circunferencia. Se llama entorno de un punto W de una curva simple δ la parte común de la curva δ y un entorno espacial del punto W. Por tanto, todo punto de una curva simple posee un entorno que conforma una curva elemental.
  8. 8. CURVA SUAVE: Se le llama curva suave a la curva que no posee puntos angulosos. Un ejemplo puede ser el círculo, la elipse, la parábola, entre otros. Una curva que no es suave puede ser, por ejemplo, una cicloide. Cicloide. Formalmente, dada una curva C representada por la ecuación paramétrica: En un intervalo I cualquiera,es suave si sus derivadas son continuas en el intervalo I y no son simultáneamente nulas, excepto posiblemente en los puntos terminales del intervalo. SUAVE POR PARTES: Una curva C es suave por partes si es suave en todo intervalo de alguna partición de I, es decir que el intervalo puede dividirse en un número finito de subintervalos, en cada uno de los cuales C es suave.

×