SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Solicita una cotización a través de nuestros correos. 
Maestros Online Mecánica de Materiales Apoyo en ejercicios 
Servicio de asesorías y solución de ejercicios 
Ciencias_help@hotmail.com
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Parte 1: Identificando materiales 1. De manera individual, elabora una lista de los materiales que conozcas que se utilizan para construir (ya sea cosas u objetos). 2. Contesta las siguientes preguntas: a. ¿Todos los materiales son propensos a deformarse?, ¿por qué? b. ¿Qué fuerzas se deben aplicar a un material para que sufra una deformación? c. ¿Cuáles crees que sean los materiales que resistan más una deformación? 3. Reúnanse en parejas. Recuerden establecer un medio de comunicación como Skype o Google Docs (si el maestro aún no hace los equipos puedes trabajar de manera individual). 4. Contesten el siguiente ejercicio: Un poste circular hueco ABC soporta una carga P1=1500 lb que actúa en su parte superior. Una segunda carga P2 está distribuida uniformemente alrededor de la placa de cubierta del poste en B. El diámetro y el espesor de las partes superior e inferior del poste son dAB= 1.50 in, tAB =0.35 in, dBC=2.15 y tBC=0.275 in, respectivamente. a. Calculen el esfuerzo normal ζAB en la parte superior del poste. b. Si se desea que la parte inferior del poste tenga el mismo esfuerzo de comprensión que la parte superior, ¿cuál será la magnitud de la carga P2? c. Si P1 permanece en 1500 lb y P2 ahora se fija en 2000 lb, ¿qué espesor nuevo de BC resultará en el mismo esfuerzo de comprensión en las dos partes?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Fuente: Gere, J. M., y Goodno, B. J. (2009). Mecánica de materiales (7ma ed.). Santa Fe, México: CENGAGE Learning. 
5. Identifiquen las fórmulas que deben de utilizar para contestar el problema, vayan reuniéndolas para que al final formen un formulario. Parte 2: Deformaciones en materiales 6. Continúen trabajando con los siguientes ejercicios, recuerden seguir completando su formulario. Un tubo circular de aluminio con longitud L=400mm está cargado en comprensión por fuerzas P. Los diámetros interior y exterior son 80mm y 40mm, respectivamente. Se coloca un deformímetro en el exterior de la barra para medir las deformaciones unitarias normales en la dirección longitudinal. a. Si la deformación unitaria es ε=450 x 10-6 ¿Cuál es el acortamiento de la barra? b. Si el esfuerzo de comprensión en la barra se propone sea de 30 MPa, ¿Cuál debe ser la carga P? 
Una puerta trasera de una camioneta soporta una caja (Wc= 200 lb), como se muestra en la figura. La puerta pesa WT= 50 lb y está soportada por dos cables (en la figura solo se ve uno). Cada cable tiene un área transversal efectiva Ae= 0.025 in2. a. Encuentren la fuerza de tensión T y el esfuerzo normal ζ en cada cable. b. Si cada cable se estira = 0.01 in debido al peso tanto de la caja como de la puerta, ¿cuál es la deformación unitaria promedio en el cable?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Parte 3: Completando el formulario 7. ¿Cuántas fórmulas llevan hasta ahora? Observen si las fórmulas que tienen les ayudan a contestar el siguiente problema: Una barra redonda ACB de longitud 2L gira con respecto a un eje que pasa por el punto medio C, con una velocidad angular constante ζ (radiales por segundo). El material de la barra tiene un peso específico . a. ¿Cuál es la fórmula para el esfuerzo de tensión ζ en la barra como una función de la distancia x desde el punto medio C? b. ¿Cuál es el esfuerzo de tensión máximo ζmax? 
8. Utilicen el foro de la actividad para compartir las fórmulas que utilizaron en esta actividad. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Entregable(s): Documento con los procedimientos de los problemas así como el formulario. Parte 1: Los materiales y sus propiedades
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
1. De manera individual, responde las siguientes preguntas: a. ¿Cuáles consideras que son las gráficas que más ayudan en la selección de los materiales con base en sus propiedades mecánicas? b. ¿Qué pruebas se requieren realizar para obtener las gráficas características de los materiales? c. ¿Qué tipo de máquinas se requieren para realizar pruebas de caracterización de materiales? d. ¿Cuáles son los laboratorios que se encargan de certificar las propiedades de los materiales? 2. Reúnete en parejas, compartan sus hallazgos con sus compañeros utilizando el foro de la actividad. 3. Contesten el siguiente problema, las fórmulas que utilicen agréguenlas al formulario que previamente fueron desarrollando. Una barra de acero estructural que tiene el diagrama esfuerzo-deformación unitaria que se muestra en la figura tiene una longitud de 48 in. El esfuerzo de fluencia del acero es de 42 ksi, y la pendiente de la parte inicial lineal de la curva esfuerzo-deformación unitaria es 30 x 103 ksi. La barra se carga axialmente hasta que se alarga 0.30 in y luego se quita la carga. a. ¿Cuál es la diferencia entre la longitud final de la barra y su longitud original? Parte 2: Los materiales y sus propiedades 4. En equipo de 2 personas, por medio de Chat, Skype o Google Docs, contesten ahora los siguientes problemas: Una barra circular de una aleación de magnesio tiene una longitud de 5000 mm. La barra se carga en tensión hasta obtener un alargamiento de 5.0 mm y luego se quita la carga. a. ¿Cuál es la deformación permanente de la barra?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
b. Si la barra se vuelve a cargar, ¿cuál es el límite de proporcionalidad? 
Un alambre con longitud L= 3.5ft y diámetro d= 0.250 in se estira mediante fuerzas de tensión P=800 lb. El alambre está hecho de una aleación de cobre que tiene una relación esfuerzo- deformación unitaria que se puede describir mediante la siguiente ecuación: En donde ε es adimensional y ζ tiene unidades de kips por pulgada cuadrada (ksi). a. Elaboren un diagrama esfuerzo-deformación unitaria para el material. b. Determinen la elongación del alambre debida a las fuerzas P. c. Si se quitan las fuerzas, ¿cuál es la deformación permanente de la barra? d. Si se aplican de nuevo las fuerzas, ¿cuál es el límite de proporcionalidad? Parte 3: Aplicando la Ley de Hooke y Poisson 5. Ahora utilicen la Ley de Hooke y de Poisson para contestar los siguientes problemas. Para esto supongan que los materiales se comportan de manera linealmente elástica. Una barra redonda de alta resistencia que se usa en una grúa grande tiene un diámetro d = 2.50 in. El acero tiene un módulo de elasticidad E=29x106 psi y una relación de Poisson v=0.29. Debido a requisitos de holgura, el diámetro de la barra está limitado a 2.502 in, cuando se comprime por fuerzas axiales. a. ¿Cuál es la carga máxima de comprensión Pmax permitida?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Fuente: Gere, J. M., y Goodno, B. J. (2009). Mecánica de materiales (7ma ed.). Santa Fe, México: CENGAGE Learning. 
Una barra de polietileno tiene un diámetro d1 = 3.0 in, y se coloca dentro de un tubo de acero que tiene un diámetro interior d2 = 3.01 in. Luego la barra de polietileno se comprime por una fuerza axial P. a. ¿Cuál es el valor de la fuerza P que hará que se cierre el espacio entre la barra de polietileno y el tubo de acero? Para esto supongan que el polietileno E=200ksi y v=0.4. 
Se lleva a cabo un ensayo de tensión en una probeta de bronce que tiene un diámetro de 10 mm utilizando una longitud calibrada de 50 mm. Cuando una carga de tensión P alcanza un valor de 30 kN, la distancia entre las marcas de calibración aumenta 0.222 mm. a. ¿Cuál es el módulo de elasticidad de E del bronce? b. Si el diámetro disminuye 0.00830 mm, ¿cuál es la relación de Poisson? 
Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Instrucción para el alumno:
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
1. Enlista al menos 20 componentes diferentes que sean utilizados en la construcción de un edificio, casa, puente o estadio, agrúpalos de mayor a menor con base en la resistencia que creas que cada uno de ellos tiene. 2. Enlista las propiedades mecánicas más importantes que se tienen que encontrar en los 20 materiales que listaste hace un momento. Lista al menos 5 propiedades mecánicas con las que se puedan realizar cálculos y diferenciación de sus características de desempeño. 3. Resuelve los siguientes problemas: Problema 1. Un anuncio hecho de una barra prismática sostiene una carga P1 = 3 klb en la punta, y una segunda carga P2 en el cambio de geometría, como se muestra en la figura. En AB la sección transversal es cuadrada, con lado de 2pulg; y en BC es una sección circular con 3pulg de diámetro. Calcula el esfuerzo normal en la parte rectangular del anuncio, y determina de qué magnitud tiene que ser la carga P2 para que la parte cilíndrica tenga el mismo esfuerzo. 
Problema 2. Una bola de acero de 200Kg cuelga de la estructura de una máquina de demolición a través de un cable de 25mm de diámetro y 3m de largo. Calcula el esfuerzo en el extremo superior del cable sin considerar el peso del cable.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Problema 3. Un tubo de cobre con longitud de 50cm se carga a compresión por medio de la fuerza P. Los diámetros exterior e interior son de 6cm y 5cm respectivamente. Si la deformación unitaria que se midió es de 550x10-6¿Cuál es la longitud de la barra bajo compresión?, y ¿Cuál es el valor de P para que resulte un esfuerzo de 50MPa? 
Problema 4. Una grúa industrial está cargado una masa de 4500kg, tiene un cable que le ayuda a soportar el peso cuya área efectiva es de A=0.003m2. Las dimensiones de la grúa son H=3m, L1=6m y L2=2m. Calcula el esfuerzo de tensión en el cable y la deformación unitaria promedio, si el cable se estira 9.7mm 
Problema 5. Tres placas de 10mm de espesor están unidas por dos tornillos M10, y son sometidas a una carga P de 60kN, como muestra la figura. Calcula el esfuerzo cortante máximo en los tornillos.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Problema 6. Observa tu entorno y selecciona al menos cinco elementos o estructuras (sillas, pizarrón, ruedas de escritorio, etc.). Estima y asigna valores de las variables asociadas para calcular los esfuerzos axiales, ya sean de compresión o tensión, y los esfuerzos de corte a los que están sometidos en su uso. No olvides desarrollar el diagrama de cuerpo libre correspondiente, e integrar tus procedimientos; puedes usar fotografías para describir los objetos que estudiaras. 4. ¿Cuáles son los materiales que comúnmente se usan en la construcción de un edificio? Explica cómo es que la evolución de los materiales ha hecho que los edificios puedan soportar tener más pisos a lo alto que antes. 5. Enlista al menos 5 desarrollos de materiales utilizados en la construcción, y que hace 30 años no se utilizaban. Parte 1: Identificando tu entorno 1. De manera individual, da respuesta a las siguientes cuestiones que se presentan a continuación: a. Lista al menos 12 componentes en tu entorno sujetos a cargas axiales, o componentes sujetos a torsión (alguna sugerencia podrían ser las patas de las mesas y sillas, así como lámparas y puertas). b. Realiza un diagrama de cuerpo libre para cada uno de los elementos que hayas encontrado (si no puedes escribir los valores de cargas, puedes representarlos por letras o palabras que hagan referencia a la carga). c. Infiere lo que ocurriría si es que se cambiaran los materiales que se están utilizando para cada uno de los componentes; qué pasaría si, conservando la forma, se cambiaran los elementos a vidrio, madera, acero o titanio. Justifica tus hallazgos. Parte 2: Experimento y validación de problemas 2. Reúnanse en parejas por medio de chat o Skype para resolver lo siguiente.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
3. Cada integrante deberá de hacer el siguiente experimento. Para esto, deberán tomarse fotos o video sobre cómo lo fueron realizando. a. Coloca los tres vasos formando un triángulo equilátero, cada uno a una distancia de 10 cm como máximo. b. Coloca los tres huevos de manera vertical, descansando una parte del blanquillo en el canto de los vasos. c. Coloca la base circular por encima de los huevos, asegurando, en la medida de lo posible, que quede balanceada y de manera horizontal. d. Coloca el contenedor de agua por encima de la base. e. Inicia vertiendo el agua dentro del contenedor de manera que se vaya llenando; a cada litro que vayas vaciando puedes ir inspeccionando visualmente la condición actual de los huevos sin mover el resto de la estructura. f. Al terminar de verter el líquido, puedes ir añadiendo más pesos por encima, hasta encontrar el peso total que puede soportar la base de huevos. g. Como procedimiento adicional, puedes colocar los huevos de manera horizontal y confirmar cuál es el peso máximo que podrán soportar. h. Realiza un diagrama de cuerpo libre del sistema físico y escribe una conclusión del experimento. Justifica tus resultados. i. Compartan sus fotografías o video con su compañero y comenten lo siguiente: i. ¿Cuál es la razón por la que el grupo de huevos soporta mucho más peso de manera axial que de manera transversal? ii. ¿Qué estructuras tienen un comportamiento similar al momento de colocarse el peso de manera axial? iii. En la construcción de edificios, ¿creen que este principio pueda ser aplicado de la misma manera para ser más eficientes las estructuras? Parte 3: Resolución de problemas y completando el formulario 4. Sigan trabajando en equipos. 5. Lean los siguientes problemas e identifiquen las fórmulas que deberán utilizar para resolverlos. 6. Una vez identificadas las fórmulas, deberán intercambiarlas por las de otro equipo. Utilicen el foro para compartir sus formularios. 7. Traten de resolver los problemas utilizando el formulario que el otro equipo les compartió. ¿Pudieron resolver los problemas? ¿Cuáles fórmulas faltaron? a. Dentro de un tubo circular hueco de cobre C está encerrado un cilindro circular sólido de acero S. El cilindro y el tubo se comprimen entre las placas rígidas de una máquina de prueba mediante fuerzas de compresión P. El cilindro de acero tiene un área de su sección transversal A y un módulo de elasticidad Es. El tubo de cobre tiene un área As y un módulo Ec, y las dos partes tienen una longitud L. Determinen las cantidades siguientes:
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
i. La fuerza de compresión Ps en el cilindro de acero, y Pc en el tubo de cobre. ii. Los esfuerzos de compresión correspondientes ζs y ζc y el acortamiento δ del conjunto. 
b. Una barra AB rígida horizontal está articulada en el extremo A y soportada por dos alambres CD y EF en los puntos D y F respectivamente. Una carga vertical P actúa en el extremo B de la barra. La longitud de la barra es 3b y los alambres CD y DF tienen longitudes L1 y L2 respectivamente. Además, el alambre CD tiene un diámetro d1 y módulo de elasticidad E1; el alambre EF tiene un diámetro d2 y un módulo E2. Obtengan fórmulas para la carga permisible P si los esfuerzos permisibles en los alambres CD y EF son ζ1 y ζ2 respectivamente, sin tomar en cuenta el peso de la barra. Calculen la carga permisible P para las condiciones siguientes: i. El alambre CD está hecho de acero con módulo E1 = 29 X 106 Pa, diámetro d1 = 3.0 mm y longitud L1 = 0.50 m. ii. El alambre EF está hecho de aluminio con módulo E2 = 65 X 106 Pa, diámetro d2 = 4.0 mm y longitud L2 = 0.40 m. iii. Los esfuerzos permisibles en los alambres de acero y aluminio son ζ1 = 180 MPa y ζ2 = 165 MPa respectivamente.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
c. Una barra de acero ABC vertical está soportada por un pasador en sus extremos superiores y cargados por una fuerza P1 en su extremo inferior. Una viga horizontal BDE está conectada con un perno a la barra vertical en la unión B y soportada en el punto D. La barra soporta una carga P2 en el extremo E. La parte superior de la barra vertical (segmento AB) tiene una longitud L1 = 30.0 in y un área de sección transversal A1 = 0.4 in2. La parte inferior (segmento BC) tiene una longitud L2 = 42.0 in y área A2 = 0.20 in2. El módulo de elasticidad E del acero es de 29.0 X 106 psi. Las partes izquierda y derecha de la viga BDE tienen longitudes a = 25 in y b = 22 in, respectivamente. i. Calculen el desplazamiento vertical δc en el punto C si la carga P1 = 3,000 lb y la cara P2 = 6,000 lb. No tomen en cuenta los pesos de la barra ni de la viga. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Entregable(s): Documento con los ejercicios resueltos, listado de los materiales así como diagramas de cuerpo libre. Parte 1 1. De manera individual, responde a las siguientes preguntas: a. ¿Qué relación tienen las construcciones de edificios con las máquinas en cuanto a componentes utilizables? b. ¿Cuáles son las formas de vigas más utilizadas en la actualidad para la construcción de edificios?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
c. ¿Cómo se puede ligar la optimización de los componentes con el desarrollo de robots? d. Documenta cuántos tipos (formas) de vigas existen y su utilización. Menciona los materiales con las que están fabricadas y algunas propiedades físicas, para poder saber por qué se selecciona este material. e. ¿Cómo se han logrado optimizar las estructuras mediante el desarrollo de diferentes tipos de formas de vigas? f. Dibuja las diferentes formas de vigas. g. Señala en donde pienses que se realizan los esfuerzos a la viga cuando aplicas una carga. Parte 2 2. Reúnanse en parejas; cada uno deberá de realizar la siguiente actividad documentando cada paso del desarrollo. Recuerden reunirse por medio de Skype, Google Docs o algún otro chat. a. Sujeta la regla a lo largo del lápiz y tracen una línea a lo largo de cada uno de los dos tubos que tienen, tanto del lápiz como del tubo metálico. b. Sujeta con las pinzas cada uno de los extremos del lápiz de madera, tomando en cuenta que debes ver la línea de frente. c. Una de las manos que sostiene un extremo mantenla firme, y la otra gírala para que observes la deformación de la viga. d. En el caso de la madera, verás cómo la línea casi no se mueve; por el contrario, se romperá el lápiz al momento de ejercerle el “momento de torsión”. e. En el caso del tubo de acero, se desplazará la línea y nos mostrará cuál es su máxima resistencia hasta antes de que ceda el material.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
3. Respondan las siguientes preguntas: a. ¿Qué ocurre con el pedazo de madera al momento de ejercerle una carga de torque? b. ¿Qué ocurre con el tubo metálico al momento de ejercerle una carga de torque? c. ¿Cuál es la razón por la que los dos elementos se comportan de manera diferente? d. ¿Qué relación existe entre el torque y la deformación? 4. Tomen fotografías del desarrollo del experimento. Parte 3 5. De manera individual, realiza la siguiente actividad y documenta cada paso de tu desarrollo. a. Evalúa la evolución de los materiales utilizados para la construcción. Relaciona esta evolución de materiales con las prácticas actuales en la construcción de rascacielos. b. En base a este criterio de conocimiento, analiza cuál es la razón por la que se pueden realizar estructuras cada vez más complejas en forma y más eficientes en uso de materiales. c. Analiza algunas de las razones por las que ocurrió que el puente de Tacoma colapsara, y haz una sugerencia en cuanto a qué pudieras haber mejorado.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
6. Comencemos ahora a trabajar en la solución de algunos problemas. Vuélvanse a reunir en parejas. Deberán de mencionar paso a paso cómo dieron solución a los problemas; tomen turnos para que cada uno realice uno de los pasos. a. Un ciclista aplica una fuerza P de 70 N al freno de mano de una bicicleta (P es la resultante de la fuerza distribuida uniformemente). Conforme el freno de mano gira en A, desarrolla una tensión T en el cable con una longitud de 460 mm (Ae=1.075 mm2) que se estira en δ=0.214 mm. Determinen el esfuerzo normal σ. b. Una barra redonda ACB de longitud 2L gira con respecto a un eje que pasa por el punto medio C con una velocidad angular constante σ (expresada en radianes por segundo). El material de la barra tiene un peso específico γ. Deduzcan una ecuación para el esfuerzo de tensión σx en la barra, como una función de la distancia x desde el punto medio C. ¿Cuál es el esfuerzo máximo de tensión σmax? Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Instrucción para el alumno: Parte 1: Comenzando a trabajar 1. Enlista al menos 15 componentes diferentes que se encuentren a tu alrededor y realiza su diagrama de cuerpo libre. 2. En base al diagrama de cuerpo libre, realiza una lista de cuáles componentes estarán sujetos a una carga flexionante y cuáles estarán sujetos a una carga axial. 3. Realiza una tabla comparativa de los materiales más utilizados en la manufactura de bicicletas, así como cualquier aleación que pueda ser desarrollada para darle mayor durabilidad o ligereza a las bicicletas. 4. Explica las causas por la cuales el material es utilizado en base a sus características físicas (peso, dureza). 5. Enlista las tablas comparativas de los diferentes componentes; muestra los componentes de carga que soportan. Considera el uso normal dentro de una carrera de montaña, así como los golpes que puede recibir cada uno de los componentes que se encuentran en el ensamble de la bicicleta. 6. Realiza una propuesta de diferentes materiales que pueden ser utilizados en la construcción de bicicletas; considera opciones disruptivas como el bambú o fibra de carbono. Justifica tus respuestas.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Parte 2: Resolución de problemas 7. Resuelve los siguientes problemas: 
a. Un aguilón de una grúa tiene una masa de 555 kg, con su centro de masa C estabilizado por dos cables AQ y BQ (Ae=304 mm² para cada cable), como se muestra en la figura. Una carga P=25 kN está soportada en el punto D. El aguilón de la grúa yace en el plano y-z. i. Determina las fuerzas de tensión en cada cable: TAQ Y TBQ; no tomes en cuenta la masa de los cables, pero incluye la masa del aguilón además de la carga P. ii. Determina el esfuerzo promedio ζ en cada cable. 
b. Dos góndolas en un teleférico están aseguradas en la posición que se muestra en la figura, mientras se hacen reparaciones en otro lugar. La distancia entre las torres de soporte es L=175 ft. La longitud de cada segmento de cable sobre las góndolas que pesan Wb=550 lb y Wc=750 lb son DAB=12 ft (distancia de A a B) DBC=70 ft (distancia de B a C) y DCD=20 ft (distancia de C a D). El pandeo del cable en B es ΔB=3.9 ft y en C (ΔC=7.1 ft). El área de la sección transversal efectiva del cable es Ae=0.12 in².
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
i. Encuentra la fuerza de tensión en cada segmento de cable; no tomes en cuenta la masa del cable. ii. Encuentra el esfuerzo promedio ζ en cada segmento del cable. 
c. Un carro que pesa 145kN cuando está completamente cargado, se jala lentamente hacia arriba por una pista inclinada mediante un cable de acero (consulta la figura). El cable tiene un área de sección transversal efectiva de 490 mm² y el ángulo α de la inclinación es de 30°. i. Calcula el esfuerzo de tensión ζ en el cable. 
d. Dos alambres de acero soportan una cámara móvil suspendida que pesa W=25 lb (consulta la figura), empleada para hacer acercamientos de las acciones en el campo
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
de eventos deportivos. En un instante dado, el alambre 1 forma un ángulo α=20° con la horizontal y el alambre 2 forma un ángulo β=48°. Los dos alambres tienen un diámetro de 30 milésimas. (Los diámetros del alambre con frecuencia se expresan en milésimas de pulgada: una milésima de pulgada es igual a 0.001 in). i. Determina los esfuerzos de tensión ζ1 y ζ2 en los dos alambres. 
Parte 3: Reflexiona los criterios de diseño 8. Enlista las tablas comparativas de los diferentes componentes, muestra los componentes de carga que soportan. Considera el uso normal dentro de una carrera de montaña, así como los golpes que puede recibir cada uno de los componentes que se encuentran en el ensamble de la bicicleta. Parte 1. Identificando materiales 1. De manera individual, analiza cuáles son los componentes más importantes a considerar en el momento de diseñar una viga estructural: a. Lista de al menos cinco tipos de vigas que se utilicen en la construcción relacionando su forma. b. Relaciona los tipos de viga que enlistaste en el punto anterior con el tipo de construcción para el que son creados. c. Relaciona la forma de estas vigas con el material que son creados. d. Crea una tabla en la que enlistes las formas de las vigas y compares cuáles son las vigas que más peso pueden soportar; asimismo, realiza un esquema de estas vigas. e. Genera una comparativa de las aleaciones de las vigas y cómo han evolucionado a lo largo del tiempo, qué es lo que han logrado estas aleaciones. f. Envía el reporte por medio de la plataforma de blackboard.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
2. En parejas, cada integrante deberá de realizar la siguiente actividad, documentando cada paso del desarrollo. Recuerden reunirse por medio de Skype, Google Docs o algún otro chat. a. Coloquen los dos bloques pequeños a una distancia de 25 cm uno del otro. b. Coloquen las tres reglas de madera apiladas una junto a la otra. c. Encinten los extremos del apilamiento de reglas, solo para mantenerlas unidas. d. Coloquen las reglas apiladas en los bloques pequeños de madera, de manera perpendicular a los bloques, es decir, formando un ángulo de 90°. e. Coloquen los dos botes con agua por encima de las reglas. f. Retiren los dos botes con agua. g. Ahora coloquen las reglas de manera horizontal en los bloques de madera. h. Coloquen nuevamente los dos botes con agua. i. Usando los conceptos de física elemental, reflexionen sobre la razón por la que las reglas, en el momento de estar de manera vertical y horizontal, tienen un desempeño diferente. j. Intercambien —por medio de Chat, msn o Skype— los resultados obtenidos y realicen un reporte Parte 2. Resolución de problemas 3. En equipo de 3 integrantes cada uno deberá contestar uno de los siguientes problemas, al terminar intercambien sus problemas entre ustedes, y revisen si el procedimiento y el resultado es correcto. Problema 1 Una viga metálica con claro de L = 4 pies está simplemente apoyada en los puntos A y B. La carga uniforme sobre la viga es Po = 200 lb/pulg. La sección transversal de la viga es rectangular, con ancho b = 1.5 pulg y peralte h = 3 pulg. La viga está bien apuntalada contra pandeo lateral. a. Determinen los esfuerzos normal ζC y cortante ηC en el punto lateral derecho C, localizado a 1 pulg. Debajo de la parte superior de la viga y a 8 pulg del apoyo derecho. Muestren los esfuerzos en un croquis de un elemento de esfuerzo en el punto C.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. 
Problema 2. Una viga de madera AB que sostiene dos cargas concentradas P tiene una sección transversal rectangular de ancho b = 100 mm y peralte h = 150 mm. Las distancias de los extremos de la viga a las cargas son a = 0.5 m. a. Determinen el valor permisible máximo Pmax de las cargas, si el esfuerzo permisible por flexión es ζperm = 11 MPa, tanto en compresión como en tensión, y el esfuerzo permisible cortante es ηperm = 1.2 MPa. Imagen generada para fines educativos Fuente de referencia: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. 
Problema 3. Un poste vertical que consiste de un tubo circular con diámetro exterior d2 = 3.5 in y diámetro interior d1 = 3.0 in está sometido a una fuerza horizontal P = 1,800 lb a. Determinen el esfuerzo cortante máximo en el poste. b. Para la misma carga P y el mismo esfuerzo cortante máximo, ¿cuál es el diámetro dC de un poste circular sólido?
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning.earning. Parte 3. Completando el formulario 4. Reúnanse de 3 a 4 personas por medio de un chat (el de su elección) para formar una mesa redonda y comenten los siguientes puntos: a. ¿Qué estructuras tienen un comportamiento similar en el momento de hablar de componentes de construcción? b. En la construcción de puentes, cómo consideras que pueden ser aplicables estos conceptos. c. Compara el desempeño de una viga I con una viga H, según se muestran en las figuras inferiores, considerando que ambas vigas soportarán una carga uniformemente distribuidas a lo largo de su perfil superior. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. 5. Continuando con la mesa redonda, cada uno mencione las fórmulas que estuvo utilizando durante la actividad y completen su formulario con fórmulas que les hayan faltado incluir. 6. ¿Cuál es la razón por la que, dependiendo de cómo colocas el conjunto de reglas, su resistencia es diferente? Justifícate en los conceptos del curso. 7. Para finalizar, cada alumno deberá de resolver los siguientes problemas:
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Una viga de madera simplemente apoyada con un claro L = 12 pies sustenta una carga uniforme a lo largo de la misma Po = 500 lb/pie. El esfuerzo permisible de flexión es de 2,000 lb/pie3 y la viga está soportada en sentido lateral contra pandeo lateral y volteo. Se te pide seleccionar un tamaño adecuado para que la viga pueda soportar la carga previamente mencionada. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Una represa temporal de madera está construida con tablones horizontales „A‟ soportados en postes verticales de madera „B‟, empotrados en el suelo de manera, que actúan como vigas en voladizo. Los postes tienen una sección transversal cuadrada (dimensiones b X b) y están espaciados a una distancia s = 0.5 m, centro a centro. Suponga que el nivel máximo del agua detrás de la represa es h = 1.5 m. Determina la dimensión mínima requerida b de los postes si el esfuerzo de flexión permisible en la madera es ζ = 5.0 MPa. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
Parte 1. Identificando el contexto 1. De manera individual, responde a las siguientes preguntas: a. ¿Cuál es la razón principal de fallas de las vigas que soportan alguna carga cualquiera? (Justificar con un diagrama de fuerza o cuerpo libre) b. ¿Qué mejoras se han llevado a cabo actualmente para evitar fallas en las estructuras estáticas? c. ¿Cómo influye la distancia a la que se aplica una carga en un juego como el “sube y baja”? d. ¿Qué leyes de la física o conceptos de física utilizamos?, ¿por qué? ¿Se relaciona con el concepto de Trabajo? e. ¿Cómo podríamos determinar la seguridad con la que podemos utilizar un mecanismo, como un pasamano, sin que este se rompa? Parte 2. Reafirmando el conocimiento 2. Por medio de algún chat o Skype, realicen la siguiente actividad en equipo de 2, y documenten cada paso de su desarrollo. a. Corten un tramo de un hilo de aproximadamente 30 cm de largo. b. Lacen en una orilla del hilo la pelota pequeña de esponja, puedes utilizar el alfiler para asegurar que la pelota no se caiga. c. Coloquen una sola tira de la pasta al borde de la mesa, solo asomando una pequeña porción de la pasta por fuera de la mesa. d. Amarren el otro extremo del hilo a la pasta. e. Muevan lentamente la pasta hacia el extremo, tratando de que la pelota no se balancee ni se caiga. f. Anoten la distancia a la que la pasta se rompe. g. Repitan del punto a al punto f, pero ahora colocando en lugar de una sola tira de pasta, dos tiras de pasta juntas, tres tiras de pastas juntas y cuatro tiras de pasta juntas. h. Anoten sus resultados, tomando la distancia a la que se rompe en cada uno de los puntos con el mismo peso. i. Evalúen los resultados, midiendo el área transversal de las tiras de pasta, calculen la proporción adicional de soporte que añade una sola tira de pasta, dos, tres y cuatro tiras de pasta, y grafiquen la línea de resistencia. j. Realiza justificaciones con base en los conceptos adquiridos hasta el momento. Escribe por individual una conclusión e intercámbiala con tu compañero de equipo para ver los resultados que obtuvieron 3. Dividan el trabajo entre el equipo de 2 y resuelvan el siguiente problema, para que cada uno determine uno de los tipos de esfuerzos.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
El eje o flecha del rotor de un helicóptero impulsa las aspas del rotor que suministran la fuerza de levantamiento que sostiene al helicóptero en el aire. En consecuencia el eje está sometido a una combinación de torsión y carga axial. a. Determinen el esfuerzo máximo, el esfuerzo de compresión máximo y el esfuerzo cortante máximo en el eje de diámetro 60mm que transmite un par de torsión T = 2.9 kN-m y una fuerza de tensión P = 125 kN, determinen el esfuerzo de tensión máximo, el esfuerzo de compresión máximo y el esfuerzo cortante máximo en la flecha. Imagen obtenida de https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Anatomia_de_um_helic%C3%B3ptero.svg/790px- Anatomia_de_um_helic%C3%B3ptero.svg.png Solo para fines educativos. Parte 3. Completando el formulario 4. Por medio de un foro, chat o Skype, continúen trabajando en parejas y realicen la siguiente actividad. a. Evaluando los resultados que obtuvieron en la parte previa del ejercicio, determinen cuáles pueden ser algunas de las mejoras que se pueden proponer para hacer que las tiras de pasta puedan soportar más peso b. Recuerden que es muy importante considerar que en algunas ocasiones las estructuras no pueden aumentar el peso, y en otras no pueden aumentar el costo. Traten de proponer diferentes alternativas sin cambiar las dos variables anteriores. c. Ahora, sin restricciones, ¿cuáles son las posibles variaciones que podrían hacerle a las tiras de pasta si quisiéramos que soportaran más peso? Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. nstrucción para el alumno: Parte 1. Comenzando a trabajar 1. Considerando la información y el conocimiento que hasta el momento tienes, realiza una comparativa del comportamiento de los siguientes materiales al ser utilizados para crear una estructura.
Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com 
www.maestronline.com 
a. Madera b. Acero c. Aluminio d. Aleaciones de magnesio e. Fibra de carbono 2. Desarrolla un esquema detallado de todos los materiales que se utilicen como materiales estructurales, no te guíes solamente por materiales para construcción; existen muchos materiales estructurales que son utilizados desde implantes médicos hasta soportes automotrices. Enlista las principales propiedades mecánicas de estos materiales: dureza,módulo de elasticidad y maleabilidad. 3. Realiza una tabla comparativa de las formas más comunes en las que estos materiales estructurales son constituidos para poder cumplir con su función; asimismo, realiza una comparativa de los procesos que se utilizan de manera industrial para obtener las formas que requieren para su desempeño. Parte 2. Teoría en práctica 4. Realiza una maqueta física —puede ser con palitos de madera, cuchillos de plástico o algún otro material similar— en la que construyas un puente que soporte al menos 10 kilogramos; este puente deberá estar construido de manera individual y con el desarrollo fundamentado de manera adecuada. 5. En una presentación, video o reporte documentado, enlista las tablas comparativas de los diferentes componentes, muestra algunas fotos de cómo se comportan estos componentes. a. Considera el uso de estos componentes bajo condiciones normales de carga, partiendo del principio para el cual fueron diseñados. b. Realiza una propuesta de cuáles son las formas o perfiles que cada una de estas estructuras podría adoptar, para obtener un desempeño adecuado. 6. Diseña y genera una estructura en la que puedas colocar dentro un huevo crudo, dejarás caer la estructura con el huevo dentro desde un segundo piso de un edificio, y verás si es que el huevo resiste el impacto al estar protegido por la estructura que diseñaste y construiste.

Más contenido relacionado

La actualidad más candente

Capitulo n° 1 presentación 2015
Capitulo n° 1 presentación 2015Capitulo n° 1 presentación 2015
Capitulo n° 1 presentación 2015Wilmer Ten Ten
 
Ensayos a la madera-Ing civil
Ensayos a la madera-Ing civilEnsayos a la madera-Ing civil
Ensayos a la madera-Ing civilMiguel Figueroa
 
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...jose luis moreno campos
 
Problemas de energía de deformación
Problemas de energía de deformaciónProblemas de energía de deformación
Problemas de energía de deformaciónJorge Cruz
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materialesRJosue2015
 
Esfuerzo normal y tang
Esfuerzo normal y tangEsfuerzo normal y tang
Esfuerzo normal y tangARNSZ
 
Dinamica unidad 3
Dinamica unidad 3Dinamica unidad 3
Dinamica unidad 3StevJohnS
 
Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Omar Torres Arenas
 
Esfuerzos promedio
Esfuerzos promedioEsfuerzos promedio
Esfuerzos promedioitcha
 
Guía de problemas propuestos
Guía de problemas propuestosGuía de problemas propuestos
Guía de problemas propuestosGabriel Pujol
 
Tema 2.deformacion simple
Tema 2.deformacion simpleTema 2.deformacion simple
Tema 2.deformacion simpleJesus Reyes
 
Problemas por el método de área de momentos (1)
Problemas por el método de área de momentos (1)Problemas por el método de área de momentos (1)
Problemas por el método de área de momentos (1)LuiggiArtola1
 
Problemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosProblemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosVictorHugoHernandez22
 

La actualidad más candente (20)

Capitulo n° 1 presentación 2015
Capitulo n° 1 presentación 2015Capitulo n° 1 presentación 2015
Capitulo n° 1 presentación 2015
 
Esfuerzo en vigas
Esfuerzo en vigas Esfuerzo en vigas
Esfuerzo en vigas
 
Ensayos a la madera-Ing civil
Ensayos a la madera-Ing civilEnsayos a la madera-Ing civil
Ensayos a la madera-Ing civil
 
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...
ESFUERZOS Y DEFORMACIONES EN RECIPIENTES A PRESIÓN DE PARED DELGADA, FORMA ES...
 
Problemas de energía de deformación
Problemas de energía de deformaciónProblemas de energía de deformación
Problemas de energía de deformación
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materiales
 
Esfuerzo normal y tang
Esfuerzo normal y tangEsfuerzo normal y tang
Esfuerzo normal y tang
 
Dinamica unidad 3
Dinamica unidad 3Dinamica unidad 3
Dinamica unidad 3
 
Ensayo de corte directo
Ensayo  de corte directoEnsayo  de corte directo
Ensayo de corte directo
 
Formula de flexión
Formula de flexiónFormula de flexión
Formula de flexión
 
Ejercicios circulo-de-mohr-huaman
Ejercicios circulo-de-mohr-huamanEjercicios circulo-de-mohr-huaman
Ejercicios circulo-de-mohr-huaman
 
Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)
 
Esfuerzos promedio
Esfuerzos promedioEsfuerzos promedio
Esfuerzos promedio
 
Guía de problemas propuestos
Guía de problemas propuestosGuía de problemas propuestos
Guía de problemas propuestos
 
Tema 2.deformacion simple
Tema 2.deformacion simpleTema 2.deformacion simple
Tema 2.deformacion simple
 
Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6
 
001 resistenciamaterialesi
001 resistenciamaterialesi001 resistenciamaterialesi
001 resistenciamaterialesi
 
Problemas por el método de área de momentos (1)
Problemas por el método de área de momentos (1)Problemas por el método de área de momentos (1)
Problemas por el método de área de momentos (1)
 
Cap10
Cap10Cap10
Cap10
 
Problemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosProblemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidos
 

Destacado

Resistencia de materiales carlos joo - 2014-practica 2
Resistencia de materiales   carlos joo - 2014-practica 2Resistencia de materiales   carlos joo - 2014-practica 2
Resistencia de materiales carlos joo - 2014-practica 2Uap Civil V Moquegua
 
Problemas de materiales
Problemas de materiales Problemas de materiales
Problemas de materiales René Solís
 
Mecánica de materiales beer, johnston - 5ed solucionario
Mecánica de materiales   beer, johnston - 5ed solucionarioMecánica de materiales   beer, johnston - 5ed solucionario
Mecánica de materiales beer, johnston - 5ed solucionarioYoshua Portugal Altamirano
 
Solucionario de mecanica de materiales 6ta edicion r. c. hibbeler
Solucionario de mecanica de materiales 6ta edicion   r. c. hibbelerSolucionario de mecanica de materiales 6ta edicion   r. c. hibbeler
Solucionario de mecanica de materiales 6ta edicion r. c. hibbelerlyedilmer
 
Solucionario gere y timoshenko completo
Solucionario gere y timoshenko completoSolucionario gere y timoshenko completo
Solucionario gere y timoshenko completomarielenasoruco
 
Libro estatica problemas_resueltos
Libro estatica problemas_resueltosLibro estatica problemas_resueltos
Libro estatica problemas_resueltosYordi Flor Alva
 
Solucionario de singer
Solucionario de singerSolucionario de singer
Solucionario de singerjonathan
 
Deformacion axial
Deformacion axialDeformacion axial
Deformacion axialJulio Ramos
 
Esfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasEsfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasJess Lee
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)1clemente1
 
Libro resistencia de materiales I
Libro resistencia de materiales I Libro resistencia de materiales I
Libro resistencia de materiales I Walterc Aquino
 
Resistencia de materiales singer
Resistencia de materiales   singerResistencia de materiales   singer
Resistencia de materiales singerjonathan
 
Practica dirigida de fisica i. equilibrio 2011
Practica dirigida de fisica i. equilibrio 2011Practica dirigida de fisica i. equilibrio 2011
Practica dirigida de fisica i. equilibrio 2011Delarc Ayala
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionJhoan Urdaneta
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BESPOL
 

Destacado (19)

Resistencia de materiales carlos joo - 2014-practica 2
Resistencia de materiales   carlos joo - 2014-practica 2Resistencia de materiales   carlos joo - 2014-practica 2
Resistencia de materiales carlos joo - 2014-practica 2
 
Problemas de materiales
Problemas de materiales Problemas de materiales
Problemas de materiales
 
Mecánica de materiales beer, johnston - 5ed solucionario
Mecánica de materiales   beer, johnston - 5ed solucionarioMecánica de materiales   beer, johnston - 5ed solucionario
Mecánica de materiales beer, johnston - 5ed solucionario
 
Problemas resueltos - RESISTENCIA DE MATERIALES
Problemas resueltos - RESISTENCIA DE MATERIALESProblemas resueltos - RESISTENCIA DE MATERIALES
Problemas resueltos - RESISTENCIA DE MATERIALES
 
Solucionario de mecanica de materiales 6ta edicion r. c. hibbeler
Solucionario de mecanica de materiales 6ta edicion   r. c. hibbelerSolucionario de mecanica de materiales 6ta edicion   r. c. hibbeler
Solucionario de mecanica de materiales 6ta edicion r. c. hibbeler
 
Solucionario gere y timoshenko completo
Solucionario gere y timoshenko completoSolucionario gere y timoshenko completo
Solucionario gere y timoshenko completo
 
Taller de esfuerzo normal y deformación
Taller de esfuerzo normal y deformaciónTaller de esfuerzo normal y deformación
Taller de esfuerzo normal y deformación
 
Libro estatica problemas_resueltos
Libro estatica problemas_resueltosLibro estatica problemas_resueltos
Libro estatica problemas_resueltos
 
Solucionario de singer
Solucionario de singerSolucionario de singer
Solucionario de singer
 
Deformacion axial
Deformacion axialDeformacion axial
Deformacion axial
 
Mecanica de materiales
Mecanica de materialesMecanica de materiales
Mecanica de materiales
 
Esfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasEsfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigas
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
 
Libro resistencia de materiales I
Libro resistencia de materiales I Libro resistencia de materiales I
Libro resistencia de materiales I
 
Resistencia parte 1
Resistencia parte 1Resistencia parte 1
Resistencia parte 1
 
Resistencia de materiales singer
Resistencia de materiales   singerResistencia de materiales   singer
Resistencia de materiales singer
 
Practica dirigida de fisica i. equilibrio 2011
Practica dirigida de fisica i. equilibrio 2011Practica dirigida de fisica i. equilibrio 2011
Practica dirigida de fisica i. equilibrio 2011
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0B
 

Similar a Resolución de ejercicios de mecánica de materiales

Analisis de esfuerzos_normales
Analisis de esfuerzos_normalesAnalisis de esfuerzos_normales
Analisis de esfuerzos_normalescarloslopez1495
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosEducaciontodos
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosMaestros en Linea
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosMaestros Online
 
Resistencia examen
Resistencia examenResistencia examen
Resistencia examen1111milagro
 
Trabajo Practico Integrador - Equipo 5 - 2c2019
Trabajo Practico Integrador - Equipo 5 - 2c2019Trabajo Practico Integrador - Equipo 5 - 2c2019
Trabajo Practico Integrador - Equipo 5 - 2c2019Gabriel Pujol
 
Tema plasticidad resistencia de materiales
Tema plasticidad resistencia de materialesTema plasticidad resistencia de materiales
Tema plasticidad resistencia de materiales997548052
 
Guia de problemas_control_1_ci34_a
Guia de problemas_control_1_ci34_aGuia de problemas_control_1_ci34_a
Guia de problemas_control_1_ci34_aJorge Bravo Gonzalez
 
Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1Maestros Online
 
Topicos selectos de ingenieria in9302 2013
Topicos selectos de ingenieria in9302 2013Topicos selectos de ingenieria in9302 2013
Topicos selectos de ingenieria in9302 2013Maestros Online
 
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdf
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdfTipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdf
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdfDaveAVargas
 
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetricawilder aya
 

Similar a Resolución de ejercicios de mecánica de materiales (15)

ejercicios diversos _Balotario.pptx
ejercicios diversos _Balotario.pptxejercicios diversos _Balotario.pptx
ejercicios diversos _Balotario.pptx
 
Analisis de esfuerzos_normales
Analisis de esfuerzos_normalesAnalisis de esfuerzos_normales
Analisis de esfuerzos_normales
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicos
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicos
 
Fundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicosFundamentos de sistemas mecanicos
Fundamentos de sistemas mecanicos
 
Resistencia examen
Resistencia examenResistencia examen
Resistencia examen
 
Trabajo Practico Integrador - Equipo 5 - 2c2019
Trabajo Practico Integrador - Equipo 5 - 2c2019Trabajo Practico Integrador - Equipo 5 - 2c2019
Trabajo Practico Integrador - Equipo 5 - 2c2019
 
Tema plasticidad resistencia de materiales
Tema plasticidad resistencia de materialesTema plasticidad resistencia de materiales
Tema plasticidad resistencia de materiales
 
Guia de problemas_control_1_ci34_a
Guia de problemas_control_1_ci34_aGuia de problemas_control_1_ci34_a
Guia de problemas_control_1_ci34_a
 
Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1
 
Topicos selectos de ingenieria in9302 2013
Topicos selectos de ingenieria in9302 2013Topicos selectos de ingenieria in9302 2013
Topicos selectos de ingenieria in9302 2013
 
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdf
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdfTipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdf
Tipos de esfuerzos, esfuerzo normal, esfuerzo cortante.pdf
 
Circuitos electricos
Circuitos electricosCircuitos electricos
Circuitos electricos
 
Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1Matematicas avanzadas 1 fisica 1
Matematicas avanzadas 1 fisica 1
 
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica
95951713 6-esfuerzos-en-vigas-seccion-transformada-y-flexion-asimetrica
 

Más de Maestros Online

Gobernabilidad de tecnologías de información
Gobernabilidad de tecnologías de informaciónGobernabilidad de tecnologías de información
Gobernabilidad de tecnologías de informaciónMaestros Online
 
Simulación de eventos discretos
Simulación de eventos discretosSimulación de eventos discretos
Simulación de eventos discretosMaestros Online
 
El emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certEl emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certMaestros Online
 
Derecho bancario, bursátil, litigios, fiscal cert
Derecho bancario, bursátil, litigios, fiscal certDerecho bancario, bursátil, litigios, fiscal cert
Derecho bancario, bursátil, litigios, fiscal certMaestros Online
 
Desarrollo de proyecto en desarrollo internacional cert
Desarrollo de proyecto en desarrollo internacional certDesarrollo de proyecto en desarrollo internacional cert
Desarrollo de proyecto en desarrollo internacional certMaestros Online
 
Desarrollo de proyecto de mercadotecnia digital cert
Desarrollo de proyecto de mercadotecnia digital certDesarrollo de proyecto de mercadotecnia digital cert
Desarrollo de proyecto de mercadotecnia digital certMaestros Online
 
Administración de proyectos de software y java cert
Administración de proyectos de software y java certAdministración de proyectos de software y java cert
Administración de proyectos de software y java certMaestros Online
 
Computación avanzada en java cert
Computación avanzada en java certComputación avanzada en java cert
Computación avanzada en java certMaestros Online
 
Productividad basada en herramientas tecnológicas cert
Productividad basada en herramientas tecnológicas certProductividad basada en herramientas tecnológicas cert
Productividad basada en herramientas tecnológicas certMaestros Online
 
Manejo de la producción y cadena de suministro cert
Manejo de la producción y cadena de suministro certManejo de la producción y cadena de suministro cert
Manejo de la producción y cadena de suministro certMaestros Online
 
Tecnología de los materiales cert
Tecnología de los materiales certTecnología de los materiales cert
Tecnología de los materiales certMaestros Online
 
Desarrollo de proyecto de procesos de manufactura cert
Desarrollo de proyecto de procesos de manufactura certDesarrollo de proyecto de procesos de manufactura cert
Desarrollo de proyecto de procesos de manufactura certMaestros Online
 
Esquemas de retiro y protección financiera cert
Esquemas de retiro y protección financiera certEsquemas de retiro y protección financiera cert
Esquemas de retiro y protección financiera certMaestros Online
 
Análisis financiero y esquemas de financiamiento cert
Análisis financiero y esquemas de financiamiento certAnálisis financiero y esquemas de financiamiento cert
Análisis financiero y esquemas de financiamiento certMaestros Online
 
Crédito, riesgo, inversiones y seguros cert
Crédito, riesgo, inversiones y seguros certCrédito, riesgo, inversiones y seguros cert
Crédito, riesgo, inversiones y seguros certMaestros Online
 
Manufactura esbelta cert
Manufactura esbelta certManufactura esbelta cert
Manufactura esbelta certMaestros Online
 
Desarrollo de proyecto de psicología organizacional cert
Desarrollo de proyecto de psicología organizacional certDesarrollo de proyecto de psicología organizacional cert
Desarrollo de proyecto de psicología organizacional certMaestros Online
 
Probabilidad y estadísticas descriptiva ebc
Probabilidad y estadísticas descriptiva ebcProbabilidad y estadísticas descriptiva ebc
Probabilidad y estadísticas descriptiva ebcMaestros Online
 
El emprendedor y la innovación cert
El emprendedor y la innovación certEl emprendedor y la innovación cert
El emprendedor y la innovación certMaestros Online
 

Más de Maestros Online (20)

Gobernabilidad de tecnologías de información
Gobernabilidad de tecnologías de informaciónGobernabilidad de tecnologías de información
Gobernabilidad de tecnologías de información
 
Simulación de eventos discretos
Simulación de eventos discretosSimulación de eventos discretos
Simulación de eventos discretos
 
El emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional certEl emprendedor y el empresario profesional cert
El emprendedor y el empresario profesional cert
 
Derecho bancario, bursátil, litigios, fiscal cert
Derecho bancario, bursátil, litigios, fiscal certDerecho bancario, bursátil, litigios, fiscal cert
Derecho bancario, bursátil, litigios, fiscal cert
 
Desarrollo de proyecto en desarrollo internacional cert
Desarrollo de proyecto en desarrollo internacional certDesarrollo de proyecto en desarrollo internacional cert
Desarrollo de proyecto en desarrollo internacional cert
 
Desarrollo de proyecto de mercadotecnia digital cert
Desarrollo de proyecto de mercadotecnia digital certDesarrollo de proyecto de mercadotecnia digital cert
Desarrollo de proyecto de mercadotecnia digital cert
 
Administración de proyectos de software y java cert
Administración de proyectos de software y java certAdministración de proyectos de software y java cert
Administración de proyectos de software y java cert
 
Computación avanzada en java cert
Computación avanzada en java certComputación avanzada en java cert
Computación avanzada en java cert
 
Productividad basada en herramientas tecnológicas cert
Productividad basada en herramientas tecnológicas certProductividad basada en herramientas tecnológicas cert
Productividad basada en herramientas tecnológicas cert
 
Manejo de la producción y cadena de suministro cert
Manejo de la producción y cadena de suministro certManejo de la producción y cadena de suministro cert
Manejo de la producción y cadena de suministro cert
 
Tecnología de los materiales cert
Tecnología de los materiales certTecnología de los materiales cert
Tecnología de los materiales cert
 
Desarrollo de proyecto de procesos de manufactura cert
Desarrollo de proyecto de procesos de manufactura certDesarrollo de proyecto de procesos de manufactura cert
Desarrollo de proyecto de procesos de manufactura cert
 
Esquemas de retiro y protección financiera cert
Esquemas de retiro y protección financiera certEsquemas de retiro y protección financiera cert
Esquemas de retiro y protección financiera cert
 
Análisis financiero y esquemas de financiamiento cert
Análisis financiero y esquemas de financiamiento certAnálisis financiero y esquemas de financiamiento cert
Análisis financiero y esquemas de financiamiento cert
 
Unidad de negocio cert
Unidad de negocio certUnidad de negocio cert
Unidad de negocio cert
 
Crédito, riesgo, inversiones y seguros cert
Crédito, riesgo, inversiones y seguros certCrédito, riesgo, inversiones y seguros cert
Crédito, riesgo, inversiones y seguros cert
 
Manufactura esbelta cert
Manufactura esbelta certManufactura esbelta cert
Manufactura esbelta cert
 
Desarrollo de proyecto de psicología organizacional cert
Desarrollo de proyecto de psicología organizacional certDesarrollo de proyecto de psicología organizacional cert
Desarrollo de proyecto de psicología organizacional cert
 
Probabilidad y estadísticas descriptiva ebc
Probabilidad y estadísticas descriptiva ebcProbabilidad y estadísticas descriptiva ebc
Probabilidad y estadísticas descriptiva ebc
 
El emprendedor y la innovación cert
El emprendedor y la innovación certEl emprendedor y la innovación cert
El emprendedor y la innovación cert
 

Último

GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 

Último (20)

GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 

Resolución de ejercicios de mecánica de materiales

  • 1. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Solicita una cotización a través de nuestros correos. Maestros Online Mecánica de Materiales Apoyo en ejercicios Servicio de asesorías y solución de ejercicios Ciencias_help@hotmail.com
  • 2. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Parte 1: Identificando materiales 1. De manera individual, elabora una lista de los materiales que conozcas que se utilizan para construir (ya sea cosas u objetos). 2. Contesta las siguientes preguntas: a. ¿Todos los materiales son propensos a deformarse?, ¿por qué? b. ¿Qué fuerzas se deben aplicar a un material para que sufra una deformación? c. ¿Cuáles crees que sean los materiales que resistan más una deformación? 3. Reúnanse en parejas. Recuerden establecer un medio de comunicación como Skype o Google Docs (si el maestro aún no hace los equipos puedes trabajar de manera individual). 4. Contesten el siguiente ejercicio: Un poste circular hueco ABC soporta una carga P1=1500 lb que actúa en su parte superior. Una segunda carga P2 está distribuida uniformemente alrededor de la placa de cubierta del poste en B. El diámetro y el espesor de las partes superior e inferior del poste son dAB= 1.50 in, tAB =0.35 in, dBC=2.15 y tBC=0.275 in, respectivamente. a. Calculen el esfuerzo normal ζAB en la parte superior del poste. b. Si se desea que la parte inferior del poste tenga el mismo esfuerzo de comprensión que la parte superior, ¿cuál será la magnitud de la carga P2? c. Si P1 permanece en 1500 lb y P2 ahora se fija en 2000 lb, ¿qué espesor nuevo de BC resultará en el mismo esfuerzo de comprensión en las dos partes?
  • 3. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Fuente: Gere, J. M., y Goodno, B. J. (2009). Mecánica de materiales (7ma ed.). Santa Fe, México: CENGAGE Learning. 5. Identifiquen las fórmulas que deben de utilizar para contestar el problema, vayan reuniéndolas para que al final formen un formulario. Parte 2: Deformaciones en materiales 6. Continúen trabajando con los siguientes ejercicios, recuerden seguir completando su formulario. Un tubo circular de aluminio con longitud L=400mm está cargado en comprensión por fuerzas P. Los diámetros interior y exterior son 80mm y 40mm, respectivamente. Se coloca un deformímetro en el exterior de la barra para medir las deformaciones unitarias normales en la dirección longitudinal. a. Si la deformación unitaria es ε=450 x 10-6 ¿Cuál es el acortamiento de la barra? b. Si el esfuerzo de comprensión en la barra se propone sea de 30 MPa, ¿Cuál debe ser la carga P? Una puerta trasera de una camioneta soporta una caja (Wc= 200 lb), como se muestra en la figura. La puerta pesa WT= 50 lb y está soportada por dos cables (en la figura solo se ve uno). Cada cable tiene un área transversal efectiva Ae= 0.025 in2. a. Encuentren la fuerza de tensión T y el esfuerzo normal ζ en cada cable. b. Si cada cable se estira = 0.01 in debido al peso tanto de la caja como de la puerta, ¿cuál es la deformación unitaria promedio en el cable?
  • 4. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Parte 3: Completando el formulario 7. ¿Cuántas fórmulas llevan hasta ahora? Observen si las fórmulas que tienen les ayudan a contestar el siguiente problema: Una barra redonda ACB de longitud 2L gira con respecto a un eje que pasa por el punto medio C, con una velocidad angular constante ζ (radiales por segundo). El material de la barra tiene un peso específico . a. ¿Cuál es la fórmula para el esfuerzo de tensión ζ en la barra como una función de la distancia x desde el punto medio C? b. ¿Cuál es el esfuerzo de tensión máximo ζmax? 8. Utilicen el foro de la actividad para compartir las fórmulas que utilizaron en esta actividad. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Entregable(s): Documento con los procedimientos de los problemas así como el formulario. Parte 1: Los materiales y sus propiedades
  • 5. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 1. De manera individual, responde las siguientes preguntas: a. ¿Cuáles consideras que son las gráficas que más ayudan en la selección de los materiales con base en sus propiedades mecánicas? b. ¿Qué pruebas se requieren realizar para obtener las gráficas características de los materiales? c. ¿Qué tipo de máquinas se requieren para realizar pruebas de caracterización de materiales? d. ¿Cuáles son los laboratorios que se encargan de certificar las propiedades de los materiales? 2. Reúnete en parejas, compartan sus hallazgos con sus compañeros utilizando el foro de la actividad. 3. Contesten el siguiente problema, las fórmulas que utilicen agréguenlas al formulario que previamente fueron desarrollando. Una barra de acero estructural que tiene el diagrama esfuerzo-deformación unitaria que se muestra en la figura tiene una longitud de 48 in. El esfuerzo de fluencia del acero es de 42 ksi, y la pendiente de la parte inicial lineal de la curva esfuerzo-deformación unitaria es 30 x 103 ksi. La barra se carga axialmente hasta que se alarga 0.30 in y luego se quita la carga. a. ¿Cuál es la diferencia entre la longitud final de la barra y su longitud original? Parte 2: Los materiales y sus propiedades 4. En equipo de 2 personas, por medio de Chat, Skype o Google Docs, contesten ahora los siguientes problemas: Una barra circular de una aleación de magnesio tiene una longitud de 5000 mm. La barra se carga en tensión hasta obtener un alargamiento de 5.0 mm y luego se quita la carga. a. ¿Cuál es la deformación permanente de la barra?
  • 6. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com b. Si la barra se vuelve a cargar, ¿cuál es el límite de proporcionalidad? Un alambre con longitud L= 3.5ft y diámetro d= 0.250 in se estira mediante fuerzas de tensión P=800 lb. El alambre está hecho de una aleación de cobre que tiene una relación esfuerzo- deformación unitaria que se puede describir mediante la siguiente ecuación: En donde ε es adimensional y ζ tiene unidades de kips por pulgada cuadrada (ksi). a. Elaboren un diagrama esfuerzo-deformación unitaria para el material. b. Determinen la elongación del alambre debida a las fuerzas P. c. Si se quitan las fuerzas, ¿cuál es la deformación permanente de la barra? d. Si se aplican de nuevo las fuerzas, ¿cuál es el límite de proporcionalidad? Parte 3: Aplicando la Ley de Hooke y Poisson 5. Ahora utilicen la Ley de Hooke y de Poisson para contestar los siguientes problemas. Para esto supongan que los materiales se comportan de manera linealmente elástica. Una barra redonda de alta resistencia que se usa en una grúa grande tiene un diámetro d = 2.50 in. El acero tiene un módulo de elasticidad E=29x106 psi y una relación de Poisson v=0.29. Debido a requisitos de holgura, el diámetro de la barra está limitado a 2.502 in, cuando se comprime por fuerzas axiales. a. ¿Cuál es la carga máxima de comprensión Pmax permitida?
  • 7. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Fuente: Gere, J. M., y Goodno, B. J. (2009). Mecánica de materiales (7ma ed.). Santa Fe, México: CENGAGE Learning. Una barra de polietileno tiene un diámetro d1 = 3.0 in, y se coloca dentro de un tubo de acero que tiene un diámetro interior d2 = 3.01 in. Luego la barra de polietileno se comprime por una fuerza axial P. a. ¿Cuál es el valor de la fuerza P que hará que se cierre el espacio entre la barra de polietileno y el tubo de acero? Para esto supongan que el polietileno E=200ksi y v=0.4. Se lleva a cabo un ensayo de tensión en una probeta de bronce que tiene un diámetro de 10 mm utilizando una longitud calibrada de 50 mm. Cuando una carga de tensión P alcanza un valor de 30 kN, la distancia entre las marcas de calibración aumenta 0.222 mm. a. ¿Cuál es el módulo de elasticidad de E del bronce? b. Si el diámetro disminuye 0.00830 mm, ¿cuál es la relación de Poisson? Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Instrucción para el alumno:
  • 8. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 1. Enlista al menos 20 componentes diferentes que sean utilizados en la construcción de un edificio, casa, puente o estadio, agrúpalos de mayor a menor con base en la resistencia que creas que cada uno de ellos tiene. 2. Enlista las propiedades mecánicas más importantes que se tienen que encontrar en los 20 materiales que listaste hace un momento. Lista al menos 5 propiedades mecánicas con las que se puedan realizar cálculos y diferenciación de sus características de desempeño. 3. Resuelve los siguientes problemas: Problema 1. Un anuncio hecho de una barra prismática sostiene una carga P1 = 3 klb en la punta, y una segunda carga P2 en el cambio de geometría, como se muestra en la figura. En AB la sección transversal es cuadrada, con lado de 2pulg; y en BC es una sección circular con 3pulg de diámetro. Calcula el esfuerzo normal en la parte rectangular del anuncio, y determina de qué magnitud tiene que ser la carga P2 para que la parte cilíndrica tenga el mismo esfuerzo. Problema 2. Una bola de acero de 200Kg cuelga de la estructura de una máquina de demolición a través de un cable de 25mm de diámetro y 3m de largo. Calcula el esfuerzo en el extremo superior del cable sin considerar el peso del cable.
  • 9. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Problema 3. Un tubo de cobre con longitud de 50cm se carga a compresión por medio de la fuerza P. Los diámetros exterior e interior son de 6cm y 5cm respectivamente. Si la deformación unitaria que se midió es de 550x10-6¿Cuál es la longitud de la barra bajo compresión?, y ¿Cuál es el valor de P para que resulte un esfuerzo de 50MPa? Problema 4. Una grúa industrial está cargado una masa de 4500kg, tiene un cable que le ayuda a soportar el peso cuya área efectiva es de A=0.003m2. Las dimensiones de la grúa son H=3m, L1=6m y L2=2m. Calcula el esfuerzo de tensión en el cable y la deformación unitaria promedio, si el cable se estira 9.7mm Problema 5. Tres placas de 10mm de espesor están unidas por dos tornillos M10, y son sometidas a una carga P de 60kN, como muestra la figura. Calcula el esfuerzo cortante máximo en los tornillos.
  • 10. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Problema 6. Observa tu entorno y selecciona al menos cinco elementos o estructuras (sillas, pizarrón, ruedas de escritorio, etc.). Estima y asigna valores de las variables asociadas para calcular los esfuerzos axiales, ya sean de compresión o tensión, y los esfuerzos de corte a los que están sometidos en su uso. No olvides desarrollar el diagrama de cuerpo libre correspondiente, e integrar tus procedimientos; puedes usar fotografías para describir los objetos que estudiaras. 4. ¿Cuáles son los materiales que comúnmente se usan en la construcción de un edificio? Explica cómo es que la evolución de los materiales ha hecho que los edificios puedan soportar tener más pisos a lo alto que antes. 5. Enlista al menos 5 desarrollos de materiales utilizados en la construcción, y que hace 30 años no se utilizaban. Parte 1: Identificando tu entorno 1. De manera individual, da respuesta a las siguientes cuestiones que se presentan a continuación: a. Lista al menos 12 componentes en tu entorno sujetos a cargas axiales, o componentes sujetos a torsión (alguna sugerencia podrían ser las patas de las mesas y sillas, así como lámparas y puertas). b. Realiza un diagrama de cuerpo libre para cada uno de los elementos que hayas encontrado (si no puedes escribir los valores de cargas, puedes representarlos por letras o palabras que hagan referencia a la carga). c. Infiere lo que ocurriría si es que se cambiaran los materiales que se están utilizando para cada uno de los componentes; qué pasaría si, conservando la forma, se cambiaran los elementos a vidrio, madera, acero o titanio. Justifica tus hallazgos. Parte 2: Experimento y validación de problemas 2. Reúnanse en parejas por medio de chat o Skype para resolver lo siguiente.
  • 11. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 3. Cada integrante deberá de hacer el siguiente experimento. Para esto, deberán tomarse fotos o video sobre cómo lo fueron realizando. a. Coloca los tres vasos formando un triángulo equilátero, cada uno a una distancia de 10 cm como máximo. b. Coloca los tres huevos de manera vertical, descansando una parte del blanquillo en el canto de los vasos. c. Coloca la base circular por encima de los huevos, asegurando, en la medida de lo posible, que quede balanceada y de manera horizontal. d. Coloca el contenedor de agua por encima de la base. e. Inicia vertiendo el agua dentro del contenedor de manera que se vaya llenando; a cada litro que vayas vaciando puedes ir inspeccionando visualmente la condición actual de los huevos sin mover el resto de la estructura. f. Al terminar de verter el líquido, puedes ir añadiendo más pesos por encima, hasta encontrar el peso total que puede soportar la base de huevos. g. Como procedimiento adicional, puedes colocar los huevos de manera horizontal y confirmar cuál es el peso máximo que podrán soportar. h. Realiza un diagrama de cuerpo libre del sistema físico y escribe una conclusión del experimento. Justifica tus resultados. i. Compartan sus fotografías o video con su compañero y comenten lo siguiente: i. ¿Cuál es la razón por la que el grupo de huevos soporta mucho más peso de manera axial que de manera transversal? ii. ¿Qué estructuras tienen un comportamiento similar al momento de colocarse el peso de manera axial? iii. En la construcción de edificios, ¿creen que este principio pueda ser aplicado de la misma manera para ser más eficientes las estructuras? Parte 3: Resolución de problemas y completando el formulario 4. Sigan trabajando en equipos. 5. Lean los siguientes problemas e identifiquen las fórmulas que deberán utilizar para resolverlos. 6. Una vez identificadas las fórmulas, deberán intercambiarlas por las de otro equipo. Utilicen el foro para compartir sus formularios. 7. Traten de resolver los problemas utilizando el formulario que el otro equipo les compartió. ¿Pudieron resolver los problemas? ¿Cuáles fórmulas faltaron? a. Dentro de un tubo circular hueco de cobre C está encerrado un cilindro circular sólido de acero S. El cilindro y el tubo se comprimen entre las placas rígidas de una máquina de prueba mediante fuerzas de compresión P. El cilindro de acero tiene un área de su sección transversal A y un módulo de elasticidad Es. El tubo de cobre tiene un área As y un módulo Ec, y las dos partes tienen una longitud L. Determinen las cantidades siguientes:
  • 12. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com i. La fuerza de compresión Ps en el cilindro de acero, y Pc en el tubo de cobre. ii. Los esfuerzos de compresión correspondientes ζs y ζc y el acortamiento δ del conjunto. b. Una barra AB rígida horizontal está articulada en el extremo A y soportada por dos alambres CD y EF en los puntos D y F respectivamente. Una carga vertical P actúa en el extremo B de la barra. La longitud de la barra es 3b y los alambres CD y DF tienen longitudes L1 y L2 respectivamente. Además, el alambre CD tiene un diámetro d1 y módulo de elasticidad E1; el alambre EF tiene un diámetro d2 y un módulo E2. Obtengan fórmulas para la carga permisible P si los esfuerzos permisibles en los alambres CD y EF son ζ1 y ζ2 respectivamente, sin tomar en cuenta el peso de la barra. Calculen la carga permisible P para las condiciones siguientes: i. El alambre CD está hecho de acero con módulo E1 = 29 X 106 Pa, diámetro d1 = 3.0 mm y longitud L1 = 0.50 m. ii. El alambre EF está hecho de aluminio con módulo E2 = 65 X 106 Pa, diámetro d2 = 4.0 mm y longitud L2 = 0.40 m. iii. Los esfuerzos permisibles en los alambres de acero y aluminio son ζ1 = 180 MPa y ζ2 = 165 MPa respectivamente.
  • 13. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com c. Una barra de acero ABC vertical está soportada por un pasador en sus extremos superiores y cargados por una fuerza P1 en su extremo inferior. Una viga horizontal BDE está conectada con un perno a la barra vertical en la unión B y soportada en el punto D. La barra soporta una carga P2 en el extremo E. La parte superior de la barra vertical (segmento AB) tiene una longitud L1 = 30.0 in y un área de sección transversal A1 = 0.4 in2. La parte inferior (segmento BC) tiene una longitud L2 = 42.0 in y área A2 = 0.20 in2. El módulo de elasticidad E del acero es de 29.0 X 106 psi. Las partes izquierda y derecha de la viga BDE tienen longitudes a = 25 in y b = 22 in, respectivamente. i. Calculen el desplazamiento vertical δc en el punto C si la carga P1 = 3,000 lb y la cara P2 = 6,000 lb. No tomen en cuenta los pesos de la barra ni de la viga. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Entregable(s): Documento con los ejercicios resueltos, listado de los materiales así como diagramas de cuerpo libre. Parte 1 1. De manera individual, responde a las siguientes preguntas: a. ¿Qué relación tienen las construcciones de edificios con las máquinas en cuanto a componentes utilizables? b. ¿Cuáles son las formas de vigas más utilizadas en la actualidad para la construcción de edificios?
  • 14. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com c. ¿Cómo se puede ligar la optimización de los componentes con el desarrollo de robots? d. Documenta cuántos tipos (formas) de vigas existen y su utilización. Menciona los materiales con las que están fabricadas y algunas propiedades físicas, para poder saber por qué se selecciona este material. e. ¿Cómo se han logrado optimizar las estructuras mediante el desarrollo de diferentes tipos de formas de vigas? f. Dibuja las diferentes formas de vigas. g. Señala en donde pienses que se realizan los esfuerzos a la viga cuando aplicas una carga. Parte 2 2. Reúnanse en parejas; cada uno deberá de realizar la siguiente actividad documentando cada paso del desarrollo. Recuerden reunirse por medio de Skype, Google Docs o algún otro chat. a. Sujeta la regla a lo largo del lápiz y tracen una línea a lo largo de cada uno de los dos tubos que tienen, tanto del lápiz como del tubo metálico. b. Sujeta con las pinzas cada uno de los extremos del lápiz de madera, tomando en cuenta que debes ver la línea de frente. c. Una de las manos que sostiene un extremo mantenla firme, y la otra gírala para que observes la deformación de la viga. d. En el caso de la madera, verás cómo la línea casi no se mueve; por el contrario, se romperá el lápiz al momento de ejercerle el “momento de torsión”. e. En el caso del tubo de acero, se desplazará la línea y nos mostrará cuál es su máxima resistencia hasta antes de que ceda el material.
  • 15. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 3. Respondan las siguientes preguntas: a. ¿Qué ocurre con el pedazo de madera al momento de ejercerle una carga de torque? b. ¿Qué ocurre con el tubo metálico al momento de ejercerle una carga de torque? c. ¿Cuál es la razón por la que los dos elementos se comportan de manera diferente? d. ¿Qué relación existe entre el torque y la deformación? 4. Tomen fotografías del desarrollo del experimento. Parte 3 5. De manera individual, realiza la siguiente actividad y documenta cada paso de tu desarrollo. a. Evalúa la evolución de los materiales utilizados para la construcción. Relaciona esta evolución de materiales con las prácticas actuales en la construcción de rascacielos. b. En base a este criterio de conocimiento, analiza cuál es la razón por la que se pueden realizar estructuras cada vez más complejas en forma y más eficientes en uso de materiales. c. Analiza algunas de las razones por las que ocurrió que el puente de Tacoma colapsara, y haz una sugerencia en cuanto a qué pudieras haber mejorado.
  • 16. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 6. Comencemos ahora a trabajar en la solución de algunos problemas. Vuélvanse a reunir en parejas. Deberán de mencionar paso a paso cómo dieron solución a los problemas; tomen turnos para que cada uno realice uno de los pasos. a. Un ciclista aplica una fuerza P de 70 N al freno de mano de una bicicleta (P es la resultante de la fuerza distribuida uniformemente). Conforme el freno de mano gira en A, desarrolla una tensión T en el cable con una longitud de 460 mm (Ae=1.075 mm2) que se estira en δ=0.214 mm. Determinen el esfuerzo normal σ. b. Una barra redonda ACB de longitud 2L gira con respecto a un eje que pasa por el punto medio C con una velocidad angular constante σ (expresada en radianes por segundo). El material de la barra tiene un peso específico γ. Deduzcan una ecuación para el esfuerzo de tensión σx en la barra, como una función de la distancia x desde el punto medio C. ¿Cuál es el esfuerzo máximo de tensión σmax? Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. Instrucción para el alumno: Parte 1: Comenzando a trabajar 1. Enlista al menos 15 componentes diferentes que se encuentren a tu alrededor y realiza su diagrama de cuerpo libre. 2. En base al diagrama de cuerpo libre, realiza una lista de cuáles componentes estarán sujetos a una carga flexionante y cuáles estarán sujetos a una carga axial. 3. Realiza una tabla comparativa de los materiales más utilizados en la manufactura de bicicletas, así como cualquier aleación que pueda ser desarrollada para darle mayor durabilidad o ligereza a las bicicletas. 4. Explica las causas por la cuales el material es utilizado en base a sus características físicas (peso, dureza). 5. Enlista las tablas comparativas de los diferentes componentes; muestra los componentes de carga que soportan. Considera el uso normal dentro de una carrera de montaña, así como los golpes que puede recibir cada uno de los componentes que se encuentran en el ensamble de la bicicleta. 6. Realiza una propuesta de diferentes materiales que pueden ser utilizados en la construcción de bicicletas; considera opciones disruptivas como el bambú o fibra de carbono. Justifica tus respuestas.
  • 17. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Parte 2: Resolución de problemas 7. Resuelve los siguientes problemas: a. Un aguilón de una grúa tiene una masa de 555 kg, con su centro de masa C estabilizado por dos cables AQ y BQ (Ae=304 mm² para cada cable), como se muestra en la figura. Una carga P=25 kN está soportada en el punto D. El aguilón de la grúa yace en el plano y-z. i. Determina las fuerzas de tensión en cada cable: TAQ Y TBQ; no tomes en cuenta la masa de los cables, pero incluye la masa del aguilón además de la carga P. ii. Determina el esfuerzo promedio ζ en cada cable. b. Dos góndolas en un teleférico están aseguradas en la posición que se muestra en la figura, mientras se hacen reparaciones en otro lugar. La distancia entre las torres de soporte es L=175 ft. La longitud de cada segmento de cable sobre las góndolas que pesan Wb=550 lb y Wc=750 lb son DAB=12 ft (distancia de A a B) DBC=70 ft (distancia de B a C) y DCD=20 ft (distancia de C a D). El pandeo del cable en B es ΔB=3.9 ft y en C (ΔC=7.1 ft). El área de la sección transversal efectiva del cable es Ae=0.12 in².
  • 18. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com i. Encuentra la fuerza de tensión en cada segmento de cable; no tomes en cuenta la masa del cable. ii. Encuentra el esfuerzo promedio ζ en cada segmento del cable. c. Un carro que pesa 145kN cuando está completamente cargado, se jala lentamente hacia arriba por una pista inclinada mediante un cable de acero (consulta la figura). El cable tiene un área de sección transversal efectiva de 490 mm² y el ángulo α de la inclinación es de 30°. i. Calcula el esfuerzo de tensión ζ en el cable. d. Dos alambres de acero soportan una cámara móvil suspendida que pesa W=25 lb (consulta la figura), empleada para hacer acercamientos de las acciones en el campo
  • 19. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com de eventos deportivos. En un instante dado, el alambre 1 forma un ángulo α=20° con la horizontal y el alambre 2 forma un ángulo β=48°. Los dos alambres tienen un diámetro de 30 milésimas. (Los diámetros del alambre con frecuencia se expresan en milésimas de pulgada: una milésima de pulgada es igual a 0.001 in). i. Determina los esfuerzos de tensión ζ1 y ζ2 en los dos alambres. Parte 3: Reflexiona los criterios de diseño 8. Enlista las tablas comparativas de los diferentes componentes, muestra los componentes de carga que soportan. Considera el uso normal dentro de una carrera de montaña, así como los golpes que puede recibir cada uno de los componentes que se encuentran en el ensamble de la bicicleta. Parte 1. Identificando materiales 1. De manera individual, analiza cuáles son los componentes más importantes a considerar en el momento de diseñar una viga estructural: a. Lista de al menos cinco tipos de vigas que se utilicen en la construcción relacionando su forma. b. Relaciona los tipos de viga que enlistaste en el punto anterior con el tipo de construcción para el que son creados. c. Relaciona la forma de estas vigas con el material que son creados. d. Crea una tabla en la que enlistes las formas de las vigas y compares cuáles son las vigas que más peso pueden soportar; asimismo, realiza un esquema de estas vigas. e. Genera una comparativa de las aleaciones de las vigas y cómo han evolucionado a lo largo del tiempo, qué es lo que han logrado estas aleaciones. f. Envía el reporte por medio de la plataforma de blackboard.
  • 20. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com 2. En parejas, cada integrante deberá de realizar la siguiente actividad, documentando cada paso del desarrollo. Recuerden reunirse por medio de Skype, Google Docs o algún otro chat. a. Coloquen los dos bloques pequeños a una distancia de 25 cm uno del otro. b. Coloquen las tres reglas de madera apiladas una junto a la otra. c. Encinten los extremos del apilamiento de reglas, solo para mantenerlas unidas. d. Coloquen las reglas apiladas en los bloques pequeños de madera, de manera perpendicular a los bloques, es decir, formando un ángulo de 90°. e. Coloquen los dos botes con agua por encima de las reglas. f. Retiren los dos botes con agua. g. Ahora coloquen las reglas de manera horizontal en los bloques de madera. h. Coloquen nuevamente los dos botes con agua. i. Usando los conceptos de física elemental, reflexionen sobre la razón por la que las reglas, en el momento de estar de manera vertical y horizontal, tienen un desempeño diferente. j. Intercambien —por medio de Chat, msn o Skype— los resultados obtenidos y realicen un reporte Parte 2. Resolución de problemas 3. En equipo de 3 integrantes cada uno deberá contestar uno de los siguientes problemas, al terminar intercambien sus problemas entre ustedes, y revisen si el procedimiento y el resultado es correcto. Problema 1 Una viga metálica con claro de L = 4 pies está simplemente apoyada en los puntos A y B. La carga uniforme sobre la viga es Po = 200 lb/pulg. La sección transversal de la viga es rectangular, con ancho b = 1.5 pulg y peralte h = 3 pulg. La viga está bien apuntalada contra pandeo lateral. a. Determinen los esfuerzos normal ζC y cortante ηC en el punto lateral derecho C, localizado a 1 pulg. Debajo de la parte superior de la viga y a 8 pulg del apoyo derecho. Muestren los esfuerzos en un croquis de un elemento de esfuerzo en el punto C.
  • 21. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Problema 2. Una viga de madera AB que sostiene dos cargas concentradas P tiene una sección transversal rectangular de ancho b = 100 mm y peralte h = 150 mm. Las distancias de los extremos de la viga a las cargas son a = 0.5 m. a. Determinen el valor permisible máximo Pmax de las cargas, si el esfuerzo permisible por flexión es ζperm = 11 MPa, tanto en compresión como en tensión, y el esfuerzo permisible cortante es ηperm = 1.2 MPa. Imagen generada para fines educativos Fuente de referencia: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Problema 3. Un poste vertical que consiste de un tubo circular con diámetro exterior d2 = 3.5 in y diámetro interior d1 = 3.0 in está sometido a una fuerza horizontal P = 1,800 lb a. Determinen el esfuerzo cortante máximo en el poste. b. Para la misma carga P y el mismo esfuerzo cortante máximo, ¿cuál es el diámetro dC de un poste circular sólido?
  • 22. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning.earning. Parte 3. Completando el formulario 4. Reúnanse de 3 a 4 personas por medio de un chat (el de su elección) para formar una mesa redonda y comenten los siguientes puntos: a. ¿Qué estructuras tienen un comportamiento similar en el momento de hablar de componentes de construcción? b. En la construcción de puentes, cómo consideras que pueden ser aplicables estos conceptos. c. Compara el desempeño de una viga I con una viga H, según se muestran en las figuras inferiores, considerando que ambas vigas soportarán una carga uniformemente distribuidas a lo largo de su perfil superior. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. 5. Continuando con la mesa redonda, cada uno mencione las fórmulas que estuvo utilizando durante la actividad y completen su formulario con fórmulas que les hayan faltado incluir. 6. ¿Cuál es la razón por la que, dependiendo de cómo colocas el conjunto de reglas, su resistencia es diferente? Justifícate en los conceptos del curso. 7. Para finalizar, cada alumno deberá de resolver los siguientes problemas:
  • 23. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Una viga de madera simplemente apoyada con un claro L = 12 pies sustenta una carga uniforme a lo largo de la misma Po = 500 lb/pie. El esfuerzo permisible de flexión es de 2,000 lb/pie3 y la viga está soportada en sentido lateral contra pandeo lateral y volteo. Se te pide seleccionar un tamaño adecuado para que la viga pueda soportar la carga previamente mencionada. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Una represa temporal de madera está construida con tablones horizontales „A‟ soportados en postes verticales de madera „B‟, empotrados en el suelo de manera, que actúan como vigas en voladizo. Los postes tienen una sección transversal cuadrada (dimensiones b X b) y están espaciados a una distancia s = 0.5 m, centro a centro. Suponga que el nivel máximo del agua detrás de la represa es h = 1.5 m. Determina la dimensión mínima requerida b de los postes si el esfuerzo de flexión permisible en la madera es ζ = 5.0 MPa. Figura obtenida de libro de texto, solo para fines educativos Fuente: Gere, J. y Goodno, B. (2009). Mecánica de materiales (7ª ed.) México: Cengage Learning. Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada.
  • 24. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com Parte 1. Identificando el contexto 1. De manera individual, responde a las siguientes preguntas: a. ¿Cuál es la razón principal de fallas de las vigas que soportan alguna carga cualquiera? (Justificar con un diagrama de fuerza o cuerpo libre) b. ¿Qué mejoras se han llevado a cabo actualmente para evitar fallas en las estructuras estáticas? c. ¿Cómo influye la distancia a la que se aplica una carga en un juego como el “sube y baja”? d. ¿Qué leyes de la física o conceptos de física utilizamos?, ¿por qué? ¿Se relaciona con el concepto de Trabajo? e. ¿Cómo podríamos determinar la seguridad con la que podemos utilizar un mecanismo, como un pasamano, sin que este se rompa? Parte 2. Reafirmando el conocimiento 2. Por medio de algún chat o Skype, realicen la siguiente actividad en equipo de 2, y documenten cada paso de su desarrollo. a. Corten un tramo de un hilo de aproximadamente 30 cm de largo. b. Lacen en una orilla del hilo la pelota pequeña de esponja, puedes utilizar el alfiler para asegurar que la pelota no se caiga. c. Coloquen una sola tira de la pasta al borde de la mesa, solo asomando una pequeña porción de la pasta por fuera de la mesa. d. Amarren el otro extremo del hilo a la pasta. e. Muevan lentamente la pasta hacia el extremo, tratando de que la pelota no se balancee ni se caiga. f. Anoten la distancia a la que la pasta se rompe. g. Repitan del punto a al punto f, pero ahora colocando en lugar de una sola tira de pasta, dos tiras de pasta juntas, tres tiras de pastas juntas y cuatro tiras de pasta juntas. h. Anoten sus resultados, tomando la distancia a la que se rompe en cada uno de los puntos con el mismo peso. i. Evalúen los resultados, midiendo el área transversal de las tiras de pasta, calculen la proporción adicional de soporte que añade una sola tira de pasta, dos, tres y cuatro tiras de pasta, y grafiquen la línea de resistencia. j. Realiza justificaciones con base en los conceptos adquiridos hasta el momento. Escribe por individual una conclusión e intercámbiala con tu compañero de equipo para ver los resultados que obtuvieron 3. Dividan el trabajo entre el equipo de 2 y resuelvan el siguiente problema, para que cada uno determine uno de los tipos de esfuerzos.
  • 25. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com El eje o flecha del rotor de un helicóptero impulsa las aspas del rotor que suministran la fuerza de levantamiento que sostiene al helicóptero en el aire. En consecuencia el eje está sometido a una combinación de torsión y carga axial. a. Determinen el esfuerzo máximo, el esfuerzo de compresión máximo y el esfuerzo cortante máximo en el eje de diámetro 60mm que transmite un par de torsión T = 2.9 kN-m y una fuerza de tensión P = 125 kN, determinen el esfuerzo de tensión máximo, el esfuerzo de compresión máximo y el esfuerzo cortante máximo en la flecha. Imagen obtenida de https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Anatomia_de_um_helic%C3%B3ptero.svg/790px- Anatomia_de_um_helic%C3%B3ptero.svg.png Solo para fines educativos. Parte 3. Completando el formulario 4. Por medio de un foro, chat o Skype, continúen trabajando en parejas y realicen la siguiente actividad. a. Evaluando los resultados que obtuvieron en la parte previa del ejercicio, determinen cuáles pueden ser algunas de las mejoras que se pueden proponer para hacer que las tiras de pasta puedan soportar más peso b. Recuerden que es muy importante considerar que en algunas ocasiones las estructuras no pueden aumentar el peso, y en otras no pueden aumentar el costo. Traten de proponer diferentes alternativas sin cambiar las dos variables anteriores. c. Ahora, sin restricciones, ¿cuáles son las posibles variaciones que podrían hacerle a las tiras de pasta si quisiéramos que soportaran más peso? Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada. nstrucción para el alumno: Parte 1. Comenzando a trabajar 1. Considerando la información y el conocimiento que hasta el momento tienes, realiza una comparativa del comportamiento de los siguientes materiales al ser utilizados para crear una estructura.
  • 26. Servicio de asesoría y resolución de ejercicios ciencias_help@hotmail.com www.maestronline.com a. Madera b. Acero c. Aluminio d. Aleaciones de magnesio e. Fibra de carbono 2. Desarrolla un esquema detallado de todos los materiales que se utilicen como materiales estructurales, no te guíes solamente por materiales para construcción; existen muchos materiales estructurales que son utilizados desde implantes médicos hasta soportes automotrices. Enlista las principales propiedades mecánicas de estos materiales: dureza,módulo de elasticidad y maleabilidad. 3. Realiza una tabla comparativa de las formas más comunes en las que estos materiales estructurales son constituidos para poder cumplir con su función; asimismo, realiza una comparativa de los procesos que se utilizan de manera industrial para obtener las formas que requieren para su desempeño. Parte 2. Teoría en práctica 4. Realiza una maqueta física —puede ser con palitos de madera, cuchillos de plástico o algún otro material similar— en la que construyas un puente que soporte al menos 10 kilogramos; este puente deberá estar construido de manera individual y con el desarrollo fundamentado de manera adecuada. 5. En una presentación, video o reporte documentado, enlista las tablas comparativas de los diferentes componentes, muestra algunas fotos de cómo se comportan estos componentes. a. Considera el uso de estos componentes bajo condiciones normales de carga, partiendo del principio para el cual fueron diseñados. b. Realiza una propuesta de cuáles son las formas o perfiles que cada una de estas estructuras podría adoptar, para obtener un desempeño adecuado. 6. Diseña y genera una estructura en la que puedas colocar dentro un huevo crudo, dejarás caer la estructura con el huevo dentro desde un segundo piso de un edificio, y verás si es que el huevo resiste el impacto al estar protegido por la estructura que diseñaste y construiste.