SlideShare una empresa de Scribd logo
República Bolivariana de Venezuela.
Ministerio del Poder Popular para la Educación.
U.E.T "Adres Eloy Blanco"
Barquisimeto- Edo Lara.
Plano
Numérico
Estudiante:
Kendry Linarez.
C.I: 30.105.535
SC: 0101.
Plano Numérico
Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos
rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto
llamado origen o punto cero.
La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el
plano, la cual está representada por el sistema de coordenadas.
El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como
la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la
geometría analítica.
El nombre del plano cartesiano se debe al filósofo y matemático francés René Descartes,
quien fue el creador de la geometría analítica y el primero en utilizar este sistema de
coordenadas.
Las Partes del Plano Cartesiano o Plano Numérico:
Ejes Coordenados
Se llaman ejes coordenados a las dos rectas perpendiculares que se interconectan en un
punto del plano. Estas rectas reciben el nombre de abscisa y ordenada.
Abscisa: el eje de las abscisas está dispuesto de manera horizontal y se identifica con la
letra “x”.
Ordenada: el eje de las ordenadas está orientado verticalmente y se representa con la letra
“y”.
Origen o punto 0
Se llama origen al punto en el que se intersectan los ejes “x” y “y”, punto al cual se le
asigna el valor de cero (0). Por ese motivo, también se conoce como punto cero (punto 0).
Cada eje representa una escala numérica que será positiva o negativa de acuerdo a su
dirección respecto del origen.
Así, respecto del origen o punto 0, el segmento derecho del eje “x” es positivo, mientras
que el izquierdo es negativo. Consecuentemente, el segmento ascendente del eje “y” es
positivo, mientras que el segmento descendente es negativo.
Cuadrantes del plano cartesiano
Se llama cuadrantes a las cuatro áreas que se forman por la unión de las dos rectas
perpendiculares. Los puntos del plano se describen dentro de estos cuadrantes.
Los cuadrantes se enumeran tradicionalmente con números romanos: I, II, III y IV.
Cuadrante I: la abscisa y la ordenada son positivas.
Cuadrante II: la abscisa es negativa y la ordenada positiva.
Cuadrante III: tanto la abscisa como la ordenada son negativas.
Cuadrante IV: la abscisa es positiva y el ordenada negativa.
Coordenadas del plano cartesiano
Las coordenadas son los números que nos dan la ubicación del punto en el plano. Las
coordenadas se forman asignando un determinado valor al eje “x” y otro valor al eje “y”.
Esto se representa de la siguiente manera:
P (x, y), donde:
P = punto en el plano
;x = eje de la abscisa (horizontal);
y = eje de la ordenada (vertical).
Si queremos saber las coordenadas de un punto en el plano, trazamos una línea
perpendicular desde el punto P hasta el eje “x” –a esta línea la llamaremos proyección
(ortogonal) del punto P sobre el eje “x”.
Seguidamente, trazamos otra línea desde el punto P hasta el eje “y” –es decir, una
proyección del punto P sobre el eje “y”.
En cada uno de los cruces de las proyecciones con ambos ejes, se refleja un número
(positivo o negativo). Esos números son las coordenadas.
Por ejemplo,
En este ejemplo, las coordenadas de los puntos en cada cuadrante son:
Cuadrante I, P (2, 3);
Cuadrante II, P (-3, 1);
Cuadrante III, P (-3, -1) y
Cuadrante IV, P (3, -2).
Si lo que queremos es saber la ubicación de un punto a partir de unas coordenadas
previamente asignadas, entonces trazamos una línea perpendicular desde el número
indicado de la abscisa, y otra desde el número de la ordenada. La intersección o cruce de
ambas proyecciones nos da la ubicación espacial del punto.
Por ejemplo,
En este ejemplo, P (3,4) nos da la ubicación precisa del punto en el cuadrante I del plano.
El 3 pertenece al eje de las abscisas y el 4 (segmento derecho) al eje de las ordenadas
(segmento ascendente).
P (-3,-4) nos da la ubicación específica del punto en el cuadrante III del plano. El -3
pertenece al eje de las abscisas (segmento izquierdo) y el -4 al eje de las ordenadas
(segmento descendente).
Distancia.
El Plano Cartesiano se usa como un sistema de referencia para localizar puntos en un plano.
Otra de las utilidades de dominar los conceptos sobre el Plano cartesiano radica en que, a
partir de la ubicación de las coordenadas de dos puntos es posible calcular la distancia entre
ellos.
Cuando los puntos se encuentran ubicados sobre el eje x (de las abscisas) o en una recta
paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la
diferencia de sus abscisas (x2 – x1).
Cuando los puntos se encuentran ubicados sobre el eje y (de las ordenadas) o en una recta
paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la
diferencia de sus ordenadas. (y1 - y2).
Punto Medio.
Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos
puntos cualquiera o extremos de un segmento.
Más generalmente punto equidistante en matemática, es el punto que se encuentra a la
misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc.
Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese caso, el
punto medio es único y equidista de los extremos del segmento. Por cumplir esta última
condición, pertenece a la mediatriz del segmento.
Ecuaciones.
Tiene la forma y = mx + b ; donde m es la pendiente (ángulo de inclinación de la recta con
respecto al eje x ) y b es el intercepto donde la recta corta al eje y.
Cuando se tiene un línea recta que pasa por dos puntos P(x1;y1) y Q(x2;y2) , se cumple
que la pendiente m es constante, donde m se define como:
Trazado de Circunferencia
* Parábolas: una parábola (del es la sección cónica de excentricidad igual a 1, resultante de
cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución
del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a
dicha recta.
* Elipse: Es el lugar geométrico de los puntos P (x, y) del plano cartesiano cuya suma de
distancias de los puntos, llamados focos: F1 y F2 es constante.
Gráfica plano cartesiano
Cuando la elipse tiene forma vertical:
Cuando la elipse tiene forma horizontal:
- Fórmula canónica
Cuando la elipse tiene forma vertical:
El eje focal está paralelo al eje de las abscisas (y, y1)
Cuando la elipse tiene forma horizontal:
El eje focal está paralelo al eje de las abscisas (x, x1)
- Ecuación general de la circunferencia
* Hipérbola: Una hipérbola es el lugar geométrico de los puntos P(x, y) del plano
cartesiano tales que la diferencia de sus distancias a dos puntos fijos llamados focos, F y F,
es constante. Las líneas azules constituyen lo que se conoce como una hipérbola.
Representación grafica de las
ecuaciones de las cónicas.
x²/a²-y²/b²=1 Cuando los vértices están en sentido de x
Y²/a²-x²/b²=1 Cuando los vértices están en sentido de y
Siendo 2a el eje mayor o transverso
Cuando no tiene centro en el origen las ecuaciones canónicas son:
(x-h) ²/a²-(y-k) ²/b²=1 o (y-k)²/a²-(x-h)²/b²=1 dependiendo el sentido del eje mayor o
transverso
Bibliografía
https://www.superprof.es/diccionario/matematicas/analitica/punto-plano.html
https://www.significados.com/plano-cartesiano/

Más contenido relacionado

La actualidad más candente (20)

Plano numerico
Plano numerico Plano numerico
Plano numerico
 
Guía 10° JM Distancia entre dos puntos
Guía 10° JM Distancia entre dos puntos Guía 10° JM Distancia entre dos puntos
Guía 10° JM Distancia entre dos puntos
 
Coordenadas cartesianas nuevo
Coordenadas cartesianas nuevoCoordenadas cartesianas nuevo
Coordenadas cartesianas nuevo
 
Sistema de coordenadas cartesianas
Sistema de coordenadas cartesianasSistema de coordenadas cartesianas
Sistema de coordenadas cartesianas
 
Plano
PlanoPlano
Plano
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Presentación de plano numérico
Presentación de plano numéricoPresentación de plano numérico
Presentación de plano numérico
 
Planos numericos
Planos numericosPlanos numericos
Planos numericos
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico matematica
Plano numerico matematicaPlano numerico matematica
Plano numerico matematica
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
ELEMENTOS DEL PLANO CARTESIANO
ELEMENTOS DEL PLANO CARTESIANOELEMENTOS DEL PLANO CARTESIANO
ELEMENTOS DEL PLANO CARTESIANO
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano numerico. rosanyely
Plano numerico. rosanyelyPlano numerico. rosanyely
Plano numerico. rosanyely
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PLANO NUMERICO
PLANO NUMERICOPLANO NUMERICO
PLANO NUMERICO
 
Plano numérico
Plano numérico Plano numérico
Plano numérico
 

Similar a Plano numérico Linarez Kendry

Plano numerico Valeria Zambrano.pdf
Plano numerico Valeria Zambrano.pdfPlano numerico Valeria Zambrano.pdf
Plano numerico Valeria Zambrano.pdfValeriaValentinaZamb
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxMichell Urra Juarez
 
Plano-numerico.pdf
Plano-numerico.pdfPlano-numerico.pdf
Plano-numerico.pdfluisa656224
 
PLANO NUMERICO.pdf
PLANO NUMERICO.pdfPLANO NUMERICO.pdf
PLANO NUMERICO.pdfangelyeerum
 
Plano numérico.docx............................
Plano numérico.docx............................Plano numérico.docx............................
Plano numérico.docx............................eliannyRobertis
 
Plano numérico
 Plano numérico Plano numérico
Plano numéricoAzaelPerez8
 
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509KronoDesktop
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptxsamiramaro
 
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANO
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANOPRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANO
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANODanielaColey1
 
plano cartesiano.pptx
plano cartesiano.pptxplano cartesiano.pptx
plano cartesiano.pptxNaiyerlis
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptxHervinValles
 
Plano numerico
Plano numericoPlano numerico
Plano numericoAnnaRivas5
 
Plano numérico edgardo torrealba.pptx
Plano numérico edgardo torrealba.pptxPlano numérico edgardo torrealba.pptx
Plano numérico edgardo torrealba.pptxedgardotorrealba
 
Plano numérico o plano cartesiano y otras definiciones .docx
Plano numérico o plano cartesiano y otras definiciones .docxPlano numérico o plano cartesiano y otras definiciones .docx
Plano numérico o plano cartesiano y otras definiciones .docxjoselanoy14
 

Similar a Plano numérico Linarez Kendry (20)

Plano numerico Valeria Zambrano.pdf
Plano numerico Valeria Zambrano.pdfPlano numerico Valeria Zambrano.pdf
Plano numerico Valeria Zambrano.pdf
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
 
Plano-numerico.pdf
Plano-numerico.pdfPlano-numerico.pdf
Plano-numerico.pdf
 
Matematica 2.21
Matematica 2.21Matematica 2.21
Matematica 2.21
 
Matematica 2.2.2
Matematica 2.2.2Matematica 2.2.2
Matematica 2.2.2
 
PLANO NUMERICO.pdf
PLANO NUMERICO.pdfPLANO NUMERICO.pdf
PLANO NUMERICO.pdf
 
Plano numérico.docx............................
Plano numérico.docx............................Plano numérico.docx............................
Plano numérico.docx............................
 
Plano numérico
 Plano numérico Plano numérico
Plano numérico
 
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509
PRESENTACION PLANO NUMERICO JOSE SANCHEZ INO113 31319509
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptx
 
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANO
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANOPRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANO
PRESENTACIÓN SOBRE UBICACION DE LOS PUNTOS EN EL PLANO CARTESIANO
 
plano cartesiano.pptx
plano cartesiano.pptxplano cartesiano.pptx
plano cartesiano.pptx
 
Plano Numérico .docx
Plano Numérico .docxPlano Numérico .docx
Plano Numérico .docx
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numérico edgardo torrealba.pptx
Plano numérico edgardo torrealba.pptxPlano numérico edgardo torrealba.pptx
Plano numérico edgardo torrealba.pptx
 
Plano numérico o plano cartesiano y otras definiciones .docx
Plano numérico o plano cartesiano y otras definiciones .docxPlano numérico o plano cartesiano y otras definiciones .docx
Plano numérico o plano cartesiano y otras definiciones .docx
 
Plano Numérico.docx
Plano Numérico.docxPlano Numérico.docx
Plano Numérico.docx
 
Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
 
Plano numerico.pdf
Plano numerico.pdfPlano numerico.pdf
Plano numerico.pdf
 

Último

Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaEdurne Navarro Bueno
 
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)portafoliodigitalyos
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativoharolbustamante1
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRDanielGrajeda7
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxNoe Castillo
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoasadvavillacorte123
 
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfDescripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfrehabilitvet
 
Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webinformatica4
 
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdf
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdfFerias de ciencias y estrategia STEAM – PNFCyT 2024.pdf
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdfJudithRomero51
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...harolbustamante1
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)portafoliodigitalyos
 
Orientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteOrientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteEducaclip
 
Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...odalisvelezg
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxvanessaavasquez212
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxmatepura
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitalesnievesjiesc03
 

Último (20)

Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoas
 
Lec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuarioLec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuario
 
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfDescripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
 
Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio web
 
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdf
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdfFerias de ciencias y estrategia STEAM – PNFCyT 2024.pdf
Ferias de ciencias y estrategia STEAM – PNFCyT 2024.pdf
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 
6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)
 
Orientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteOrientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArte
 
Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...Lección 1: Los complementos del Verbo ...
Lección 1: Los complementos del Verbo ...
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptx
 
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docxENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
ENUNCIADOS CUESTIONARIO S9 GEOLOGIA Y MINERALOGIA - GENERAL.docx
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 

Plano numérico Linarez Kendry

  • 1. República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. U.E.T "Adres Eloy Blanco" Barquisimeto- Edo Lara. Plano Numérico Estudiante: Kendry Linarez. C.I: 30.105.535 SC: 0101.
  • 2. Plano Numérico Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica. El nombre del plano cartesiano se debe al filósofo y matemático francés René Descartes, quien fue el creador de la geometría analítica y el primero en utilizar este sistema de coordenadas. Las Partes del Plano Cartesiano o Plano Numérico: Ejes Coordenados Se llaman ejes coordenados a las dos rectas perpendiculares que se interconectan en un punto del plano. Estas rectas reciben el nombre de abscisa y ordenada. Abscisa: el eje de las abscisas está dispuesto de manera horizontal y se identifica con la
  • 3. letra “x”. Ordenada: el eje de las ordenadas está orientado verticalmente y se representa con la letra “y”. Origen o punto 0 Se llama origen al punto en el que se intersectan los ejes “x” y “y”, punto al cual se le asigna el valor de cero (0). Por ese motivo, también se conoce como punto cero (punto 0). Cada eje representa una escala numérica que será positiva o negativa de acuerdo a su dirección respecto del origen. Así, respecto del origen o punto 0, el segmento derecho del eje “x” es positivo, mientras que el izquierdo es negativo. Consecuentemente, el segmento ascendente del eje “y” es positivo, mientras que el segmento descendente es negativo. Cuadrantes del plano cartesiano Se llama cuadrantes a las cuatro áreas que se forman por la unión de las dos rectas
  • 4. perpendiculares. Los puntos del plano se describen dentro de estos cuadrantes. Los cuadrantes se enumeran tradicionalmente con números romanos: I, II, III y IV. Cuadrante I: la abscisa y la ordenada son positivas. Cuadrante II: la abscisa es negativa y la ordenada positiva. Cuadrante III: tanto la abscisa como la ordenada son negativas. Cuadrante IV: la abscisa es positiva y el ordenada negativa. Coordenadas del plano cartesiano Las coordenadas son los números que nos dan la ubicación del punto en el plano. Las coordenadas se forman asignando un determinado valor al eje “x” y otro valor al eje “y”. Esto se representa de la siguiente manera: P (x, y), donde: P = punto en el plano ;x = eje de la abscisa (horizontal); y = eje de la ordenada (vertical). Si queremos saber las coordenadas de un punto en el plano, trazamos una línea perpendicular desde el punto P hasta el eje “x” –a esta línea la llamaremos proyección (ortogonal) del punto P sobre el eje “x”. Seguidamente, trazamos otra línea desde el punto P hasta el eje “y” –es decir, una proyección del punto P sobre el eje “y”. En cada uno de los cruces de las proyecciones con ambos ejes, se refleja un número (positivo o negativo). Esos números son las coordenadas. Por ejemplo,
  • 5. En este ejemplo, las coordenadas de los puntos en cada cuadrante son: Cuadrante I, P (2, 3); Cuadrante II, P (-3, 1); Cuadrante III, P (-3, -1) y Cuadrante IV, P (3, -2). Si lo que queremos es saber la ubicación de un punto a partir de unas coordenadas previamente asignadas, entonces trazamos una línea perpendicular desde el número indicado de la abscisa, y otra desde el número de la ordenada. La intersección o cruce de ambas proyecciones nos da la ubicación espacial del punto. Por ejemplo, En este ejemplo, P (3,4) nos da la ubicación precisa del punto en el cuadrante I del plano. El 3 pertenece al eje de las abscisas y el 4 (segmento derecho) al eje de las ordenadas (segmento ascendente). P (-3,-4) nos da la ubicación específica del punto en el cuadrante III del plano. El -3 pertenece al eje de las abscisas (segmento izquierdo) y el -4 al eje de las ordenadas (segmento descendente).
  • 6. Distancia. El Plano Cartesiano se usa como un sistema de referencia para localizar puntos en un plano. Otra de las utilidades de dominar los conceptos sobre el Plano cartesiano radica en que, a partir de la ubicación de las coordenadas de dos puntos es posible calcular la distancia entre ellos. Cuando los puntos se encuentran ubicados sobre el eje x (de las abscisas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas (x2 – x1). Cuando los puntos se encuentran ubicados sobre el eje y (de las ordenadas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. (y1 - y2). Punto Medio. Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento. Ecuaciones. Tiene la forma y = mx + b ; donde m es la pendiente (ángulo de inclinación de la recta con respecto al eje x ) y b es el intercepto donde la recta corta al eje y. Cuando se tiene un línea recta que pasa por dos puntos P(x1;y1) y Q(x2;y2) , se cumple que la pendiente m es constante, donde m se define como:
  • 7. Trazado de Circunferencia * Parábolas: una parábola (del es la sección cónica de excentricidad igual a 1, resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. * Elipse: Es el lugar geométrico de los puntos P (x, y) del plano cartesiano cuya suma de distancias de los puntos, llamados focos: F1 y F2 es constante. Gráfica plano cartesiano Cuando la elipse tiene forma vertical: Cuando la elipse tiene forma horizontal: - Fórmula canónica Cuando la elipse tiene forma vertical: El eje focal está paralelo al eje de las abscisas (y, y1) Cuando la elipse tiene forma horizontal:
  • 8. El eje focal está paralelo al eje de las abscisas (x, x1) - Ecuación general de la circunferencia * Hipérbola: Una hipérbola es el lugar geométrico de los puntos P(x, y) del plano cartesiano tales que la diferencia de sus distancias a dos puntos fijos llamados focos, F y F, es constante. Las líneas azules constituyen lo que se conoce como una hipérbola. Representación grafica de las ecuaciones de las cónicas. x²/a²-y²/b²=1 Cuando los vértices están en sentido de x Y²/a²-x²/b²=1 Cuando los vértices están en sentido de y Siendo 2a el eje mayor o transverso
  • 9. Cuando no tiene centro en el origen las ecuaciones canónicas son: (x-h) ²/a²-(y-k) ²/b²=1 o (y-k)²/a²-(x-h)²/b²=1 dependiendo el sentido del eje mayor o transverso