medidas-tendencia-central datos agrupados y no agrupados.pdf

Carlos Franco
Carlos FrancoConsultor Privado, Profesor Universitario en CUAM
Material Didáctico de Estadística
ESCUELA SUPERIOR TEPEJI
ING INDUSTRIAL: LUIS REY RUIZ RAMIREZ
25/06/2020
UNIDAD III: MEDIDAS DE TENDENCIA CENTRAL
TEMAS:
❑ INTRODUCCION
❑ CONCEPTO
❑ MEDIA ARITMETICA
❑ MEDIANA
Datos del tema:
En este ejercicio integrador se aplican conocimientos de la unidad III MEDIDAS DE TENDENCIA
CENTRAL
Temas:
✓ INTRODUCCION
✓ CONCEPTO
✓ MEDIA ARITMETICA
✓ MEDIANA
Objetivo general: Identificar, calcular y comparar, las medidas de tendencia central para datos
desagrupados y agrupados.
Aprendizaje esperado:
• Obtener la media aritmética de datos agrupados y no agrupados.
• Obtener la mediana de datos agrupados y no agrupados.
Competencias genéricas a desarrollar:
1. Construye e interpreta modelos matemáticos mediante la aplicación de procedimientos aritméticos,
algebraicos, geométricos y variacionales, para la comprensión y análisis de situaciones reales, hipotéticas o
formales.
2. Formula y resuelve problemas matemáticos, aplicando diferentes enfoques.
3. Explica e interpreta los resultados obtenidos mediante procedimientos matemáticos y los contrasta con
modelos establecidos o situaciones reales.
4. Argumenta la solución obtenida de un problema, con métodos
numéricos, gráficos, analíticos o variacionales, mediante el lenguaje verbal, matemático y el uso de las
tecnologías de la información y la comunicación.
5. Analiza las relaciones entre dos o más variables de un proceso social o natural para determinar o estimar su
comportamiento.
6. Cuantifica, representa y contrasta experimental o matemáticamente las magnitudes del espacio y las
propiedades físicas de los objetos que lo rodean.
7. Elige un enfoque determinista o uno aleatorio para el estudio de un proceso o fenómeno, y argumenta su
pertinencia.
8. Interpreta tablas, gráficas, mapas, diagramas y textos con símbolos matemáticos y científicos.
Resumen
El presente material didáctico tiene como objetivo facilitar la
enseñanza y el aprendizaje dentro del ambiente educativo de la
asignatura de Estadística para facilitar la adquisición de
conceptos, habilidades, actitudes y destrezas en la en Educación
Media Superior de la Escuela Superior de Tepeji del Rio.
Este trabajo de material de apoyo que se presenta es de gran
ayuda para que los alumnos pongan en práctica sus
conocimientos adquiridos de la materia en cuestión y para que
los docentes que la imparten puedan utilizar el presente material
para evaluarlos y también para detectar áreas de oportunidad
que puedan tener los alumnos.
Palabras clave: Enseñanza, Material, Conocimientos, Estadística, Practica.
Abstract
This teaching material aims to facilitate teaching and learning in
the educational environment of the subject of Statistics to facilitate
the acquisition of concepts, skills, attitudes and skills in Higher
Secondary Education at the Tepeji del Río Higher School.
This work of support material that is presented is of great help for
the students to put into practice their acquired knowledge of the
matter in question and so that the teachers who teach can use
this material to evaluate and also to detect areas of opportunity
that students may have.
Key words: Teaching, Material, Knowledge, Statistics, Practice.
Introducción
Son medidas estadísticas que se
usan para describir como se puede
resumir la localización de los datos.
Ubican e identifican el punto
alrededor del cual se centran los
datos. Las medidas de tendencia
central nos indican hacia donde se
inclinan o se agrupan más los datos.
Las más utilizadas son: la media, la
mediana y la moda.
1. Mostrar en qué lugar se ubica el elemento promedio o típica del grupo.
2. Sirve como un método para comparar o interpretar cualquier valor en relación con
el puntaje central o típico.
3. Sirve como un método para comparar el valor adquirido por una misma variable en
dos diferentes ocasiones.
4. Sirve como un método para comparar los resultados medios obtenidos por dos o más
grupos.
El propósito de las medidas de tendencia central son:
Es conveniente resumir la información con un solo
numero. Este numero que para tal fin, suele situarse
hacia el centro de la distribución de datos es
denominado medida de tendencia central o
centralización.
Concepto
MEDIA O MEDIA ARITMÉTICA
• Es el valor obtenido de la suma de todos los datos/valores dividida
entre el numero de datos sumados. Es sacar o realizar el
promedio de los datos.
a) Para datos desagrupados.
x̄ =
σ 𝑥𝑖
𝑁
x̄: Media aritmética
∑ : Sumatoria
𝑥𝑖 : Datos
𝑥1, … 𝑥𝑛: Datos
N : Total de datos.
Ejemplo:
a) 5,8,3,6,9,14
x̄ =
5 + 8 + 3 + 6 + 9 + 14
6
= 7.5
b) Para datos agrupados.
x̄ =
𝑓𝑖∗𝑥𝑖
𝑁
∑: Sumatoria.
fi: Frecuencia
xi: Marca de clase
(se calcula por la suma de L.I +L.S entre 2)
N: Total de datos.
Ejemplo
I.C
L.I L.S fi xi fi*xi
3 5 2 4 8
6 8 10 7 70
9 11 12 10 120
12 14 9 13 117
15 17 7 16 112
40 427
x̄ =
427
40
= 10.675
EJERCICIOS
1) Se desea estimar el rendimiento promedio de las llantas de cierta
marca, para ello se tomarán los siguientes datos.
156000 242000 323000 473000
2) Los siguientes son los puntajes de un grupo de adolescentes en un test
de Agudeza Visual: 25, 12, 15, 23, 24, 39, 13, 31, 19, 16.
Calcule la media
7.3 10.0 5.4 9.3 7.5 9.1 8.5 8.9 9.2 10.0
3) El profesor de la materia de estadística desea conocer el promedio de las
notas finales de 10 alumnos de la clase. Las notas de los alumnos son:
¿Cuál es el promedio de notas de los alumnos de la clase?
Media para datos desagrupados
Media para datos agrupados
1) Se encuestan a 55 alumnos para saber cuánto se
tardan en minutos para llegar a la escuela.
Calcule el tiempo promedio que se hacen en llegar
a la escuela.
IC
L I L S Fi
16 20 5
21 25 17
26 30 16
31 35 7
36 40 4
41 45 4
46 50 1
51 53 1
2) Calcula, por el procedimiento aprendido, la
media aritmética de los puntajes obtenidos en
una prueba de ingreso a la universidad de los
212 alumnos de un colegio, considerando la
siguiente distribución:
Puntaje
L I L S
Frecuenc
ia
350 399 4
400 449 6
450 499 9
500 549 20
550 599 31
600 649 80
650 699 42
700 749 10
750 799 8
800 849 2
212
MEDIANA
• Representa el valor de la variable de posición central.
𝑀𝑒 =
𝑁+1
2
a) Datos desagrupados:
1.- Desagrupados nones
Ejemplo: 8,9,5,6,7,3,4.
Ordenar de forma ascendente.
3,4,5,6,7,8,9.
Me = 7 + 1 / 2 = 4 Posición
Me = 6
2.- Desagrupados pares
Ejemplo: 25,20,19,17,15,21,18,14,12,22.
Ordenados: 12,14,15,17, ,20,21,22,25
Me = 10 + 1 / 2 = 5.5 Posición
Me = 18 + 19 / 2 = 18.5
b) Datos agrupados
𝑀𝑒 = 𝐿𝑉𝐼 +
𝑁
2
− σ 𝑓𝑎𝑎
𝐹 𝑚𝑒𝑑
∗ 𝐶
Me : Mediana
LVI: Límite verdadero inferior de la clase mediana
N: Total de datos
∑faa: Sumatoria de la frecuencia acumulada anterior a la
clase mediana
F med: Frecuencia de clase mediana
C: Amplitud de clase
𝑋 = 𝑃𝑜𝑠𝑖𝑐𝑖ó𝑛 =
55 + 1
2
= 28
Ejemplo
Intervalos. Frecuencia F Acumulada
16-20 5 5
21-25 17 22
26-30 16 38
31-35 7 45
36-40 4 49
41-45 4 53
46-50 1 54
51-55 1 55
Total. 55
𝑀𝑒 = 25.5 +
55
2
− 22
16
∗ 5
Me= 27.21
C : 5
EJERCICIOS
a)
2 4 7 8 2 5 9
b)
6 8 7 5 3 7
1) De las siguientes series de datos encontrar
la mediana de datos desagrupados:
Mediana para datos desagrupados
4 1 2 3 4 2 2 1 5 5 3
2) Encontrar la mediana para los siguientes
datos. Nota que la cantidad de elementos en la
muestra es 11 (impar).
3) Modifiquemos el ejemplo
anterior eliminando el último dato.
Encontrar la mediana.
4 1 2 3 4 2 2 1 5 5
Mediana para datos agrupados
1) Determina la mediana de las estaturas de
los estudiantes de Economía, considerando los
datos agrupados que aparecen en la siguiente
tabla:
2) Determina la mediana de los puntajes de
una prueba de Estadística, a partir de los datos
no agrupados construir la tabla de distribución
de frecuencias.
Intervalo Frecuencia
1.65--1.69 6
1.70--1.74 12
1.75--1.79 30
1.80--1.84 22
1.85--1.89 8
1.90--1.94 2
80
61 70 77 82 63 75 83 62 67 83
67 80 77 85 83 76 83 67 78 76
72 80 83 72 84 71 77 82 79 83
66 88 68 74 84 75 73 75 83 84
87 64 83 72 87 77 63 72 84 78
INSTRUMENTO DE EVALUACIÓN PARA EJERCICIOS
CRITERIO 90-100 80-89 70-79 60-69
MODELO MATEMÁTICO
Lee y entiende el enunciado de
un problema y el proceso para
su resolución; analiza los datos
e identifica la estrategia más
adecuada para su resolución.
Ordena los datos, realiza las
operaciones y resuelve el
problema; relee el enunciado y
comprueba el resultado.
Lee comprensivamente el
enunciado de un problema,
analiza los datos que contiene,
deduce las relaciones entre
ellos y elige la estrategia para
solucionarlo; organiza los datos,
realiza las operaciones
necesarias y resuelve el
problema.
Comprende parcialmente la
información contenida en el
enunciado de un problema de
requiere apoyos para establecer
relaciones entre los datos, elegir
la estrategia para solucionarlo o
llevar a cabo las operaciones
necesarias para su resolución.
No comprende la información
contenida en el enunciado de un
problema requiere apoyos para
que le expliquen qué hacer y
como relacionar los datos, se le
dificulta elegir la estrategia para
solucionarlo o llevar a cabo las
operaciones necesarias para su
resolución.
PROCEDIMIENTOS
ARITMETICOS Y
VARIACIONALES
Demuestra los conocimientos
respecto de los conceptos
matemáticos utilizados que
contribuyen a la solución de
problemas, utiliza estrategias
eficientes y efectivas en la solución.
La explicación demuestra
conocimiento sustancial de los
conceptos matemáticos, es
entendible el procedimiento,
utiliza estrategias efectivas en la
solución.
La explicación demuestra
deficiencias en los
conocimientos de los conceptos
matemáticos, no es entendible el
procedimiento, en algunos
casos utiliza estrategias
efectivas en la solución.
La explicación demuestra
conocimiento muy limitado de los
conceptos matemáticos, utiliza la
forma inadecuada los
procedimientos, no utiliza
estrategias efectivas de solución.
DISEÑO DE GRÁFICAS,
DIAGRAMAS, TABLAS O
DIBUJOS.
Comprende y utiliza de
forma correcta los términos
que indican posiciones
espaciales situando
elementos; identifica y
dibuja otros a partir de la
descripción de su posición.
Identifica la posición de un
objeto en el espacio y utiliza
correctamente los términos de
izquierda, derecha, arriba, abajo,
etc., para describir la situación
de distintos elementos.
Identifica la posición de un
objeto en el espacio y no
utiliza correctamente los
términos izquierda, derecha,
arriba, abajo, etc., para
describir la situación de
distintos elementos.
No identifica la posición de un
objeto en el espacio y no
utiliza correctamente los
términos izquierda, derecha,
arriba, abajo, etc., para
describir la situación de
distintos elementos.
ORTOGRAFíA Y
REDACCIÓN
Redacta sin faltas de ortografía y
demuestra un orden de ideas
lógico y coherente. Hace las
referencias de los recursos que
utiliza respetando el derecho de
autor.
Redacta con máximo 3 faltas
de ortografía y demuestra un
orden de ideas lógico y
coherente. Hace referencias
de los recursos utilizados
respetando el derecho de
autor.
Redacta con más de 3 faltas
de ortografía o no demuestra
un orden de ideas lógico. No
hace referencia de los
recursos utilizados.
No cumple con los elementos
solicitados en la actividad ni
en el formato. Utiliza textos
publicados sin hacer
referencia del autor.
ENTREGA
Demuestra que considero el
contenido de actividad, utiliza el
formato establecido, entrega en
tiempo la actividad completa
Demuestra que considero de
forma parcial el contenido de la
actividad, utiliza el formato
establecido y entrega en tiempo
la actividad completa.
Denota omisión del contenido
de la actividad, utiliza el formato
establecido, pero la actividad
está incompleta.
No cumple con los elementos
solicitados en la actividad ni en el
formato. No entrega a tiempo la
actividad.
Las medidas de Tendencia Central son empleadas para resumir a los conjuntos de
datos que serán sometidos a un estudio estadístico, se les llama medidas de
tendencia central porque general mente la acumulación más alta de datos se
encuentra en los valores intermedios. Estas medidas son utilizadas con gran
frecuencias como medidas descriptivas de poblaciones o muestras.
Las mas empleadas:
1 Media – También llamada promedio o media, de un conjunto infinito de números es
el valor característico de una serie de datos cuantitativos, objeto de estudio.
2 Mediana – Representa el valor de la variable que deja por debajo de sí a la mitad
de los datos en un conjunto ordenados de menor a mayor.
Referencias bibliográficas
Fuenlabrada S. (2013). Probabilidad y Estadística. México: McGraw-Hill.
Sánchez, S. E. Insunsa (2014). Probabilidad y estadística. México: Patria
Garza. C. (2012) Probabilidad y estadística. México: Umbral.
1 de 18

Recomendados

Plan hiperbola por
Plan  hiperbolaPlan  hiperbola
Plan hiperbolaRosa Choque
3.6K vistas1 diapositiva
Ejercicios de Factorización por
Ejercicios de FactorizaciónEjercicios de Factorización
Ejercicios de FactorizaciónSuperate Kriete
148.6K vistas7 diapositivas
Media Mediana Y Moda de Datos Agrupados por
Media Mediana Y Moda de Datos AgrupadosMedia Mediana Y Moda de Datos Agrupados
Media Mediana Y Moda de Datos AgrupadosEstadistica UTPL
556.4K vistas17 diapositivas
Clase05 eyp por
Clase05 eypClase05 eyp
Clase05 eypUniversidad Nacional Mayor de San Marcos
16.9K vistas103 diapositivas
Metodos de muestreo, ejercicios y su procedimiento (1) por
Metodos de muestreo, ejercicios y su procedimiento (1)Metodos de muestreo, ejercicios y su procedimiento (1)
Metodos de muestreo, ejercicios y su procedimiento (1)Luz Hernández
104.9K vistas10 diapositivas
Planificación inecuaciones por
Planificación  inecuacionesPlanificación  inecuaciones
Planificación inecuacionesnestor ortiz del salto
4.8K vistas3 diapositivas

Más contenido relacionado

La actualidad más candente

Series y Sumatorias completo por
Series y Sumatorias completoSeries y Sumatorias completo
Series y Sumatorias completoMartin Huamán Pazos
49.1K vistas4 diapositivas
Ejercicios numeros-racionales-y-reales-4c2baa por
Ejercicios numeros-racionales-y-reales-4c2baaEjercicios numeros-racionales-y-reales-4c2baa
Ejercicios numeros-racionales-y-reales-4c2baawendyhuamanv
153.4K vistas14 diapositivas
Medidas de Tendencia Central por
Medidas de Tendencia CentralMedidas de Tendencia Central
Medidas de Tendencia CentralAlondra Cervantes
23.7K vistas14 diapositivas
Evaluacion de ecuacion de primer grado por
Evaluacion de ecuacion de primer gradoEvaluacion de ecuacion de primer grado
Evaluacion de ecuacion de primer gradoJairo de Jesus Tovar Hernandez
8.8K vistas2 diapositivas
Estadistica Básica para Docentes de Secundaria por
Estadistica Básica para Docentes de SecundariaEstadistica Básica para Docentes de Secundaria
Estadistica Básica para Docentes de SecundariaLuis Dicovskiy
73.4K vistas55 diapositivas
Guía nº 3 potencias de numeros enteros por
Guía nº 3 potencias de numeros enterosGuía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enterosMario Covarrubias
10.3K vistas1 diapositiva

La actualidad más candente(20)

Ejercicios numeros-racionales-y-reales-4c2baa por wendyhuamanv
Ejercicios numeros-racionales-y-reales-4c2baaEjercicios numeros-racionales-y-reales-4c2baa
Ejercicios numeros-racionales-y-reales-4c2baa
wendyhuamanv153.4K vistas
Estadistica Básica para Docentes de Secundaria por Luis Dicovskiy
Estadistica Básica para Docentes de SecundariaEstadistica Básica para Docentes de Secundaria
Estadistica Básica para Docentes de Secundaria
Luis Dicovskiy73.4K vistas
Guía nº 3 potencias de numeros enteros por Mario Covarrubias
Guía nº 3 potencias de numeros enterosGuía nº 3 potencias de numeros enteros
Guía nº 3 potencias de numeros enteros
Mario Covarrubias10.3K vistas
Tabla distribución t de student por davinsonbmx
Tabla distribución t de studentTabla distribución t de student
Tabla distribución t de student
davinsonbmx73.7K vistas
Deciles para datos sin agrupar y Deciles para datos agrupados por Rodrigo Palomino
Deciles para datos sin agrupar y Deciles para datos agrupadosDeciles para datos sin agrupar y Deciles para datos agrupados
Deciles para datos sin agrupar y Deciles para datos agrupados
Rodrigo Palomino60.5K vistas
Tabla de Distribución por edades por CPilarZB
Tabla de Distribución por edadesTabla de Distribución por edades
Tabla de Distribución por edades
CPilarZB28.6K vistas
FUNCIONES REALES por Cris Panchi
FUNCIONES REALESFUNCIONES REALES
FUNCIONES REALES
Cris Panchi 32.9K vistas
Estadística, gráficos, tablas y estadígrafos. por Julia Bravo Gómez.
Estadística, gráficos, tablas y estadígrafos.Estadística, gráficos, tablas y estadígrafos.
Estadística, gráficos, tablas y estadígrafos.
Julia Bravo Gómez.109.9K vistas
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios por Belén Vidal Moreno
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomiosEjercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Ejercicios resueltos de fracciones algebraicas, logaritmos y polinomios
Belén Vidal Moreno102.3K vistas
Examen de matematica octavos - segundo quimestre por Marco Lahuasi
Examen de matematica   octavos - segundo quimestreExamen de matematica   octavos - segundo quimestre
Examen de matematica octavos - segundo quimestre
Marco Lahuasi26.3K vistas
Estadistica por guestc0cda9
EstadisticaEstadistica
Estadistica
guestc0cda977.7K vistas
Acertijo de rompecabezas con ecuaciones primer grado (autor: Javier Solis No... por JAVIER SOLIS NOYOLA
Acertijo de rompecabezas  con ecuaciones primer grado (autor: Javier Solis No...Acertijo de rompecabezas  con ecuaciones primer grado (autor: Javier Solis No...
Acertijo de rompecabezas con ecuaciones primer grado (autor: Javier Solis No...
JAVIER SOLIS NOYOLA8.8K vistas
Plan de Unidad Temática. Matemática. Primero de bachillerato por Cris Panchi
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachillerato
Cris Panchi 15.5K vistas
26 ejercicios congruencia de triángulos por Marcelo Calderón
26 ejercicios congruencia de triángulos26 ejercicios congruencia de triángulos
26 ejercicios congruencia de triángulos
Marcelo Calderón307.9K vistas
93034691 deber-2 por cesa1996
93034691 deber-293034691 deber-2
93034691 deber-2
cesa19963.4K vistas

Similar a medidas-tendencia-central datos agrupados y no agrupados.pdf

Plan clase-tic-ii-medidas de tendencia central. por
Plan clase-tic-ii-medidas de tendencia central.Plan clase-tic-ii-medidas de tendencia central.
Plan clase-tic-ii-medidas de tendencia central.Delia Rodriguez
6.9K vistas16 diapositivas
11111111222222333333 por
1111111122222233333311111111222222333333
11111111222222333333percy jesus soto valdez
152 vistas11 diapositivas
Diapositivas mtc marzo v2 %281%29 por
Diapositivas mtc marzo v2 %281%29Diapositivas mtc marzo v2 %281%29
Diapositivas mtc marzo v2 %281%29Edmao Ramírez Silgado
683 vistas16 diapositivas
Resolucion del-practicamos-ficha-19 (2) por
Resolucion del-practicamos-ficha-19 (2)Resolucion del-practicamos-ficha-19 (2)
Resolucion del-practicamos-ficha-19 (2)Christ Florez
10.3K vistas17 diapositivas
Estadistica nuevo-ingreso por
Estadistica nuevo-ingresoEstadistica nuevo-ingreso
Estadistica nuevo-ingresoPatricia Iglesias
785 vistas37 diapositivas
Nociones básicas de estadística por
Nociones básicas de estadísticaNociones básicas de estadística
Nociones básicas de estadísticaPatricia Iglesias
5.5K vistas22 diapositivas

Similar a medidas-tendencia-central datos agrupados y no agrupados.pdf(20)

Plan clase-tic-ii-medidas de tendencia central. por Delia Rodriguez
Plan clase-tic-ii-medidas de tendencia central.Plan clase-tic-ii-medidas de tendencia central.
Plan clase-tic-ii-medidas de tendencia central.
Delia Rodriguez6.9K vistas
Resolucion del-practicamos-ficha-19 (2) por Christ Florez
Resolucion del-practicamos-ficha-19 (2)Resolucion del-practicamos-ficha-19 (2)
Resolucion del-practicamos-ficha-19 (2)
Christ Florez10.3K vistas
Medidas de tendencia central,dispersion y de posicion por YULIANA ROSAS
Medidas de tendencia central,dispersion y de posicionMedidas de tendencia central,dispersion y de posicion
Medidas de tendencia central,dispersion y de posicion
YULIANA ROSAS1.8K vistas
Programa12 por lherreran
Programa12Programa12
Programa12
lherreran2.9K vistas
Proyecto la estadistica en mi escuela por Elsa Dominini
Proyecto la estadistica en mi escuelaProyecto la estadistica en mi escuela
Proyecto la estadistica en mi escuela
Elsa Dominini5.4K vistas
PRESENTACION DEL PLAN DE UNIDAD (ESTADÍSTICA) por normandita
PRESENTACION DEL PLAN DE UNIDAD (ESTADÍSTICA)PRESENTACION DEL PLAN DE UNIDAD (ESTADÍSTICA)
PRESENTACION DEL PLAN DE UNIDAD (ESTADÍSTICA)
normandita6.9K vistas
Presentacion del plan de unidad (estadística) por normandita
Presentacion del plan de unidad (estadística)Presentacion del plan de unidad (estadística)
Presentacion del plan de unidad (estadística)
normandita439 vistas
Ebook de Estadistica con el SPSS Presentado por Hamlet Mata Mata por hamlet mata mata
Ebook de Estadistica con el SPSS Presentado por Hamlet Mata Mata Ebook de Estadistica con el SPSS Presentado por Hamlet Mata Mata
Ebook de Estadistica con el SPSS Presentado por Hamlet Mata Mata
hamlet mata mata3.4K vistas

Más de Carlos Franco

Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes... por
Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...
Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...Carlos Franco
2 vistas9 diapositivas
Media Mediana y Moda.pdf por
Media Mediana y Moda.pdfMedia Mediana y Moda.pdf
Media Mediana y Moda.pdfCarlos Franco
2 vistas21 diapositivas
REGLAS_DERIVACION.pdf por
REGLAS_DERIVACION.pdfREGLAS_DERIVACION.pdf
REGLAS_DERIVACION.pdfCarlos Franco
3 vistas8 diapositivas
PARES ORDENADOS.pdf por
PARES ORDENADOS.pdfPARES ORDENADOS.pdf
PARES ORDENADOS.pdfCarlos Franco
2 vistas13 diapositivas
REGLAS_DERIVACION.pdf por
REGLAS_DERIVACION.pdfREGLAS_DERIVACION.pdf
REGLAS_DERIVACION.pdfCarlos Franco
2 vistas8 diapositivas
estadistica_5 (1).pdf por
estadistica_5 (1).pdfestadistica_5 (1).pdf
estadistica_5 (1).pdfCarlos Franco
507 vistas2 diapositivas

Más de Carlos Franco(20)

Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes... por Carlos Franco
Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...
Conceptos Básicos de Estadística - Diplomado en Análisis de Información Geoes...
Carlos Franco2 vistas
Estadística con SPSS.pdf por Carlos Franco
Estadística con SPSS.pdfEstadística con SPSS.pdf
Estadística con SPSS.pdf
Carlos Franco123 vistas
Herramientas-de-Excel-para-Estadística.pdf por Carlos Franco
Herramientas-de-Excel-para-Estadística.pdfHerramientas-de-Excel-para-Estadística.pdf
Herramientas-de-Excel-para-Estadística.pdf
Carlos Franco72 vistas
Pag_217 probabilidades.pdf por Carlos Franco
Pag_217 probabilidades.pdfPag_217 probabilidades.pdf
Pag_217 probabilidades.pdf
Carlos Franco38 vistas
estadistica_ejercicio probabilidades.pdf por Carlos Franco
estadistica_ejercicio probabilidades.pdfestadistica_ejercicio probabilidades.pdf
estadistica_ejercicio probabilidades.pdf
Carlos Franco5 vistas
Comunidad_Emagister_66885_66885. Medidas de Tendencia Central.pdf por Carlos Franco
Comunidad_Emagister_66885_66885. Medidas de Tendencia Central.pdfComunidad_Emagister_66885_66885. Medidas de Tendencia Central.pdf
Comunidad_Emagister_66885_66885. Medidas de Tendencia Central.pdf
Carlos Franco68 vistas
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf por Carlos Franco
Cuartiles_deciles_y_percentiles.Ppalpdf.pdfCuartiles_deciles_y_percentiles.Ppalpdf.pdf
Cuartiles_deciles_y_percentiles.Ppalpdf.pdf
Carlos Franco63 vistas
Medidas de Dispersión..pdf por Carlos Franco
Medidas de Dispersión..pdfMedidas de Dispersión..pdf
Medidas de Dispersión..pdf
Carlos Franco148 vistas
Medidas de Dispersion empleando Excel.pdf por Carlos Franco
Medidas de Dispersion empleando Excel.pdfMedidas de Dispersion empleando Excel.pdf
Medidas de Dispersion empleando Excel.pdf
Carlos Franco65 vistas
Asimetria y Curtosis, Resumen de Medidas de Dispersión.pdf por Carlos Franco
Asimetria y Curtosis, Resumen de Medidas de Dispersión.pdfAsimetria y Curtosis, Resumen de Medidas de Dispersión.pdf
Asimetria y Curtosis, Resumen de Medidas de Dispersión.pdf
Carlos Franco193 vistas

Último

Socialismo Conservador - Hans-Hermann Hoppe por
Socialismo Conservador - Hans-Hermann HoppeSocialismo Conservador - Hans-Hermann Hoppe
Socialismo Conservador - Hans-Hermann HoppeAcracia Ancap
7 vistas57 diapositivas
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez Carmera por
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez CarmeraKarl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez Carmera
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez CarmeraAcracia Ancap
7 vistas14 diapositivas
La Contrarrevolución de la Ciencia - Friedrich von Hayek por
La Contrarrevolución de la Ciencia - Friedrich von HayekLa Contrarrevolución de la Ciencia - Friedrich von Hayek
La Contrarrevolución de la Ciencia - Friedrich von HayekAcracia Ancap
6 vistas167 diapositivas
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptx por
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptxTarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptx
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptxayalajenny59
7 vistas13 diapositivas
Praxeología y Economía - Francisco Capella por
Praxeología y Economía - Francisco CapellaPraxeología y Economía - Francisco Capella
Praxeología y Economía - Francisco CapellaAcracia Ancap
8 vistas81 diapositivas
infografia MELEAGRICULTURA..pdf por
infografia MELEAGRICULTURA..pdfinfografia MELEAGRICULTURA..pdf
infografia MELEAGRICULTURA..pdfJULIANALEJANDROSANCH
6 vistas1 diapositiva

Último(9)

Socialismo Conservador - Hans-Hermann Hoppe por Acracia Ancap
Socialismo Conservador - Hans-Hermann HoppeSocialismo Conservador - Hans-Hermann Hoppe
Socialismo Conservador - Hans-Hermann Hoppe
Acracia Ancap7 vistas
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez Carmera por Acracia Ancap
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez CarmeraKarl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez Carmera
Karl Ludwig von Haller: un reaccionario Anarcocapitalista - Juan Gómez Carmera
Acracia Ancap7 vistas
La Contrarrevolución de la Ciencia - Friedrich von Hayek por Acracia Ancap
La Contrarrevolución de la Ciencia - Friedrich von HayekLa Contrarrevolución de la Ciencia - Friedrich von Hayek
La Contrarrevolución de la Ciencia - Friedrich von Hayek
Acracia Ancap6 vistas
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptx por ayalajenny59
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptxTarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptx
Tarea 4- Evaluación final- Jennifer Isabel Ayala Espitia-1005483772.pptx
ayalajenny597 vistas
Praxeología y Economía - Francisco Capella por Acracia Ancap
Praxeología y Economía - Francisco CapellaPraxeología y Economía - Francisco Capella
Praxeología y Economía - Francisco Capella
Acracia Ancap8 vistas
Historia natural de la insuficiencia renal.docx por DanielaCorts36
Historia natural de la insuficiencia renal.docxHistoria natural de la insuficiencia renal.docx
Historia natural de la insuficiencia renal.docx
DanielaCorts365 vistas

medidas-tendencia-central datos agrupados y no agrupados.pdf

  • 1. Material Didáctico de Estadística ESCUELA SUPERIOR TEPEJI ING INDUSTRIAL: LUIS REY RUIZ RAMIREZ 25/06/2020 UNIDAD III: MEDIDAS DE TENDENCIA CENTRAL TEMAS: ❑ INTRODUCCION ❑ CONCEPTO ❑ MEDIA ARITMETICA ❑ MEDIANA
  • 2. Datos del tema: En este ejercicio integrador se aplican conocimientos de la unidad III MEDIDAS DE TENDENCIA CENTRAL Temas: ✓ INTRODUCCION ✓ CONCEPTO ✓ MEDIA ARITMETICA ✓ MEDIANA Objetivo general: Identificar, calcular y comparar, las medidas de tendencia central para datos desagrupados y agrupados. Aprendizaje esperado: • Obtener la media aritmética de datos agrupados y no agrupados. • Obtener la mediana de datos agrupados y no agrupados.
  • 3. Competencias genéricas a desarrollar: 1. Construye e interpreta modelos matemáticos mediante la aplicación de procedimientos aritméticos, algebraicos, geométricos y variacionales, para la comprensión y análisis de situaciones reales, hipotéticas o formales. 2. Formula y resuelve problemas matemáticos, aplicando diferentes enfoques. 3. Explica e interpreta los resultados obtenidos mediante procedimientos matemáticos y los contrasta con modelos establecidos o situaciones reales. 4. Argumenta la solución obtenida de un problema, con métodos numéricos, gráficos, analíticos o variacionales, mediante el lenguaje verbal, matemático y el uso de las tecnologías de la información y la comunicación. 5. Analiza las relaciones entre dos o más variables de un proceso social o natural para determinar o estimar su comportamiento. 6. Cuantifica, representa y contrasta experimental o matemáticamente las magnitudes del espacio y las propiedades físicas de los objetos que lo rodean. 7. Elige un enfoque determinista o uno aleatorio para el estudio de un proceso o fenómeno, y argumenta su pertinencia. 8. Interpreta tablas, gráficas, mapas, diagramas y textos con símbolos matemáticos y científicos.
  • 4. Resumen El presente material didáctico tiene como objetivo facilitar la enseñanza y el aprendizaje dentro del ambiente educativo de la asignatura de Estadística para facilitar la adquisición de conceptos, habilidades, actitudes y destrezas en la en Educación Media Superior de la Escuela Superior de Tepeji del Rio. Este trabajo de material de apoyo que se presenta es de gran ayuda para que los alumnos pongan en práctica sus conocimientos adquiridos de la materia en cuestión y para que los docentes que la imparten puedan utilizar el presente material para evaluarlos y también para detectar áreas de oportunidad que puedan tener los alumnos. Palabras clave: Enseñanza, Material, Conocimientos, Estadística, Practica.
  • 5. Abstract This teaching material aims to facilitate teaching and learning in the educational environment of the subject of Statistics to facilitate the acquisition of concepts, skills, attitudes and skills in Higher Secondary Education at the Tepeji del Río Higher School. This work of support material that is presented is of great help for the students to put into practice their acquired knowledge of the matter in question and so that the teachers who teach can use this material to evaluate and also to detect areas of opportunity that students may have. Key words: Teaching, Material, Knowledge, Statistics, Practice.
  • 6. Introducción Son medidas estadísticas que se usan para describir como se puede resumir la localización de los datos. Ubican e identifican el punto alrededor del cual se centran los datos. Las medidas de tendencia central nos indican hacia donde se inclinan o se agrupan más los datos. Las más utilizadas son: la media, la mediana y la moda. 1. Mostrar en qué lugar se ubica el elemento promedio o típica del grupo. 2. Sirve como un método para comparar o interpretar cualquier valor en relación con el puntaje central o típico. 3. Sirve como un método para comparar el valor adquirido por una misma variable en dos diferentes ocasiones. 4. Sirve como un método para comparar los resultados medios obtenidos por dos o más grupos. El propósito de las medidas de tendencia central son:
  • 7. Es conveniente resumir la información con un solo numero. Este numero que para tal fin, suele situarse hacia el centro de la distribución de datos es denominado medida de tendencia central o centralización. Concepto
  • 8. MEDIA O MEDIA ARITMÉTICA • Es el valor obtenido de la suma de todos los datos/valores dividida entre el numero de datos sumados. Es sacar o realizar el promedio de los datos. a) Para datos desagrupados. x̄ = σ 𝑥𝑖 𝑁 x̄: Media aritmética ∑ : Sumatoria 𝑥𝑖 : Datos 𝑥1, … 𝑥𝑛: Datos N : Total de datos. Ejemplo: a) 5,8,3,6,9,14 x̄ = 5 + 8 + 3 + 6 + 9 + 14 6 = 7.5 b) Para datos agrupados. x̄ = 𝑓𝑖∗𝑥𝑖 𝑁 ∑: Sumatoria. fi: Frecuencia xi: Marca de clase (se calcula por la suma de L.I +L.S entre 2) N: Total de datos.
  • 9. Ejemplo I.C L.I L.S fi xi fi*xi 3 5 2 4 8 6 8 10 7 70 9 11 12 10 120 12 14 9 13 117 15 17 7 16 112 40 427 x̄ = 427 40 = 10.675
  • 10. EJERCICIOS 1) Se desea estimar el rendimiento promedio de las llantas de cierta marca, para ello se tomarán los siguientes datos. 156000 242000 323000 473000 2) Los siguientes son los puntajes de un grupo de adolescentes en un test de Agudeza Visual: 25, 12, 15, 23, 24, 39, 13, 31, 19, 16. Calcule la media 7.3 10.0 5.4 9.3 7.5 9.1 8.5 8.9 9.2 10.0 3) El profesor de la materia de estadística desea conocer el promedio de las notas finales de 10 alumnos de la clase. Las notas de los alumnos son: ¿Cuál es el promedio de notas de los alumnos de la clase? Media para datos desagrupados
  • 11. Media para datos agrupados 1) Se encuestan a 55 alumnos para saber cuánto se tardan en minutos para llegar a la escuela. Calcule el tiempo promedio que se hacen en llegar a la escuela. IC L I L S Fi 16 20 5 21 25 17 26 30 16 31 35 7 36 40 4 41 45 4 46 50 1 51 53 1 2) Calcula, por el procedimiento aprendido, la media aritmética de los puntajes obtenidos en una prueba de ingreso a la universidad de los 212 alumnos de un colegio, considerando la siguiente distribución: Puntaje L I L S Frecuenc ia 350 399 4 400 449 6 450 499 9 500 549 20 550 599 31 600 649 80 650 699 42 700 749 10 750 799 8 800 849 2 212
  • 12. MEDIANA • Representa el valor de la variable de posición central. 𝑀𝑒 = 𝑁+1 2 a) Datos desagrupados: 1.- Desagrupados nones Ejemplo: 8,9,5,6,7,3,4. Ordenar de forma ascendente. 3,4,5,6,7,8,9. Me = 7 + 1 / 2 = 4 Posición Me = 6 2.- Desagrupados pares Ejemplo: 25,20,19,17,15,21,18,14,12,22. Ordenados: 12,14,15,17, ,20,21,22,25 Me = 10 + 1 / 2 = 5.5 Posición Me = 18 + 19 / 2 = 18.5
  • 13. b) Datos agrupados 𝑀𝑒 = 𝐿𝑉𝐼 + 𝑁 2 − σ 𝑓𝑎𝑎 𝐹 𝑚𝑒𝑑 ∗ 𝐶 Me : Mediana LVI: Límite verdadero inferior de la clase mediana N: Total de datos ∑faa: Sumatoria de la frecuencia acumulada anterior a la clase mediana F med: Frecuencia de clase mediana C: Amplitud de clase
  • 14. 𝑋 = 𝑃𝑜𝑠𝑖𝑐𝑖ó𝑛 = 55 + 1 2 = 28 Ejemplo Intervalos. Frecuencia F Acumulada 16-20 5 5 21-25 17 22 26-30 16 38 31-35 7 45 36-40 4 49 41-45 4 53 46-50 1 54 51-55 1 55 Total. 55 𝑀𝑒 = 25.5 + 55 2 − 22 16 ∗ 5 Me= 27.21 C : 5 EJERCICIOS a) 2 4 7 8 2 5 9 b) 6 8 7 5 3 7 1) De las siguientes series de datos encontrar la mediana de datos desagrupados: Mediana para datos desagrupados 4 1 2 3 4 2 2 1 5 5 3 2) Encontrar la mediana para los siguientes datos. Nota que la cantidad de elementos en la muestra es 11 (impar). 3) Modifiquemos el ejemplo anterior eliminando el último dato. Encontrar la mediana. 4 1 2 3 4 2 2 1 5 5
  • 15. Mediana para datos agrupados 1) Determina la mediana de las estaturas de los estudiantes de Economía, considerando los datos agrupados que aparecen en la siguiente tabla: 2) Determina la mediana de los puntajes de una prueba de Estadística, a partir de los datos no agrupados construir la tabla de distribución de frecuencias. Intervalo Frecuencia 1.65--1.69 6 1.70--1.74 12 1.75--1.79 30 1.80--1.84 22 1.85--1.89 8 1.90--1.94 2 80 61 70 77 82 63 75 83 62 67 83 67 80 77 85 83 76 83 67 78 76 72 80 83 72 84 71 77 82 79 83 66 88 68 74 84 75 73 75 83 84 87 64 83 72 87 77 63 72 84 78
  • 16. INSTRUMENTO DE EVALUACIÓN PARA EJERCICIOS CRITERIO 90-100 80-89 70-79 60-69 MODELO MATEMÁTICO Lee y entiende el enunciado de un problema y el proceso para su resolución; analiza los datos e identifica la estrategia más adecuada para su resolución. Ordena los datos, realiza las operaciones y resuelve el problema; relee el enunciado y comprueba el resultado. Lee comprensivamente el enunciado de un problema, analiza los datos que contiene, deduce las relaciones entre ellos y elige la estrategia para solucionarlo; organiza los datos, realiza las operaciones necesarias y resuelve el problema. Comprende parcialmente la información contenida en el enunciado de un problema de requiere apoyos para establecer relaciones entre los datos, elegir la estrategia para solucionarlo o llevar a cabo las operaciones necesarias para su resolución. No comprende la información contenida en el enunciado de un problema requiere apoyos para que le expliquen qué hacer y como relacionar los datos, se le dificulta elegir la estrategia para solucionarlo o llevar a cabo las operaciones necesarias para su resolución. PROCEDIMIENTOS ARITMETICOS Y VARIACIONALES Demuestra los conocimientos respecto de los conceptos matemáticos utilizados que contribuyen a la solución de problemas, utiliza estrategias eficientes y efectivas en la solución. La explicación demuestra conocimiento sustancial de los conceptos matemáticos, es entendible el procedimiento, utiliza estrategias efectivas en la solución. La explicación demuestra deficiencias en los conocimientos de los conceptos matemáticos, no es entendible el procedimiento, en algunos casos utiliza estrategias efectivas en la solución. La explicación demuestra conocimiento muy limitado de los conceptos matemáticos, utiliza la forma inadecuada los procedimientos, no utiliza estrategias efectivas de solución. DISEÑO DE GRÁFICAS, DIAGRAMAS, TABLAS O DIBUJOS. Comprende y utiliza de forma correcta los términos que indican posiciones espaciales situando elementos; identifica y dibuja otros a partir de la descripción de su posición. Identifica la posición de un objeto en el espacio y utiliza correctamente los términos de izquierda, derecha, arriba, abajo, etc., para describir la situación de distintos elementos. Identifica la posición de un objeto en el espacio y no utiliza correctamente los términos izquierda, derecha, arriba, abajo, etc., para describir la situación de distintos elementos. No identifica la posición de un objeto en el espacio y no utiliza correctamente los términos izquierda, derecha, arriba, abajo, etc., para describir la situación de distintos elementos. ORTOGRAFíA Y REDACCIÓN Redacta sin faltas de ortografía y demuestra un orden de ideas lógico y coherente. Hace las referencias de los recursos que utiliza respetando el derecho de autor. Redacta con máximo 3 faltas de ortografía y demuestra un orden de ideas lógico y coherente. Hace referencias de los recursos utilizados respetando el derecho de autor. Redacta con más de 3 faltas de ortografía o no demuestra un orden de ideas lógico. No hace referencia de los recursos utilizados. No cumple con los elementos solicitados en la actividad ni en el formato. Utiliza textos publicados sin hacer referencia del autor. ENTREGA Demuestra que considero el contenido de actividad, utiliza el formato establecido, entrega en tiempo la actividad completa Demuestra que considero de forma parcial el contenido de la actividad, utiliza el formato establecido y entrega en tiempo la actividad completa. Denota omisión del contenido de la actividad, utiliza el formato establecido, pero la actividad está incompleta. No cumple con los elementos solicitados en la actividad ni en el formato. No entrega a tiempo la actividad.
  • 17. Las medidas de Tendencia Central son empleadas para resumir a los conjuntos de datos que serán sometidos a un estudio estadístico, se les llama medidas de tendencia central porque general mente la acumulación más alta de datos se encuentra en los valores intermedios. Estas medidas son utilizadas con gran frecuencias como medidas descriptivas de poblaciones o muestras. Las mas empleadas: 1 Media – También llamada promedio o media, de un conjunto infinito de números es el valor característico de una serie de datos cuantitativos, objeto de estudio. 2 Mediana – Representa el valor de la variable que deja por debajo de sí a la mitad de los datos en un conjunto ordenados de menor a mayor.
  • 18. Referencias bibliográficas Fuenlabrada S. (2013). Probabilidad y Estadística. México: McGraw-Hill. Sánchez, S. E. Insunsa (2014). Probabilidad y estadística. México: Patria Garza. C. (2012) Probabilidad y estadística. México: Umbral.