SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
Deformación debida a
la Flexión
Complemento Teórico de la Guía de Trabajos Prácticos
El presente trabajo es un sumario de conceptos teóricos de la materia Estabilidad IIb (64.12)
correspondiente a las carreras de Ingeniería Mecánica e Ingeniería Naval y Mecánica.
Ing. Gabriel Pujol
Año de edición 2016
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 1 Curso: Ing. Gabriel Pujol
Tabla de contenido
DEFORMACIÓN DEBIDA A LA FLEXIÓN – ELÁSTICA DE UNA BARRA 3
CONCEPTOS GENERALES 3
RADIO DE CURVATURA 3
DESPLAZAMIENTO VERTICAL 4
DESPLAZAMIENTO ANGULAR 4
ECUACIÓN DE LA ELÁSTICA 5
DIMENSIONAMIENTO DE UNA VIGA A PARTIR DE LA FLECHA 6
MÉTODO DEL ÁREA DEL DIAGRAMA DE MOMENTOS 7
MÉTODO DE LA VIGA CONJUGADA 11
BIBLIOGRAFÍA RECOMENDADA 22
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 2 Estabilidad IIB – 64.12
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 3 Curso: Ing. Gabriel Pujol
Deformación debida a la Flexión – Elástica de una barra
Conceptos Generales
Las piezas flexadas sufren desplazamientos o deflexiones, cuyo control es tan importante para garantizar
el buen comportamiento estructural como la verificación de la resistencia. Cuando la estructura presenta
deformaciones excesivas, la percepción de las mismas por parte de los usuarios genera en éstos una
sensación de alto riesgo.
Los elementos de máquinas, debido a grandes deflexiones pueden presentar desgastes prematuros u
originar efectos vibratorios inadecuados.
Se denomina elástica de una viga solicitada a flexión a la curva que adopta la fibra neutra bajo la acción
de las cargas exteriores.
Radio de Curvatura
Consideremos una viga sometida a flexión,
empotrada en un extremo y libre en el otro. Sea
CDEF un tronco de viga de longitud unitaria y xx la
fibra neutra (figura a).
Bajo la acción de las cargas, la fibra neutra adopta
una determinada curvatura (figura b). Hemos visto
que la fibra neutra no experimenta variación de
longitud, en cambio la fibra más alejada
experimenta un alargamiento total:

d

1
de los triángulos semejantes OCE y OC’E’ se
deduce que:




v
E
C
CE
'
'
o bien:
 
1
1
1




 v
d
v
d





La ecuación (1) mide el aumento de longitud de la
fibra situada a la distancia  + v del centro de
curvatura O. Conforme a la Ley de Hooke la
tensión de dicha fibra es:



v
E
E 



max que debe igualar a: v
I
M


max
 de donde:
 
2
1
I
E
M



; o también  
3
M
I
E 


Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 4 Estabilidad IIB – 64.12
La expresión (2) expresa la curvatura elástica de flexión y la (3) el radio de curvatura de la misma.
Desplazamiento vertical
De la figura de la página siguiente resulta:
   
4

 d
x
tg
x
df 



df mide el descenso del extremo libre B, originado
por el momento flexor Mx que se produce a la
distancia x del extremo B. En el triángulo OCD se
tiene:




dx
d
d
dx 



que reemplazado en la (4) resulta:

dx
x
df


Por último, sustituyendo el valor de  por el de la
expresión (3), se tiene:
dx
I
E
x
M
df x




el descenso total o flecha máxima se obtiene en el
extremo libre como la suma de todos los df dados.
Luego:

 




l
x
l
dx
I
E
x
M
df
f
0
0
Reglamentariamente se fijan valores para las
flechas admisibles, así se tiene:
• tinglados, galpones, vigas de entrepiso
1/400 a 1/600 de la luz.
• vigas de puentes ferroviarios 1/900 a 1/1200 de la luz.
• ejes de volantes 1/2000 de la luz.
Desplazamiento angular
De la expresión (4) se tiene:
x
df
d
d
x
df 


 
 ; y reemplazando df por su valor será:
dx
I
E
M
x
df
d x





Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 5 Curso: Ing. Gabriel Pujol
que determina el desplazamiento angular, expresado en radianes, de la fibra media, entre dos secciones
infinitamente próximas. Integrando resulta:

 



l
x
l
dx
I
E
M
d
0
0


valor del ángulo de la tangente a la elástica en B, respecto a la fibra neutra.
Ecuación de la Elástica
Cuando una viga está sometida a la acción de una cupla, flexiona, deformándose. El eje primitivamente
recto toma la forma de una curva, llamada línea elástica.
Para deducir la ecuación de la elástica vamos a suponer que las deformaciones son pequeñas. Además
solo consideramos las deformaciones debidas a los momentos flectores.
Adoptamos un par de ejes coordenados, de manera que el eje “Z” coincida con el eje primitivo de la pieza
y el origen, con un punto de éste (apoyo A). Las ordenadas a la elástica referidas al eje “Z” se las
denomina habitualmente flechas.
Tomando sobre la elástica dos puntos a y b, separados por una
distancia dz, y designando con  el ángulo que forma la
tangente a la elástica en el punto a con respecto a la horizontal
y con d el ángulo que forman entre sí las normales a la
elástica trazadas en a y b, las que se cortan en un punto C,
siendo la distancia Ca el radio de curvatura , tendremos:
ds
d
d
ds



 



1
pero por ser  un ángulo pequeño





















1
1
2
2
dz
dy
dz
d
dz
dy
tg
y
dz
d
dz
ds
Designamos como positivo el momento flexor que deforma la
pieza presentando la concavidad hacia arriba, y negativo en el
caso contrario.
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 6 Estabilidad IIB – 64.12
Para los ejes coordenados elegidos vemos que a valores crecientes de z corresponden valores
decrecientes de . En consecuencia, en la ecuación anterior debemos afectar al primer término de un
signo menos, así:


 1
1
2
2





dz
dy
dz
d
Introduciendo esta expresión en la ecuación de alargamientos y tensiones (2) tendremos:
I
E
M
dz
y
d
I
E
M
dz
y
d







 2
2
2
2
1

Dimensionamiento de una viga a partir de la flecha
En muchos casos conviene determinar el perfil de una viga solicitada a flexión simple, fijando previamente
la flecha máxima de deformación vertical.
Como las fórmulas que fijan el valor de la flecha dependen de la luz de la carga, del módulo de elasticidad
(todas magnitudes conocidas) y el momento de inercia del perfil (magnitud desconocida); este último
podrá deducirse.
1. Ejemplo de Aplicación
Calcular el perfil normal doble T necesario para
que, en una viga de 6 m de luz, soportando una
carga de 5 ton en su mitad, se origine una
flecha no superior a 1 cm. Adoptar como adm =
1 ton/cm y E = 2100 ton/cm2.
1.1. Resolución
Siendo la expresión de la flecha:
 



2
0
l
x
dx
I
E
x
M
f
y teniendo presente que:
I
E
l
P
f
I
E
x
P
dx
I
E
x
x
P
f
x
P
M
l
l
x

















  48
6
2
2
3
2
0
3
2
0
despejando J tendremos:
f
E
l
P
I




48
3
y siendo
4
max
l
P
M

 será:
f
E
l
M
I




12
2
max
reemplazando valores será:
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 7 Curso: Ing. Gabriel Pujol
   
 
 
 
4
2
3
3
10714
1
2100
48
600
5
48
cm
cm
cm
ton
cm
ton
f
E
l
P
I 














De las tablas de perfiles, puede elegirse un PN doble T 32 con un Wx = 782 cm3. Ahora, será necesario
verificar la tensión efectiva o de trabajo:
   
 
























2
2
3
max
1000
960
782
4
600
5000
1
4
cm
kg
cm
kg
cm
cm
kg
W
l
P
W
M
adm
ef
x
x
ef



Método del área del diagrama de momentos
1. Teoremas del área del diagrama de momentos reducidos
Si relacionamos las ecuaciones analizadas precedentemente llegamos a la siguiente expresión:
I
E
M
ds
d



y siendo dz
ds  obtenemos: )
5
(
dz
I
E
M
d 



Consideremos una porción de línea elástica comprendida entre dos puntos cualesquiera A y B, tal como
se indica en la figura. Las tangentes a la línea
elástica en los puntos extremos, indicadas a
través de los segmentos AB’ y A’B, forman
entre si un ángulo  que suponemos
pequeño.
Supongamos que el diagrama entre los puntos
A1 y B1 es el diagrama de momentos flectores
dividido por E.I correspondiente a la estructura
que presenta la elástica supuesta. A este
diagrama lo denominaremos “diagrama de
momentos reducidos”.
Si consideramos dos secciones de la elástica
muy próximas, separadas entre si ds, ambas
secciones presentan un giro relativo d. En
virtud de la ecuación (5) ese valor resulta ser
igual al área de la franja rayada del diagrama
de momentos reducidos. Luego, si integramos
la ecuación (5) obtenemos el ángulo  que
forman las tangentes externas.
 


B
A
dz
I
E
M

El resultado de la integral dada por esta ecuación no es sino el área del diagrama de momentos
reducidos, con lo cual puede enunciarse el siguiente teorema:
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 8 Estabilidad IIB – 64.12
TEOREMA I: “El ángulo  comprendido entre dos tangentes en dos puntos cualesquiera A y B de la línea
elástica, es igual al área total del trozo correspondiente del diagrama de momentos reducidos.”
Consideramos nuevamente la figura y observemos el segmento BB’. Podemos apreciar que cada
segmento ds de la elástica contribuye a la longitud f en una cantidad df
d
z 
 
Luego, integrando estas distancias podemos obtener el valor de f.


 









B
A
B
A
B
A
dz
z
M
I
E
f
dz
z
I
E
M
d
z
f
1
bien
o
)
6
(

Dado que dz
I
E
M


es el área de la franja rayada del diagrama de momentos reducidos, la integral de la
ecuación (6) resulta ser el momento estático con respecto a B del área del diagrama de momentos
reducidos. Esto último permite enunciar el siguiente teorema:
TEOREMA II: “Dado dos puntos A y B pertenecientes a una línea elástica, la ordenada de B respecto a la
tangente en A es igual al momento estático con respecto a B del área de momentos reducidos
comprendida entre A y B.”
El momento estático recientemente mencionado puede calcularse en forma muy simple multiplicando el
área total del diagrama de momentos reducidos comprendida entre A y B por la distancia a su centro de
gravedad. Por otro lado, si la figura que representa el diagrama puede descomponerse en figuras
elementales tales como rectángulos, triángulos, parábolas, etc., el momento estático total resultara ser la
suma de los correspondientes a cada una de las figuras elementales.
Una observación muy importante en cuanto a la aplicación de los teoremas anteriores es que cuando la
elástica tiene un punto de inflexión el diagrama de momentos reducidos cambia de signo, en ese caso
cada parte del diagrama debe tratarse con su propio signo.
2. Ejemplo de Aplicación
En este caso vamos a determinar la flecha 
y el ángulo  en el borde libre de la
estructura en voladizo de la figura. Dado que
la tangente a la elástica en B coincide con el
eje no flexado de la viga, la flecha  resulta
ser el desplazamiento de A respecto a la
tangente en B. Aplicando entonces el
Teorema II tenemos:
• Área total del diagrama de momentos
reducidos comprendida entre A y B:
I
E
L
P
I
E
L
P
L
A









2
2
1
2
1
• Distancia a su centro de gravedad: L
dG 

3
2
I
E
L
P
L
I
E
L
P












3
2
3
1
3
2
2
1


Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 9 Curso: Ing. Gabriel Pujol
Idénticamente, la pendiente en A es el ángulo que forma las tangentes en A y B, por lo que según el
Teorema I tenemos:
I
E
L
P




2
2
1

3. Ejemplo de Aplicación
A continuación, vamos a determinar el valor de
la flecha máxima que se produce en la viga
simplemente apoyada de la figura.
La flecha máxima tiene lugar en el punto C
donde la tangente a la elástica es horizontal. El
ángulo entre las tangentes en A y C resulta
igual a A. Este ángulo podemos calcularlo de
la siguiente manera:
Aplicando el teorema II podemos calcular la
distancia BB’.
• Área total del diagrama de momentos
reducidos comprendida entre A y B:
L
I
E
b
a
P
L
I
E
b
a
P
b
A
L
I
E
b
a
P
L
I
E
b
a
P
a
A


























2
2
2
1
2
1
2
1
2
1
2
1
• Distancia a su centro de gravedad: b
d
a
b
d G
G 










3
2
y
3
1
2
1
 
b
L
I
E
b
a
P
BB
b
L
I
E
b
a
P
a
b
L
I
E
b
a
P
BB
































6
1
'
operando
y
3
2
2
1
3
1
2
1
'
2
2
La distancia anterior también puede calcularse como:
L
BB
L
BB A
A
'
' 


 

Con lo que tenemos:  
b
L
L
I
E
b
a
P
L
BB
A 








6
1
'

Por otro lado, el área rayada en el diagrama de momentos reducidos también debe darnos el valor de A.
Siendo que ya conocemos el valor de este ángulo podemos calcular z, que es la distancia desde A hasta
el punto donde la flecha es máxima.
• Área total del diagrama de momentos reducidos comprendida entre A y z:
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 10 Estabilidad IIB – 64.12
L
I
E
b
z
P
L
I
E
z
b
P
z
Az













2
2
1
2
1
• Distancia a su centro de gravedad: z
dz 

3
1
por lo tanto:
   
3
6
1
2
1 2 b
L
a
z
b
L
L
I
E
b
a
P
z
L
I
E
b
P
A A
z



















Aplicamos el Teorema II podemos determinar la distancia CC’, a partir de la cual determinamos max.
 
 3
3
max
3
max
3
2
3
9
6
1
6
1
'
6
1
'
3
1
2
1
'
b
L
a
L
b
P
L
I
E
b
z
P
z
b
L
L
I
E
b
a
P
CC
z
L
I
E
b
z
P
CC
z
L
I
E
b
z
P
d
A
CC
A
z
z















































4. Ejemplo de Aplicación
4.1. Vigas hiperestáticas de un solo tramo
En lo que sigue resolveremos algunos ejemplos de las vigas
hiperestáticas de un solo tramo, aplicando el método de
superposición.
4.1.1. Viga empotrada – empotrada sometida a
una carga concentrada
Elegimos como sistema primario la viga simplemente apoyada
indicada en la figura. En este caso tenemos dos incógnitas
hiperestáticas por calcular, MA y MB, ya que al no existir cargas
horizontales las reacciones HA y HB son nulas.
Los giros en los extremos A y B pueden determinarse por
superposición de efectos de la siguiente manera:
 
 
2
1
0
2
1
0
2
1
0
2
1
0
0
0
B
B
B
B
B
B
B
A
A
A
A
A
A
A






























el ángulo A0 ya fue determinado en el Ejemplo de Aplicación 7.3
 
b
L
L
I
E
b
a
P
A 







6
1
0

En forma semejante a lo realizado oportunamente, puede
demostrarse que:
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 11 Curso: Ing. Gabriel Pujol
 
a
L
L
I
E
b
a
P
B 








6
1
0

Los ángulos A1 y B1 correspondientes a la viga simplemente apoyada cargada con el momento
incógnita MA pueden ser calculados aplicando el Teorema II del área del diagrama de momentos
reducidos.
I
E
L
M
L
L
I
E
M
L
I
E
L
M
L
L
I
E
M
L
A
B
A
B
A
A
A
A























6
3
2
y
3
3
2
2
1
1
1
1




En forma idéntica obtenemos los giros A2 y B2 correspondientes a la viga simplemente apoyada
cargada con el momento incógnita MB :
I
E
L
M
I
E
L
M B
B
B
A









3
y
6 2
2


Luego resolviendo el siguiente sistema de ecuaciones podemos determinar los valores de las incógnitas
hiperestáticas.
 
  


































































2
2
2
2
6
1
3
6
6
1
6
3
L
b
a
P
M
L
b
a
P
M
a
L
L
I
E
b
a
P
M
I
E
L
M
I
E
L
b
L
L
I
E
b
a
P
M
I
E
L
M
I
E
L
A
A
B
A
B
A
Una vez conocidos los valores correspondientes a MA y MB es muy simple calcular las reacciones
verticales y si interesa, el momento máximo MC.
Método de la viga conjugada
Recordemos las siguientes ecuaciones diferenciales ya conocidas:
(3)
;
(2)
;
(1) 2
2
2
2
Q
dz
dM
q
dz
M
d
I
E
M
dz
y
d






y consideramos al diagrama de momentos reducidos, como un diagrama de cargas ficticias q* = M/(EI)
aplicado sobre una viga también ficticia y que llamaremos “viga conjugada”, de la identidad formal entre
las dos ecuaciones (1) y (2) surge que la línea elástica de una viga coincide con el diagrama de
momentos ficticios M* producido en todas las secciones de su viga conjugada cargada con la carga q*,
dado que:
)
4
(
además
pero
*
2
2
*
2
2
2
2
*
2
*
2
*
2
*
M
y
dz
dz
M
d
y
dz
I
E
M
y
d
I
E
M
dz
M
d
q
dz
M
d
I
E
M
q






























Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 12 Estabilidad IIB – 64.12
Esta última conclusión se conoce como Teorema de Mohr sobre la línea elástica, y al diagrama de
momentos reducidos utilizando como carga se lo denomina “carga elástica”.
Si la viga es homogénea y de sección constante (EI= cte), la viga conjugada puede cargarse directamente
con el diagrama de momentos, siempre que luego los resultados sean divididos por EI. Si derivamos la
ecuación (4) obtenemos:
  )
5
(
*
*
Q
dz
dM
tg
dz
dy


 
siendo Q* el esfuerzo de corte ficticio originado en la
viga conjugada por la carga q*.
La ecuación (5) nos muestra que el diagrama de
esfuerzos de corte Q* nos da, para cualquier sección
de la viga real, el valor de la tangente de la línea
elástica. Dado que el esfuerzo de corte Q* en los
extremos de la viga conjugada se corresponde con
las reacciones de vínculo, éstas representan
numéricamente los giros de la elástica de la viga real
en correspondencia con sus apoyos.
B
B
A
A R
R 
 
 *
*
;
En cuanto a las características de la viga conjugada,
dado que al cargarse ésta con las cargas elásticas su
diagrama de momentos flectores debe representar
exactamente la elástica de la viga real, sus vínculos
deben elegirse de manera tal que se respeten estas
premisas.
Consideremos el ejemplo de la figura. En el punto A no tenemos flecha ni pendiente, en el punto B hay un
descenso y además la pendiente a la derecha es distinta que a la izquierda, en el punto C no hay
descenso pero sí existe un giro, y en el punto D tenemos flecha y pendiente.
A
• No hay flecha  M* = 0
• No hay pendiente  Q* = 0
La viga conjugada debe tener un
extremo libre
B
• Hay flecha  M* ≠ 0
• Hay pendiente y resulta distinta a derecha e izquierda
 Qi* ≠ Qd* ≠ 0
La viga conjugada debe tener un
apoyo móvil intermedio
C
• No hay flecha  M* = 0
• Hay pendiente y resulta distinta a derecha e izquierda
 Qi* ≠ Qd* ≠ 0
La viga conjugada debe tener una
articulación simple
D
• Hay flecha  M* ≠ 0
• Hay pendiente  Q* ≠ 0
La viga conjugada debe tener un
empotramiento
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 13 Curso: Ing. Gabriel Pujol
Las conclusiones que hemos obtenido apoyándonos en el ejemplo citado pueden generalizarse de la
siguiente manera:
En algunos casos, en especial cuando las estructuras son estáticamente indeterminadas, la viga
conjugada puede resultar inestable. Este inconveniente queda resuelto cuando se carga a la misma, ya
que el propio estado de cargas le confiere estabilidad.
Ejercicio Nº I: Para la barra en el estado de carga indicado se pide:
a) Dibujar los diagramas de características previo
análisis cinemático.
b) Dimensionar la sección de la barra.
c) Hallar la ecuación de las rotaciones absolutas
y la ecuación de la elástica.
d) Calcular el corrimiento vertical máximo (flecha
máxima).
e) Dibujar el diagrama de rotaciones absolutas y
corrimientos verticales.
Datos: l = 7,4 m; P = 4,5 t; q = 1,8 t/m; adm = 1400 Kg/cm2; adm = 800 Kg/cm2; E = 2,1x106 Kg/cm2;
Perfil “doble T” (DIN 1025)
Resolución:
a) Trazar los diagramas de características previo análisis cinemático:
a.1)Análisis cinemático:
Se trata de una barra isostáticamente sustentada pues posee un apoyo móvil y uno fijo que restringen
sus tres (3) grados de libertad. Además no existen vínculos aparentes pues la normal del apoyo móvil
no pasa por el punto fijo “B”.
a.2)Cálculo de las reacciones de vínculo:
Calculamos las reacciones de vínculo RA y RB. Tomando momento respecto de “A” se tiene:
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 14 Estabilidad IIB – 64.12
























t
m
m
t
t
R
l
q
P
R
l
q
l
R
l
P
M
B
B
B
i
91
,
8
2
4
,
7
8
,
1
2
5
,
4
2
2
0
2
2
0
2
Proyectando sobre el eje “y” se tiene:























t
m
m
t
t
t
R
l
q
R
P
R
l
q
R
R
P
P
A
B
A
B
A
i
91
,
8
4
,
7
8
,
1
91
,
8
5
,
4
0
0
a.3)Diagramas de características:
b) Dimensionar la sección de la barra:
b.1)Cálculo de la sección de la barra y verificación de las adm:
La sección más comprometida de la barra es una tal como la n-n; en esta sección resulta:
3
2
5
71
,
1474
1400
10
646
,
20
646
,
20
;
25
,
2
cm
cm
kg
cm
kg
M
W
m
t
M
t
Q
adm
X 










de tablas obtenemos el perfil “doble T” (DIN 1025) 425, que tiene un módulo resistente WX = 1740 cm3;
por lo que resulta entonces:
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 15 Curso: Ing. Gabriel Pujol
b.2)Verificación de las tensiones normales debidas a la flexión y las tangenciales debidas al
corte:
Las tensiones normales debidas a la flexión las calculamos como sigue:
2
2
3
5
max
3
5
1400
55
,
1186
1740
10
646
,
20
1740
10
646
,
20
cm
kg
cm
kg
cm
cm
kg
W
M
cm
W
cm
kg
M
adm
x
x




















Las tensiones tangenciales las calculamos como sigue:
2
2
4
3
max
4
3
max
max
max
800
49
,
160
53
,
1
36970
1020
8900
53
,
1
;
36970
;
1020
;
8900
:
cm
kg
cm
kg
cm
cm
cm
kg
cm
e
cm
J
cm
S
kg
Q
donde
e
J
S
Q
adm
X
X
X
X

















c) Hallar la ecuación de las rotaciones absolutas y la ecuación de la elástica:
c.1)Tramo AC:
Recordamos que (siendo  el corrimiento vertical o flecha):
)
4
(
1
)
3
(
;
)
2
(
;
)
1
(
2
2

 




















dx
M
J
E
dx
J
E
M
dx
J
E
M
d
dx
d
J
E
M
dx
d
dx
d
dx
dM
Q
dx
dQ
q






Por lo tanto será de (1):
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 16 Estabilidad IIB – 64.12
l
q
R
x
q
Q
l
q
R
C
R
Q
C
x
q
dx
q
Q
A
A
A
l
x





















1
1
de (2) resulta:
 
   2
2
2
2
2
2
2
0
2
l
x
q
l
x
R
M
l
R
l
q
C
M
C
x
l
q
x
R
x
q
dx
l
q
R
x
q
dx
Q
M
A
A
l
x
A
A































 
de (4) será:
   
   
    



































































 
3
2
3
2
3
2
3
2
3
3
2
2
48
8
6
2
1
48
8
1
0
6
2
1
2
1
1
l
q
l
R
l
x
q
l
x
R
J
E
l
q
l
R
J
E
C
C
l
x
q
l
x
R
J
E
dx
l
x
q
l
x
R
J
E
dx
M
J
E
A
A
A
l
x
A
A




y de (3) resulta:
   
   
       





















































































 
l
x
l
q
l
x
l
R
l
x
q
l
x
R
J
E
l
q
l
R
J
E
C
C
x
l
q
x
l
R
l
x
q
l
x
R
J
E
dx
l
q
l
R
l
x
q
l
x
R
J
E
dx
A
A
A
l
x
A
A
A
A
3
2
4
3
4
3
4
4
3
2
4
3
3
2
3
2
48
8
24
6
1
48
8
1
0
48
8
24
6
1
48
8
6
2
1





c.2)Tramo BC:
Procediendo en forma análoga, resulta:
B
R
x
q
Q 



2
2
x
q
x
R
M B 


















 3
2
3
2
48
8
6
2
1
l
q
l
R
x
q
x
R
J
E
B
B

Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 17 Curso: Ing. Gabriel Pujol



















 x
l
q
x
l
R
x
q
x
R
J
E
B
B 3
2
4
3
48
8
24
6
1

d) Calcular el corrimiento vertical máximo (flecha máxima):
El valor de la flecha máxima lo obtenemos cuando x = l/2, por lo que reemplazando en alguna de las
expresiones de  resulta:
cm
l
q
l
R
l
q
l
R
J
E
B
B
l
x
3940
,
1
96
16
384
48
1 4
3
4
3
2


















 

e) Dibujar el diagrama de rotaciones absolutas y corrimientos verticales:
e.1)Tabla de valores:
X (cm)  (x10-3)  (cm)
0 0 = 0 - 5,89 0
1 L/10 = 74 - 5,59 0,429
2 2L/10 = 148 - 4,76 0,815
3 3L/10 = 222 - 3,49 1,123
4 4L/10 = 296 - 1,87 1,324
5 5L/10 = 370 0 1,394
6 6L/10 = 444 1,87 1,324
7 7L/10 = 518 3,49 1,123
8 8L/10 = 592 4,76 0,815
9 9L/10 = 666 5,59 0,429
10 L = 740 5,89 0
e.2)Gráficos:
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 18 Estabilidad IIB – 64.12
Ejercicio Nº II: Una varilla de aluminio de sección semicircular y radio “r” es flexada en forma de arco
circular de radio medio “”.
Sabiendo que la cara plana de la varilla está
orientada hacia el centro de curvatura del arco se
pide:
a) Determinar las tensiones máximas tanto de
tracción como de compresión en la varilla.
b) Determinar el valor de la deformación
máxima.
Resolución:
a) Cálculo de las máximas tensiones de
tracción y compresión:
a.1)Cálculo de la máxima tensión de tracción:
Planteando la relación entre tensiones y
deformaciones resulta:
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 19 Curso: Ing. Gabriel Pujol
0
0
1
0 l
l
l
l
l
además
E





 


 
 













 1
1
1
1
1
0 y
E
y
y
y
l
l
t 


















ahora bien, siendo:










































3
4
1
3
4
1
3
4
3
4
1
max
1
2
2
1
r
E
y
E
r
r
r
y
r
y
con
y
r
y
t
a.2)Cálculo de la máxima tensión de compresión:
En forma análoga será:





r
E
y
E
r
y c 







3
4
3
4 2
2
b) Cálculo de la deformación máxima:
La calculamos como sigue:
 
 












 1
1
1
1
0
0
0
1
0
y
y
y
l
l
l
l
l
l
l





















Ejercicio Nº III: Sea la viga de madera dimensionada en el Ejercicio Nº 25 del Trabajo Práctico Nº 5, de
longitud L cuya sección es rectangular y su sección es K, que posee una inclinación dada por el ángulo 
estando apoyada en sus extremos y sometida a una carga uniformemente distribuida de magnitud p que
actúa en el plano vertical según puede observarse en la figura. De acuerdo a los datos que se indican se
solicita:
a) Determinar el máximo corrimiento vertical (v) de la misma.
Datos: L = 3,10 m; p = 3 kN/m;  = 15°; K (h/b) = 2,5; JX = 5333,33 cm4; JY = 853,33 cm4; E = 1,05 kN/cm2
Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 20 Estabilidad IIB – 64.12
Resolución:
a) Determinación del máximo corrimiento vertical
El máximo corrimiento vertical tiene una determinada dirección cuyas componentes escalares son:
j
i y
x





 


Aplicando el principio de superposición de
efectos puede proyectarse dicho
corrimiento según la línea de fuerza m, y
de esa forma obtener el máximo
corrimiento vertical (v) solicitado, es
decir:
   




 cos
sin 


 y
x
v
Por otra parte la carga específica p que
actúa en el plano vertical de cargas,
definido por la línea de fuerzas m, posee
las siguientes componentes escalares:
j
p
i
p
p y
x






Siendo:
   
   















sin
cos
cos
sin
p
p
p
p
p
p
y
x
Finalmente, de acuerdo con lo analizado en el ejercicio de aplicación IV y teniendo en cuenta que en este
caso para las cargas exterioeres P = 0 y que las causas de los corrimientos y y x son respectivamente
las componentes de las cargas específicas py y px. Se tiene:























t
m
m
t
R
l
q
R
l
q
l
R
M
B
B
B
i
91
,
8
2
4
,
7
8
,
1
2
0
2
0
2
J
E
l
q
J
E
l
q
x
l
q
x
q
x
l
q
J
E
l
x 











































4
4
2
max
3
4
3
384
5
48
1
384
1
96
1
24
24
12
1



por lo que:
Deformación debida a la Flexión (Complemento Teórico)
Estabilidad IIB – 64.12 hoja 21 Curso: Ing. Gabriel Pujol
 
 























X
X
x
y
Y
Y
y
x
J
E
L
p
J
E
L
p
J
E
L
p
J
E
L
p
4
4
4
4
cos
384
5
sin
384
5




y reemplazando y agrupando se obtiene:
   
 
 
 
 
 
   
cm
cm
cm
cm
kN
cm
cm
kN
J
J
E
L
p
v
Y
X
v
87
,
0
33
,
853
15
sin
33
,
5333
15
cos
05
,
1
310
10
3
384
5
sin
cos
384
5
4
2
4
2
2
4
2
2
2
4






 




































Deformación debida a la Flexión (Complemento Teórico)
Curso: Ing. Gabriel Pujol hoja 22 Estabilidad IIB – 64.12
Bibliografía Recomendada
• Estabilidad II - E. Fliess
• Resistencia de materiales - R. Abril / C. Benítez
• Problemas de resistencia de materiales - M. Ferrer Ballester y otros
• Curso superior de resistencia de materiales - F. Seely / J. Smith(Título original de la obra: "Advanced
Mechanics of Materials")
• El acero en la construcción (Título original de la obra: "Stahl im hochbau")
• Introducción a la estática y resistencia de materiales - C. Raffo
• Mecánica de materiales - F. Beer y otros
• Mecánica de materiales - R. C. Hibbeler
• Problemas de resistencia de materiales - I. Miroliubov y otros
• Problemas de resistencia de materiales - A. Volmir
• Resistencia de materiales - Luis Delgado Lallemad / José M. Quintana Santana
• Resistencia de materiales - V. Feodosiev
• Resistencia de materiales - A. Pytel / F. Singer
• Resistencia de materiales - S. Timoshenko

Más contenido relacionado

Similar a Deformación por flexión: conceptos clave y dimensionamiento de vigas

Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigasProdise
 
Solicitación por Flexión
Solicitación por FlexiónSolicitación por Flexión
Solicitación por FlexiónGabriel Pujol
 
Solicitación por flexión - Complemento Teórico
Solicitación por flexión - Complemento TeóricoSolicitación por flexión - Complemento Teórico
Solicitación por flexión - Complemento Teóricogabrielpujol59
 
Clase N° 13 - Repaso Resistencia de Materiales.pptx
Clase N° 13 - Repaso Resistencia de Materiales.pptxClase N° 13 - Repaso Resistencia de Materiales.pptx
Clase N° 13 - Repaso Resistencia de Materiales.pptxgabrielpujol59
 
EIIb-Solicitación por Torsión.pdf
EIIb-Solicitación por Torsión.pdfEIIb-Solicitación por Torsión.pdf
EIIb-Solicitación por Torsión.pdfgabrielpujol59
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)LuiggiArtola1
 
EIIb-Solicitación Axil.pdf
EIIb-Solicitación Axil.pdfEIIb-Solicitación Axil.pdf
EIIb-Solicitación Axil.pdfgabrielpujol59
 
EIIb-Guía de la Práctica - TP N° 4.pdf
EIIb-Guía de la Práctica - TP N° 4.pdfEIIb-Guía de la Práctica - TP N° 4.pdf
EIIb-Guía de la Práctica - TP N° 4.pdfgabrielpujol59
 
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptx
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptxTrabajo y Energía (Teórica-10a - Presentación del Tema).pptx
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptxgabrielpujol59
 
Módulo 2 y 3
Módulo 2 y 3Módulo 2 y 3
Módulo 2 y 3kjcampos
 
Sesion 1 1.1 fuerzas internas diagramas
Sesion 1   1.1 fuerzas internas diagramasSesion 1   1.1 fuerzas internas diagramas
Sesion 1 1.1 fuerzas internas diagramasJulian La Torre
 
Solicitación por torsión
Solicitación por torsiónSolicitación por torsión
Solicitación por torsiónGabriel Pujol
 
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdf
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdfCálculo de tornilllos en una viga estructural y dimensionado del perfil.pdf
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdfJosé Manuel Gómez Vega
 

Similar a Deformación por flexión: conceptos clave y dimensionamiento de vigas (20)

Deformacion en vigas (2)
Deformacion en vigas (2)Deformacion en vigas (2)
Deformacion en vigas (2)
 
Bajar
BajarBajar
Bajar
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
Ficha 3
Ficha 3Ficha 3
Ficha 3
 
Solicitación por Flexión
Solicitación por FlexiónSolicitación por Flexión
Solicitación por Flexión
 
Solicitación axil
Solicitación axilSolicitación axil
Solicitación axil
 
Solicitación por flexión - Complemento Teórico
Solicitación por flexión - Complemento TeóricoSolicitación por flexión - Complemento Teórico
Solicitación por flexión - Complemento Teórico
 
3 pandeo columna
3   pandeo columna3   pandeo columna
3 pandeo columna
 
Clase N° 13 - Repaso Resistencia de Materiales.pptx
Clase N° 13 - Repaso Resistencia de Materiales.pptxClase N° 13 - Repaso Resistencia de Materiales.pptx
Clase N° 13 - Repaso Resistencia de Materiales.pptx
 
EIIb-Solicitación por Torsión.pdf
EIIb-Solicitación por Torsión.pdfEIIb-Solicitación por Torsión.pdf
EIIb-Solicitación por Torsión.pdf
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)
 
EIIb-Solicitación Axil.pdf
EIIb-Solicitación Axil.pdfEIIb-Solicitación Axil.pdf
EIIb-Solicitación Axil.pdf
 
EIIb-Guía de la Práctica - TP N° 4.pdf
EIIb-Guía de la Práctica - TP N° 4.pdfEIIb-Guía de la Práctica - TP N° 4.pdf
EIIb-Guía de la Práctica - TP N° 4.pdf
 
joi
joijoi
joi
 
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptx
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptxTrabajo y Energía (Teórica-10a - Presentación del Tema).pptx
Trabajo y Energía (Teórica-10a - Presentación del Tema).pptx
 
Módulo 2 y 3
Módulo 2 y 3Módulo 2 y 3
Módulo 2 y 3
 
Sesion 1 1.1 fuerzas internas diagramas
Sesion 1   1.1 fuerzas internas diagramasSesion 1   1.1 fuerzas internas diagramas
Sesion 1 1.1 fuerzas internas diagramas
 
Solicitación por torsión
Solicitación por torsiónSolicitación por torsión
Solicitación por torsión
 
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdf
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdfCálculo de tornilllos en una viga estructural y dimensionado del perfil.pdf
Cálculo de tornilllos en una viga estructural y dimensionado del perfil.pdf
 

Más de gabrielpujol59

ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...gabrielpujol59
 
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...gabrielpujol59
 
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptx
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptxSistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptx
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptxgabrielpujol59
 
Fatiga (Teórica-14b - Criterio de Soderberg).pptx
Fatiga (Teórica-14b - Criterio de Soderberg).pptxFatiga (Teórica-14b - Criterio de Soderberg).pptx
Fatiga (Teórica-14b - Criterio de Soderberg).pptxgabrielpujol59
 
Fatiga (Teórica-14a - Diagrama de Smith).pptx
Fatiga (Teórica-14a - Diagrama de Smith).pptxFatiga (Teórica-14a - Diagrama de Smith).pptx
Fatiga (Teórica-14a - Diagrama de Smith).pptxgabrielpujol59
 
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptx
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptxTeorías de Estado Límite (Teórica-13a - Presentación del Tema).pptx
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptxgabrielpujol59
 
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptx
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptxTrabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptx
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptxgabrielpujol59
 
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptx
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptxTrabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptx
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptxgabrielpujol59
 
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptx
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptxSistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptx
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptxgabrielpujol59
 
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...gabrielpujol59
 
Solicitaciones Combinadas - Puesta en común.pptx
Solicitaciones Combinadas - Puesta en común.pptxSolicitaciones Combinadas - Puesta en común.pptx
Solicitaciones Combinadas - Puesta en común.pptxgabrielpujol59
 
Estados por Torsión - Puesta en común - 2.pptx
Estados por Torsión - Puesta en común - 2.pptxEstados por Torsión - Puesta en común - 2.pptx
Estados por Torsión - Puesta en común - 2.pptxgabrielpujol59
 
Estados por Torsión - Puesta en común.pptx
Estados por Torsión - Puesta en común.pptxEstados por Torsión - Puesta en común.pptx
Estados por Torsión - Puesta en común.pptxgabrielpujol59
 
Estados por Torsión - Puesta en común - 1.pptx
Estados por Torsión - Puesta en común - 1.pptxEstados por Torsión - Puesta en común - 1.pptx
Estados por Torsión - Puesta en común - 1.pptxgabrielpujol59
 
Estados de TyD - Puesta en común.pptx
Estados de TyD - Puesta en común.pptxEstados de TyD - Puesta en común.pptx
Estados de TyD - Puesta en común.pptxgabrielpujol59
 
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...gabrielpujol59
 
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...gabrielpujol59
 
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...gabrielpujol59
 
Esfuerzos combinados en la viga buque.pdf
Esfuerzos combinados en la viga buque.pdfEsfuerzos combinados en la viga buque.pdf
Esfuerzos combinados en la viga buque.pdfgabrielpujol59
 
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdf
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdfEIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdf
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdfgabrielpujol59
 

Más de gabrielpujol59 (20)

ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
 
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
ESTUDIO DE CASOS - Flexión compuesta - Variación en las condiciones de susten...
 
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptx
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptxSistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptx
Sistemas Hiperestáticos (Teórica 11b - Método de las Deformaciones).pptx
 
Fatiga (Teórica-14b - Criterio de Soderberg).pptx
Fatiga (Teórica-14b - Criterio de Soderberg).pptxFatiga (Teórica-14b - Criterio de Soderberg).pptx
Fatiga (Teórica-14b - Criterio de Soderberg).pptx
 
Fatiga (Teórica-14a - Diagrama de Smith).pptx
Fatiga (Teórica-14a - Diagrama de Smith).pptxFatiga (Teórica-14a - Diagrama de Smith).pptx
Fatiga (Teórica-14a - Diagrama de Smith).pptx
 
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptx
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptxTeorías de Estado Límite (Teórica-13a - Presentación del Tema).pptx
Teorías de Estado Límite (Teórica-13a - Presentación del Tema).pptx
 
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptx
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptxTrabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptx
Trabajo y Energía (Teórica-10c - Principio de los Trabajos Virtuales).pptx
 
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptx
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptxTrabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptx
Trabajo y Energía (Teórica-10b - Teoremas Fundamentales).pptx
 
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptx
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptxSistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptx
Sistemas Hiperestáticos (Teórica 11a - Método de las Fuerzas).pptx
 
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...
ESTUDIO DE CASOS - Flexión Oblicua - Como considerar el momento actuante en l...
 
Solicitaciones Combinadas - Puesta en común.pptx
Solicitaciones Combinadas - Puesta en común.pptxSolicitaciones Combinadas - Puesta en común.pptx
Solicitaciones Combinadas - Puesta en común.pptx
 
Estados por Torsión - Puesta en común - 2.pptx
Estados por Torsión - Puesta en común - 2.pptxEstados por Torsión - Puesta en común - 2.pptx
Estados por Torsión - Puesta en común - 2.pptx
 
Estados por Torsión - Puesta en común.pptx
Estados por Torsión - Puesta en común.pptxEstados por Torsión - Puesta en común.pptx
Estados por Torsión - Puesta en común.pptx
 
Estados por Torsión - Puesta en común - 1.pptx
Estados por Torsión - Puesta en común - 1.pptxEstados por Torsión - Puesta en común - 1.pptx
Estados por Torsión - Puesta en común - 1.pptx
 
Estados de TyD - Puesta en común.pptx
Estados de TyD - Puesta en común.pptxEstados de TyD - Puesta en común.pptx
Estados de TyD - Puesta en común.pptx
 
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...
Solicitación por Flexión Compuesta (Teórica-06b) Diagrama de tensiones aplica...
 
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...
ESTUDIO DE CASOS - Solicitaciones Combinadas - Flexión y Corte (Vigas compues...
 
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...
ESTUDIO DE CASOS - Solicitaciones combinadas - Esfuerzos longitudinal y trans...
 
Esfuerzos combinados en la viga buque.pdf
Esfuerzos combinados en la viga buque.pdfEsfuerzos combinados en la viga buque.pdf
Esfuerzos combinados en la viga buque.pdf
 
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdf
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdfEIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdf
EIIb-Teoría de Falla, Fatiga y Solicitaciones Combinadas.pdf
 

Último

CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfCESARMALAGA4
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 

Último (20)

CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 

Deformación por flexión: conceptos clave y dimensionamiento de vigas

  • 1. Deformación debida a la Flexión Complemento Teórico de la Guía de Trabajos Prácticos El presente trabajo es un sumario de conceptos teóricos de la materia Estabilidad IIb (64.12) correspondiente a las carreras de Ingeniería Mecánica e Ingeniería Naval y Mecánica. Ing. Gabriel Pujol Año de edición 2016
  • 2. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 1 Curso: Ing. Gabriel Pujol Tabla de contenido DEFORMACIÓN DEBIDA A LA FLEXIÓN – ELÁSTICA DE UNA BARRA 3 CONCEPTOS GENERALES 3 RADIO DE CURVATURA 3 DESPLAZAMIENTO VERTICAL 4 DESPLAZAMIENTO ANGULAR 4 ECUACIÓN DE LA ELÁSTICA 5 DIMENSIONAMIENTO DE UNA VIGA A PARTIR DE LA FLECHA 6 MÉTODO DEL ÁREA DEL DIAGRAMA DE MOMENTOS 7 MÉTODO DE LA VIGA CONJUGADA 11 BIBLIOGRAFÍA RECOMENDADA 22
  • 3. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 2 Estabilidad IIB – 64.12
  • 4. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 3 Curso: Ing. Gabriel Pujol Deformación debida a la Flexión – Elástica de una barra Conceptos Generales Las piezas flexadas sufren desplazamientos o deflexiones, cuyo control es tan importante para garantizar el buen comportamiento estructural como la verificación de la resistencia. Cuando la estructura presenta deformaciones excesivas, la percepción de las mismas por parte de los usuarios genera en éstos una sensación de alto riesgo. Los elementos de máquinas, debido a grandes deflexiones pueden presentar desgastes prematuros u originar efectos vibratorios inadecuados. Se denomina elástica de una viga solicitada a flexión a la curva que adopta la fibra neutra bajo la acción de las cargas exteriores. Radio de Curvatura Consideremos una viga sometida a flexión, empotrada en un extremo y libre en el otro. Sea CDEF un tronco de viga de longitud unitaria y xx la fibra neutra (figura a). Bajo la acción de las cargas, la fibra neutra adopta una determinada curvatura (figura b). Hemos visto que la fibra neutra no experimenta variación de longitud, en cambio la fibra más alejada experimenta un alargamiento total:  d  1 de los triángulos semejantes OCE y OC’E’ se deduce que:     v E C CE ' ' o bien:   1 1 1      v d v d      La ecuación (1) mide el aumento de longitud de la fibra situada a la distancia  + v del centro de curvatura O. Conforme a la Ley de Hooke la tensión de dicha fibra es:    v E E     max que debe igualar a: v I M   max  de donde:   2 1 I E M    ; o también   3 M I E   
  • 5. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 4 Estabilidad IIB – 64.12 La expresión (2) expresa la curvatura elástica de flexión y la (3) el radio de curvatura de la misma. Desplazamiento vertical De la figura de la página siguiente resulta:     4   d x tg x df     df mide el descenso del extremo libre B, originado por el momento flexor Mx que se produce a la distancia x del extremo B. En el triángulo OCD se tiene:     dx d d dx     que reemplazado en la (4) resulta:  dx x df   Por último, sustituyendo el valor de  por el de la expresión (3), se tiene: dx I E x M df x     el descenso total o flecha máxima se obtiene en el extremo libre como la suma de todos los df dados. Luego:        l x l dx I E x M df f 0 0 Reglamentariamente se fijan valores para las flechas admisibles, así se tiene: • tinglados, galpones, vigas de entrepiso 1/400 a 1/600 de la luz. • vigas de puentes ferroviarios 1/900 a 1/1200 de la luz. • ejes de volantes 1/2000 de la luz. Desplazamiento angular De la expresión (4) se tiene: x df d d x df       ; y reemplazando df por su valor será: dx I E M x df d x     
  • 6. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 5 Curso: Ing. Gabriel Pujol que determina el desplazamiento angular, expresado en radianes, de la fibra media, entre dos secciones infinitamente próximas. Integrando resulta:       l x l dx I E M d 0 0   valor del ángulo de la tangente a la elástica en B, respecto a la fibra neutra. Ecuación de la Elástica Cuando una viga está sometida a la acción de una cupla, flexiona, deformándose. El eje primitivamente recto toma la forma de una curva, llamada línea elástica. Para deducir la ecuación de la elástica vamos a suponer que las deformaciones son pequeñas. Además solo consideramos las deformaciones debidas a los momentos flectores. Adoptamos un par de ejes coordenados, de manera que el eje “Z” coincida con el eje primitivo de la pieza y el origen, con un punto de éste (apoyo A). Las ordenadas a la elástica referidas al eje “Z” se las denomina habitualmente flechas. Tomando sobre la elástica dos puntos a y b, separados por una distancia dz, y designando con  el ángulo que forma la tangente a la elástica en el punto a con respecto a la horizontal y con d el ángulo que forman entre sí las normales a la elástica trazadas en a y b, las que se cortan en un punto C, siendo la distancia Ca el radio de curvatura , tendremos: ds d d ds         1 pero por ser  un ángulo pequeño                      1 1 2 2 dz dy dz d dz dy tg y dz d dz ds Designamos como positivo el momento flexor que deforma la pieza presentando la concavidad hacia arriba, y negativo en el caso contrario.
  • 7. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 6 Estabilidad IIB – 64.12 Para los ejes coordenados elegidos vemos que a valores crecientes de z corresponden valores decrecientes de . En consecuencia, en la ecuación anterior debemos afectar al primer término de un signo menos, así:    1 1 2 2      dz dy dz d Introduciendo esta expresión en la ecuación de alargamientos y tensiones (2) tendremos: I E M dz y d I E M dz y d         2 2 2 2 1  Dimensionamiento de una viga a partir de la flecha En muchos casos conviene determinar el perfil de una viga solicitada a flexión simple, fijando previamente la flecha máxima de deformación vertical. Como las fórmulas que fijan el valor de la flecha dependen de la luz de la carga, del módulo de elasticidad (todas magnitudes conocidas) y el momento de inercia del perfil (magnitud desconocida); este último podrá deducirse. 1. Ejemplo de Aplicación Calcular el perfil normal doble T necesario para que, en una viga de 6 m de luz, soportando una carga de 5 ton en su mitad, se origine una flecha no superior a 1 cm. Adoptar como adm = 1 ton/cm y E = 2100 ton/cm2. 1.1. Resolución Siendo la expresión de la flecha:      2 0 l x dx I E x M f y teniendo presente que: I E l P f I E x P dx I E x x P f x P M l l x                    48 6 2 2 3 2 0 3 2 0 despejando J tendremos: f E l P I     48 3 y siendo 4 max l P M   será: f E l M I     12 2 max reemplazando valores será:
  • 8. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 7 Curso: Ing. Gabriel Pujol           4 2 3 3 10714 1 2100 48 600 5 48 cm cm cm ton cm ton f E l P I                De las tablas de perfiles, puede elegirse un PN doble T 32 con un Wx = 782 cm3. Ahora, será necesario verificar la tensión efectiva o de trabajo:                               2 2 3 max 1000 960 782 4 600 5000 1 4 cm kg cm kg cm cm kg W l P W M adm ef x x ef    Método del área del diagrama de momentos 1. Teoremas del área del diagrama de momentos reducidos Si relacionamos las ecuaciones analizadas precedentemente llegamos a la siguiente expresión: I E M ds d    y siendo dz ds  obtenemos: ) 5 ( dz I E M d     Consideremos una porción de línea elástica comprendida entre dos puntos cualesquiera A y B, tal como se indica en la figura. Las tangentes a la línea elástica en los puntos extremos, indicadas a través de los segmentos AB’ y A’B, forman entre si un ángulo  que suponemos pequeño. Supongamos que el diagrama entre los puntos A1 y B1 es el diagrama de momentos flectores dividido por E.I correspondiente a la estructura que presenta la elástica supuesta. A este diagrama lo denominaremos “diagrama de momentos reducidos”. Si consideramos dos secciones de la elástica muy próximas, separadas entre si ds, ambas secciones presentan un giro relativo d. En virtud de la ecuación (5) ese valor resulta ser igual al área de la franja rayada del diagrama de momentos reducidos. Luego, si integramos la ecuación (5) obtenemos el ángulo  que forman las tangentes externas.     B A dz I E M  El resultado de la integral dada por esta ecuación no es sino el área del diagrama de momentos reducidos, con lo cual puede enunciarse el siguiente teorema:
  • 9. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 8 Estabilidad IIB – 64.12 TEOREMA I: “El ángulo  comprendido entre dos tangentes en dos puntos cualesquiera A y B de la línea elástica, es igual al área total del trozo correspondiente del diagrama de momentos reducidos.” Consideramos nuevamente la figura y observemos el segmento BB’. Podemos apreciar que cada segmento ds de la elástica contribuye a la longitud f en una cantidad df d z    Luego, integrando estas distancias podemos obtener el valor de f.              B A B A B A dz z M I E f dz z I E M d z f 1 bien o ) 6 (  Dado que dz I E M   es el área de la franja rayada del diagrama de momentos reducidos, la integral de la ecuación (6) resulta ser el momento estático con respecto a B del área del diagrama de momentos reducidos. Esto último permite enunciar el siguiente teorema: TEOREMA II: “Dado dos puntos A y B pertenecientes a una línea elástica, la ordenada de B respecto a la tangente en A es igual al momento estático con respecto a B del área de momentos reducidos comprendida entre A y B.” El momento estático recientemente mencionado puede calcularse en forma muy simple multiplicando el área total del diagrama de momentos reducidos comprendida entre A y B por la distancia a su centro de gravedad. Por otro lado, si la figura que representa el diagrama puede descomponerse en figuras elementales tales como rectángulos, triángulos, parábolas, etc., el momento estático total resultara ser la suma de los correspondientes a cada una de las figuras elementales. Una observación muy importante en cuanto a la aplicación de los teoremas anteriores es que cuando la elástica tiene un punto de inflexión el diagrama de momentos reducidos cambia de signo, en ese caso cada parte del diagrama debe tratarse con su propio signo. 2. Ejemplo de Aplicación En este caso vamos a determinar la flecha  y el ángulo  en el borde libre de la estructura en voladizo de la figura. Dado que la tangente a la elástica en B coincide con el eje no flexado de la viga, la flecha  resulta ser el desplazamiento de A respecto a la tangente en B. Aplicando entonces el Teorema II tenemos: • Área total del diagrama de momentos reducidos comprendida entre A y B: I E L P I E L P L A          2 2 1 2 1 • Distancia a su centro de gravedad: L dG   3 2 I E L P L I E L P             3 2 3 1 3 2 2 1  
  • 10. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 9 Curso: Ing. Gabriel Pujol Idénticamente, la pendiente en A es el ángulo que forma las tangentes en A y B, por lo que según el Teorema I tenemos: I E L P     2 2 1  3. Ejemplo de Aplicación A continuación, vamos a determinar el valor de la flecha máxima que se produce en la viga simplemente apoyada de la figura. La flecha máxima tiene lugar en el punto C donde la tangente a la elástica es horizontal. El ángulo entre las tangentes en A y C resulta igual a A. Este ángulo podemos calcularlo de la siguiente manera: Aplicando el teorema II podemos calcular la distancia BB’. • Área total del diagrama de momentos reducidos comprendida entre A y B: L I E b a P L I E b a P b A L I E b a P L I E b a P a A                           2 2 2 1 2 1 2 1 2 1 2 1 • Distancia a su centro de gravedad: b d a b d G G            3 2 y 3 1 2 1   b L I E b a P BB b L I E b a P a b L I E b a P BB                                 6 1 ' operando y 3 2 2 1 3 1 2 1 ' 2 2 La distancia anterior también puede calcularse como: L BB L BB A A ' '       Con lo que tenemos:   b L L I E b a P L BB A          6 1 '  Por otro lado, el área rayada en el diagrama de momentos reducidos también debe darnos el valor de A. Siendo que ya conocemos el valor de este ángulo podemos calcular z, que es la distancia desde A hasta el punto donde la flecha es máxima. • Área total del diagrama de momentos reducidos comprendida entre A y z:
  • 11. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 10 Estabilidad IIB – 64.12 L I E b z P L I E z b P z Az              2 2 1 2 1 • Distancia a su centro de gravedad: z dz   3 1 por lo tanto:     3 6 1 2 1 2 b L a z b L L I E b a P z L I E b P A A z                    Aplicamos el Teorema II podemos determinar la distancia CC’, a partir de la cual determinamos max.    3 3 max 3 max 3 2 3 9 6 1 6 1 ' 6 1 ' 3 1 2 1 ' b L a L b P L I E b z P z b L L I E b a P CC z L I E b z P CC z L I E b z P d A CC A z z                                                4. Ejemplo de Aplicación 4.1. Vigas hiperestáticas de un solo tramo En lo que sigue resolveremos algunos ejemplos de las vigas hiperestáticas de un solo tramo, aplicando el método de superposición. 4.1.1. Viga empotrada – empotrada sometida a una carga concentrada Elegimos como sistema primario la viga simplemente apoyada indicada en la figura. En este caso tenemos dos incógnitas hiperestáticas por calcular, MA y MB, ya que al no existir cargas horizontales las reacciones HA y HB son nulas. Los giros en los extremos A y B pueden determinarse por superposición de efectos de la siguiente manera:     2 1 0 2 1 0 2 1 0 2 1 0 0 0 B B B B B B B A A A A A A A                               el ángulo A0 ya fue determinado en el Ejemplo de Aplicación 7.3   b L L I E b a P A         6 1 0  En forma semejante a lo realizado oportunamente, puede demostrarse que:
  • 12. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 11 Curso: Ing. Gabriel Pujol   a L L I E b a P B          6 1 0  Los ángulos A1 y B1 correspondientes a la viga simplemente apoyada cargada con el momento incógnita MA pueden ser calculados aplicando el Teorema II del área del diagrama de momentos reducidos. I E L M L L I E M L I E L M L L I E M L A B A B A A A A                        6 3 2 y 3 3 2 2 1 1 1 1     En forma idéntica obtenemos los giros A2 y B2 correspondientes a la viga simplemente apoyada cargada con el momento incógnita MB : I E L M I E L M B B B A          3 y 6 2 2   Luego resolviendo el siguiente sistema de ecuaciones podemos determinar los valores de las incógnitas hiperestáticas.                                                                        2 2 2 2 6 1 3 6 6 1 6 3 L b a P M L b a P M a L L I E b a P M I E L M I E L b L L I E b a P M I E L M I E L A A B A B A Una vez conocidos los valores correspondientes a MA y MB es muy simple calcular las reacciones verticales y si interesa, el momento máximo MC. Método de la viga conjugada Recordemos las siguientes ecuaciones diferenciales ya conocidas: (3) ; (2) ; (1) 2 2 2 2 Q dz dM q dz M d I E M dz y d       y consideramos al diagrama de momentos reducidos, como un diagrama de cargas ficticias q* = M/(EI) aplicado sobre una viga también ficticia y que llamaremos “viga conjugada”, de la identidad formal entre las dos ecuaciones (1) y (2) surge que la línea elástica de una viga coincide con el diagrama de momentos ficticios M* producido en todas las secciones de su viga conjugada cargada con la carga q*, dado que: ) 4 ( además pero * 2 2 * 2 2 2 2 * 2 * 2 * 2 * M y dz dz M d y dz I E M y d I E M dz M d q dz M d I E M q                              
  • 13. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 12 Estabilidad IIB – 64.12 Esta última conclusión se conoce como Teorema de Mohr sobre la línea elástica, y al diagrama de momentos reducidos utilizando como carga se lo denomina “carga elástica”. Si la viga es homogénea y de sección constante (EI= cte), la viga conjugada puede cargarse directamente con el diagrama de momentos, siempre que luego los resultados sean divididos por EI. Si derivamos la ecuación (4) obtenemos:   ) 5 ( * * Q dz dM tg dz dy     siendo Q* el esfuerzo de corte ficticio originado en la viga conjugada por la carga q*. La ecuación (5) nos muestra que el diagrama de esfuerzos de corte Q* nos da, para cualquier sección de la viga real, el valor de la tangente de la línea elástica. Dado que el esfuerzo de corte Q* en los extremos de la viga conjugada se corresponde con las reacciones de vínculo, éstas representan numéricamente los giros de la elástica de la viga real en correspondencia con sus apoyos. B B A A R R     * * ; En cuanto a las características de la viga conjugada, dado que al cargarse ésta con las cargas elásticas su diagrama de momentos flectores debe representar exactamente la elástica de la viga real, sus vínculos deben elegirse de manera tal que se respeten estas premisas. Consideremos el ejemplo de la figura. En el punto A no tenemos flecha ni pendiente, en el punto B hay un descenso y además la pendiente a la derecha es distinta que a la izquierda, en el punto C no hay descenso pero sí existe un giro, y en el punto D tenemos flecha y pendiente. A • No hay flecha  M* = 0 • No hay pendiente  Q* = 0 La viga conjugada debe tener un extremo libre B • Hay flecha  M* ≠ 0 • Hay pendiente y resulta distinta a derecha e izquierda  Qi* ≠ Qd* ≠ 0 La viga conjugada debe tener un apoyo móvil intermedio C • No hay flecha  M* = 0 • Hay pendiente y resulta distinta a derecha e izquierda  Qi* ≠ Qd* ≠ 0 La viga conjugada debe tener una articulación simple D • Hay flecha  M* ≠ 0 • Hay pendiente  Q* ≠ 0 La viga conjugada debe tener un empotramiento
  • 14. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 13 Curso: Ing. Gabriel Pujol Las conclusiones que hemos obtenido apoyándonos en el ejemplo citado pueden generalizarse de la siguiente manera: En algunos casos, en especial cuando las estructuras son estáticamente indeterminadas, la viga conjugada puede resultar inestable. Este inconveniente queda resuelto cuando se carga a la misma, ya que el propio estado de cargas le confiere estabilidad. Ejercicio Nº I: Para la barra en el estado de carga indicado se pide: a) Dibujar los diagramas de características previo análisis cinemático. b) Dimensionar la sección de la barra. c) Hallar la ecuación de las rotaciones absolutas y la ecuación de la elástica. d) Calcular el corrimiento vertical máximo (flecha máxima). e) Dibujar el diagrama de rotaciones absolutas y corrimientos verticales. Datos: l = 7,4 m; P = 4,5 t; q = 1,8 t/m; adm = 1400 Kg/cm2; adm = 800 Kg/cm2; E = 2,1x106 Kg/cm2; Perfil “doble T” (DIN 1025) Resolución: a) Trazar los diagramas de características previo análisis cinemático: a.1)Análisis cinemático: Se trata de una barra isostáticamente sustentada pues posee un apoyo móvil y uno fijo que restringen sus tres (3) grados de libertad. Además no existen vínculos aparentes pues la normal del apoyo móvil no pasa por el punto fijo “B”. a.2)Cálculo de las reacciones de vínculo: Calculamos las reacciones de vínculo RA y RB. Tomando momento respecto de “A” se tiene:
  • 15. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 14 Estabilidad IIB – 64.12                         t m m t t R l q P R l q l R l P M B B B i 91 , 8 2 4 , 7 8 , 1 2 5 , 4 2 2 0 2 2 0 2 Proyectando sobre el eje “y” se tiene:                        t m m t t t R l q R P R l q R R P P A B A B A i 91 , 8 4 , 7 8 , 1 91 , 8 5 , 4 0 0 a.3)Diagramas de características: b) Dimensionar la sección de la barra: b.1)Cálculo de la sección de la barra y verificación de las adm: La sección más comprometida de la barra es una tal como la n-n; en esta sección resulta: 3 2 5 71 , 1474 1400 10 646 , 20 646 , 20 ; 25 , 2 cm cm kg cm kg M W m t M t Q adm X            de tablas obtenemos el perfil “doble T” (DIN 1025) 425, que tiene un módulo resistente WX = 1740 cm3; por lo que resulta entonces:
  • 16. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 15 Curso: Ing. Gabriel Pujol b.2)Verificación de las tensiones normales debidas a la flexión y las tangenciales debidas al corte: Las tensiones normales debidas a la flexión las calculamos como sigue: 2 2 3 5 max 3 5 1400 55 , 1186 1740 10 646 , 20 1740 10 646 , 20 cm kg cm kg cm cm kg W M cm W cm kg M adm x x                     Las tensiones tangenciales las calculamos como sigue: 2 2 4 3 max 4 3 max max max 800 49 , 160 53 , 1 36970 1020 8900 53 , 1 ; 36970 ; 1020 ; 8900 : cm kg cm kg cm cm cm kg cm e cm J cm S kg Q donde e J S Q adm X X X X                  c) Hallar la ecuación de las rotaciones absolutas y la ecuación de la elástica: c.1)Tramo AC: Recordamos que (siendo  el corrimiento vertical o flecha): ) 4 ( 1 ) 3 ( ; ) 2 ( ; ) 1 ( 2 2                        dx M J E dx J E M dx J E M d dx d J E M dx d dx d dx dM Q dx dQ q       Por lo tanto será de (1):
  • 17. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 16 Estabilidad IIB – 64.12 l q R x q Q l q R C R Q C x q dx q Q A A A l x                      1 1 de (2) resulta:      2 2 2 2 2 2 2 0 2 l x q l x R M l R l q C M C x l q x R x q dx l q R x q dx Q M A A l x A A                                  de (4) será:                                                                                   3 2 3 2 3 2 3 2 3 3 2 2 48 8 6 2 1 48 8 1 0 6 2 1 2 1 1 l q l R l x q l x R J E l q l R J E C C l x q l x R J E dx l x q l x R J E dx M J E A A A l x A A     y de (3) resulta:                                                                                                        l x l q l x l R l x q l x R J E l q l R J E C C x l q x l R l x q l x R J E dx l q l R l x q l x R J E dx A A A l x A A A A 3 2 4 3 4 3 4 4 3 2 4 3 3 2 3 2 48 8 24 6 1 48 8 1 0 48 8 24 6 1 48 8 6 2 1      c.2)Tramo BC: Procediendo en forma análoga, resulta: B R x q Q     2 2 x q x R M B                     3 2 3 2 48 8 6 2 1 l q l R x q x R J E B B 
  • 18. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 17 Curso: Ing. Gabriel Pujol                     x l q x l R x q x R J E B B 3 2 4 3 48 8 24 6 1  d) Calcular el corrimiento vertical máximo (flecha máxima): El valor de la flecha máxima lo obtenemos cuando x = l/2, por lo que reemplazando en alguna de las expresiones de  resulta: cm l q l R l q l R J E B B l x 3940 , 1 96 16 384 48 1 4 3 4 3 2                      e) Dibujar el diagrama de rotaciones absolutas y corrimientos verticales: e.1)Tabla de valores: X (cm)  (x10-3)  (cm) 0 0 = 0 - 5,89 0 1 L/10 = 74 - 5,59 0,429 2 2L/10 = 148 - 4,76 0,815 3 3L/10 = 222 - 3,49 1,123 4 4L/10 = 296 - 1,87 1,324 5 5L/10 = 370 0 1,394 6 6L/10 = 444 1,87 1,324 7 7L/10 = 518 3,49 1,123 8 8L/10 = 592 4,76 0,815 9 9L/10 = 666 5,59 0,429 10 L = 740 5,89 0 e.2)Gráficos:
  • 19. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 18 Estabilidad IIB – 64.12 Ejercicio Nº II: Una varilla de aluminio de sección semicircular y radio “r” es flexada en forma de arco circular de radio medio “”. Sabiendo que la cara plana de la varilla está orientada hacia el centro de curvatura del arco se pide: a) Determinar las tensiones máximas tanto de tracción como de compresión en la varilla. b) Determinar el valor de la deformación máxima. Resolución: a) Cálculo de las máximas tensiones de tracción y compresión: a.1)Cálculo de la máxima tensión de tracción: Planteando la relación entre tensiones y deformaciones resulta:
  • 20. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 19 Curso: Ing. Gabriel Pujol 0 0 1 0 l l l l l además E                            1 1 1 1 1 0 y E y y y l l t                    ahora bien, siendo:                                           3 4 1 3 4 1 3 4 3 4 1 max 1 2 2 1 r E y E r r r y r y con y r y t a.2)Cálculo de la máxima tensión de compresión: En forma análoga será:      r E y E r y c         3 4 3 4 2 2 b) Cálculo de la deformación máxima: La calculamos como sigue:                  1 1 1 1 0 0 0 1 0 y y y l l l l l l l                      Ejercicio Nº III: Sea la viga de madera dimensionada en el Ejercicio Nº 25 del Trabajo Práctico Nº 5, de longitud L cuya sección es rectangular y su sección es K, que posee una inclinación dada por el ángulo  estando apoyada en sus extremos y sometida a una carga uniformemente distribuida de magnitud p que actúa en el plano vertical según puede observarse en la figura. De acuerdo a los datos que se indican se solicita: a) Determinar el máximo corrimiento vertical (v) de la misma. Datos: L = 3,10 m; p = 3 kN/m;  = 15°; K (h/b) = 2,5; JX = 5333,33 cm4; JY = 853,33 cm4; E = 1,05 kN/cm2
  • 21. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 20 Estabilidad IIB – 64.12 Resolución: a) Determinación del máximo corrimiento vertical El máximo corrimiento vertical tiene una determinada dirección cuyas componentes escalares son: j i y x          Aplicando el principio de superposición de efectos puede proyectarse dicho corrimiento según la línea de fuerza m, y de esa forma obtener el máximo corrimiento vertical (v) solicitado, es decir:          cos sin     y x v Por otra parte la carga específica p que actúa en el plano vertical de cargas, definido por la línea de fuerzas m, posee las siguientes componentes escalares: j p i p p y x       Siendo:                        sin cos cos sin p p p p p p y x Finalmente, de acuerdo con lo analizado en el ejercicio de aplicación IV y teniendo en cuenta que en este caso para las cargas exterioeres P = 0 y que las causas de los corrimientos y y x son respectivamente las componentes de las cargas específicas py y px. Se tiene:                        t m m t R l q R l q l R M B B B i 91 , 8 2 4 , 7 8 , 1 2 0 2 0 2 J E l q J E l q x l q x q x l q J E l x                                             4 4 2 max 3 4 3 384 5 48 1 384 1 96 1 24 24 12 1    por lo que:
  • 22. Deformación debida a la Flexión (Complemento Teórico) Estabilidad IIB – 64.12 hoja 21 Curso: Ing. Gabriel Pujol                            X X x y Y Y y x J E L p J E L p J E L p J E L p 4 4 4 4 cos 384 5 sin 384 5     y reemplazando y agrupando se obtiene:                   cm cm cm cm kN cm cm kN J J E L p v Y X v 87 , 0 33 , 853 15 sin 33 , 5333 15 cos 05 , 1 310 10 3 384 5 sin cos 384 5 4 2 4 2 2 4 2 2 2 4                                            
  • 23. Deformación debida a la Flexión (Complemento Teórico) Curso: Ing. Gabriel Pujol hoja 22 Estabilidad IIB – 64.12 Bibliografía Recomendada • Estabilidad II - E. Fliess • Resistencia de materiales - R. Abril / C. Benítez • Problemas de resistencia de materiales - M. Ferrer Ballester y otros • Curso superior de resistencia de materiales - F. Seely / J. Smith(Título original de la obra: "Advanced Mechanics of Materials") • El acero en la construcción (Título original de la obra: "Stahl im hochbau") • Introducción a la estática y resistencia de materiales - C. Raffo • Mecánica de materiales - F. Beer y otros • Mecánica de materiales - R. C. Hibbeler • Problemas de resistencia de materiales - I. Miroliubov y otros • Problemas de resistencia de materiales - A. Volmir • Resistencia de materiales - Luis Delgado Lallemad / José M. Quintana Santana • Resistencia de materiales - V. Feodosiev • Resistencia de materiales - A. Pytel / F. Singer • Resistencia de materiales - S. Timoshenko