Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Números Complejos. Presentación diseñada por el MTRO. JAVIER SOLIS NOYOLA

2.009 visualizaciones

Publicado el

Javier Solis Noyola diseña y desarrolla presentación del tema de NÚMEROS COMPLEJOS.

Publicado en: Educación
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Números Complejos. Presentación diseñada por el MTRO. JAVIER SOLIS NOYOLA

  1. 1. Mtro. Javier Solis Noyola
  2. 2. Objetivos  Conocer y comprender el concepto de número complejo como parte del sistema numérico.  Conocer y comprender Reglas básicas para efectuar operaciones con números complejos .  Desarrollar operaciones con números complejos.
  3. 3. Número Imaginario Un número imaginario es un número cuyo cuadrado es negativo. Fue en el año 1777 cuando Leonhard Euler le dio a el nombre de i, por imaginario de manera despectiva dando a entender que no tenían una existencia real. Leonhard Euler (Basilea, Suiza, 1707 - San Petersburgo, 1783)
  4. 4. ¿Qué es un número complejo? A través de la exposición de estos videos, conoceremos como se conceptualiza y se dimensiona un número complejo. 1 2 http://www.youtube.com/watch?v=eS6uMKx0XP0 http://www.youtube.com/watch?v=WE7wfJU6RV4
  5. 5. Número Complejo Z=a+ib En matemáticas, los números reales son aquellos que poseen una expresión decimal e incluyen tanto a los números racionales (como: 31, 37/22, 25,4) como a los números irracionales, que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: π Expresión de la forma a + bi, en donde a y b son números reales e i es imaginario Z
  6. 6. Complejos Conjugados como solución a una ecuación de 2do. Grado x1 = α + β i x2 = α - β i
  7. 7. Ejemplo de Ecuación de Segundo Grado ax2+bx+c =0 x x -   b b ac -  -  - -  - -  ( 4) ( 4) 4(1)(5) 4 16 20 4 4 2 2 2(1) 2 4 4 5 0 2 2 2  -   -  x x x a x x x x 4 (4)( 1) 4 4 1 2 4 2 1 4 2 x  2  i Raíces Complejas 1 x i i i x  -      -   -   -  2 2 1 2 2 2 2 Conjugadas
  8. 8. Ejemplos de Números Complejos en el Plano Complejo Plano complejo. Un número complejo z se puede representar Z Imaginario Real Z1= 3; Z2= 3 +4i; Z3 = 4i ; Z4= -4 +2i; ; Z5= 2 -3i Z=a+ib Z2 Z1 Z3 Z4 Z5 Real Imaginario como un punto en un plano x,y. El punto del plano (a,b) representara el número complejo z= a+bi , es decir el número cuya parte real es a y cuya parte imaginaria es b.
  9. 9. Operaciones de Suma y Resta con Números Complejos a) 2 - 4i 7  2i b) 9 - 3i- 6  2i 9 - 3i- 6  2i  9 - 3i - 6 - 2i  3 - 5i Cambiar de signo Obtener Z1 + Z2 Z1 = 3 +4i Z2= -4+2i Z1+Z2= (3 +4i) +(-4+2i) Z1+Z2 = -1 + 6i
  10. 10. Operaciones de Multiplicación con Números Complejos 3  2i5 - 4i  3  2 i  5 - 4 i    3  5    3  - 4 i    2 i  5    2 i  - 4 i   -  - 15 12 10 8 i i i i  - - - 15 2 8( 1) 2 i i  -   - 15 2 8 23 2 Z1 = 1+2i ; Z2= 3+3i ; Obtener: Z1Z2 Z1Z2 = (1+2i) (3+3i) = (1)(3)+(1)(3i)+(2i)(3)+(2i)(3i) Z1Z2 = 3 + 3i + 6i + 6i2 Z1Z2 = 3 + 3i + 6i + 6(-1) = 3 +9i -6 = -3+9i Z1Z2 Z1 Z2
  11. 11. División de Números Complejos d) i 3 2 2 3  i  a bi  a  bi 2 - 3 -  3  2   3  2  i i i i i i 2 3 2 3 2 3              i i i c - di c di i i i i 6 9i 4i 6i 2 - -  -  -  -   - 2 2 2 2  - 4 i 3 2 3 3 2 2 2 3 i 5 13 12 13 12 5 4 9 6 5 6 4 9( 1) 2 (3 ) 3   - -  -  - (a+b)(a-b) Se multiplica por el conjugado del denominador =a2-b2 c di c di -     Z/Z =
  12. 12. Conversión de números complejos de la forma cartesiana a polar Z = 2cos (120° )+ 2sen (120°) i r = Módulo de número complejo α = Ángulo de número complejo Z = r cos α + r sen α Z = 2cos (120° )+2sen (120°) i
  13. 13. Z = r cos α + r sen α Z = 2cos (240° )+ 2sen (240°) i Z = 2cos (300° )+ 2sen (300°) i
  14. 14. Campos o áreas de aplicación de los Números Complejos
  15. 15. Campos o áreas de aplicación de los Números Complejos
  16. 16. REFERENCIAS INFORMÁTICAS (textos): •Cárdenas, Humberto y Emilio Luis R., y Francisco Tomas. ÁLGEBRA SUPERIOR. Editorial Trillas, 2002. •Frank S Budnick. MATEMÁTICAS APLICADAS PARA ADMINISTTRACIÓN, ECONOMÍA Y CIENCIAS SOCIALES. Editorial Mc Graw Hill. •Haeussler, Ernest F.. MATEMÁTICAS PARA LA ADMINISTRACIÓN, ECONOMÍA, CIENCIAS SOCIALES Y DE LA VIDA. Editorial Prentice Hall. •Reyes Guerrero, Araceli. ÁLGEBRA LINEAL. Editorial Thomson, 2005. •Richar Hill. ÁLGEBRA LINEAL CON APLICACIONES. Editorial Prentice Hall. •Stanley I Grossman. ÁLGEBRA LINEAL CON APLICACIONES. Editorial Mc Graw Hill

×