SlideShare una empresa de Scribd logo
1 de 59
Descargar para leer sin conexión
E = mc2
Qué es?
Qué es?
- La respuesta corta:
En forma resumida, Factory Physics es la descripción sistémica del
comportamiento fundamental de un sistema de manufactura. El entender
este comportamiento le permitirá a la dirección y a los ingenieros trabajar a
favor de las tendencias naturales del sistema de manufactura, permitiendo:
• Identificar oportunidades de mejoramiento en el sistema existente.
• Diseñar nuevos sistemas que verdaderamente son efectivos.
• Facilitar las negociaciones necesarios para coordinar las políticas
originadas en áreas diferentes.
- La respuesta larga:
Variabilidad
- Introducción:
Qué es variabilidad?
* Cualquier desviación de cierta uniformidad bajo estudio.
Cuál es la diferencia entre:
Variación Controlable vs. Variación Aleatoria?
Ejemplos:
Variación Controlable Variación Aleatoria
-Tamaño de Lote -Cantidad Pedida
-Temperatura de Proceso -Tiempo entre Fallas (MTTF)
-Secuencia de Producción -Calidad de una Materia Prima
Variabilidad
- Introducción:
Cuáles pueden ser las causas de la aleatoriedad?
* Interpretación No.1: La aleatoriedad ocurre por falta de información o
por información imperfecta.
* Interpretación No.2: El comportamiento del universo es aleatoriedad.
Aunque contáramos con una descripción completa del universo y de
todas las leyes físicas que lo definen, esto no seria suficiente para
predecir el futuro. Si mucho nos daría unas estimaciones estadísticas
de un posible futuro/comportamiento.
Independientemente de las dos interpretaciones, los efectos son los mismos
en el día a día, son inherentemente impredecibles.
Lo anterior no quiere decir que debemos olvidarnos de la gestión de una
planta, mas bien debemos dedicarnos en diseñar procesos robustos y no
quedarnos estancados buscando procesos óptimos.
Entonces, cuál es la diferencia entre:
Procesos Robustos vs. Procesos Óptimos?
Variabilidad
- Introducción:
Entonces, para poder diseñar dichos procesos robustos y efectivos en un
entorno aleatorio el individuo debe poseer una buena intuición probabilística.
Solo así se podrá medir, entender y administrar (apalancar) la variabilidad en
un sistema de manufactura. Dando como resultado una gestión efectiva del
mismo.
Variabilidad
- Intuición Probabilística:
La intuición juega un papel importante en nuestro día a día, la utilizamos de
una manera u otra para tomar todo tipo de decisiones. Desde la forma como
conducimos hasta la forma como avisamos nuestras intenciones de asistir a la
fiesta de fin de año.
En la mayoría de los casos nuestra intuición es buena cuando se basa en
efectos de primer orden (primer momento). Pero las cosas no son tan claras
cuando basamos nuestra intuición en efectos de segundo orden (segundo
momento).
Entonces, cuál es la diferencia entre:
Primer Momento vs. Segundo Momento?
Ejemplos:
Primer Momento Segundo Momento
-TH aumenta con la velocidad de una maquina. -Cuál es mas variable, tiempos de procesamiento
de una pieza o de un lote?
-TH aumenta con la disponibilidad de una
maquina.
-Cuál es mas perjudicial, paradas largas e
infrecuentes o cortas y frecuentes?
-WIP aumenta con el tamaño de lote. -Cuál brinda el mejor desempeño, reducir tiempos
de procesamiento al comienzo o al final de la
línea?
Variabilidad
La variable aleatoria de interés primario para Factory Physics es el Tiempo
Efectivo de Procesamiento de un trabajo en una estación.
-Tiempo de Procesamiento
-Tiempo de Alistamiento
-Tiempo de Reparación
-Tiempo de Reproceso
-Otros tiempos
La suma de estos tiempos
nos da el Tiempo Efectivo
de Procesamiento.
Estación 1 Estación 2
¿Por qué?
Son los tiempos que causan que la Estación 2 no pueda iniciar su tarea.
- Variabilidad en el Tiempo de Proceso:
Variabilidad
- Medidas y clases de Variabilidad:
-Medidas de Variabilidad Absoluta:
Varianza Desviación Estándar
-Medidas de Variabilidad Relativa:
Coeficiente de Variación al Cuadrado(SCV) Coeficiente de Variación(CV)
 
2
12
1



n
tt
s
n
i
i  
2
1
1



n
tt
s
n
i
i
t
c

2
2
2
t
c


Variabilidad
- Variabilidad Baja y Moderada:
La mayoría de los tiempos de procesos reales pueden ser representados por
distribuciones que tienen una forma de campana. En estos casos el CV tiende
a ser inferior a 0.75. Por lo tanto la variabilidad se puede clasificar en baja,
moderada y alta.
Clase de Variabilidad CV Ejemplo
Baja (VB) c < 0.75 Tiempos de procesamientos sin
faltantes.
Moderada (VM) 0.75 ≤ c < 1.33 Tiempos de procesamientos con
ajustes menores (alistamientos).
Alta (VA) c ≥ 1.33 Tiempos de procesamientos con
ajustes mayores (reparaciones).
Variabilidad
- Variabilidad Baja y Moderada:
Tiempo de Proceso Tiempo de Proceso
DensidaddeProbabilidad
DensidaddeProbabilidad
20 20
Distribución de Variabilidad Baja
Distribución de Variabilidad Baja
Distribución de Variabilidad
Moderada
Qué efectos tiene un tiempo de procesamiento con una variabilidad moderada
en una línea de producción?
- Variabilidad Alta:
Variabilidad
- Causas de Variabilidad :
Incluyen:
- Variabilidad Natural del proceso causada por cambio de operarios, maquinas
y materiales.
- Fallas aleatorios.
- Alistamientos.
- Disponibilidad de mano de obra.
- Reproceso.
Variabilidad Natural:
La mayoría de los sistemas tienen una VB (c0 < 0.75) asociada a sus tiempos
de procesamiento.
o
o
o
t
c


Desviación estándar del tiempo de
proceso natural.
Tiempo promedio del proceso natural.
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
Este tipo de fallas sucede aunque queramos o no, inclusive durante el mismo
procesamiento de una pieza. Otros ejemplos incluyen, apagones o falta de un
consumible necesario para el proceso. Obviamente, en esta categoría se incluye
información de MTTF y MTTR.
Entonces, para el calculo del tiempo efectivo de proceso debemos tener en
cuenta la disponibilidad (Availability) del recurso bajo estudio. Esta disponibilidad
se determina de la siguiente manera:
- Causas de Variabilidad :
rf
f
mm
m
A


Tiempo el recurso esta disponible para
procesar.
Tiempo el recurso esta en reparación.
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
Ahora es necesario tener en cuenta la disponibilidad para calcular el tiempo de
procesamiento efectivo promedio, este esta dado por:
- Causas de Variabilidad :
A
t
t
o
e 
Tiempo natural de proceso.
Disponibilidad.
La capacidad efectiva esta dada por:
o
oe
e Ar
t
m
A
t
m
r 
Capacidad
Natural.
Numero de maquinas.
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
- Causas de Variabilidad :
   
o
r
ro
e
e
e
t
m
AAcc
t
c  11 22
2
2
2 
CV de los tiempos de reparación.
El coeficiente de variación al cuadrado (SCV) efectivo esta dado por:
La varianza del tiempo de procesamiento efectivo esta dada por:
  
r
orro
e
Am
tAm
A








122
2
2


Varianza de los tiempos de reparación.
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
El coeficiente de variación al cuadrado (SCV) esta dado por:
- Causas de Variabilidad :
   
o
r
r
o
r
oe
t
m
AAc
t
m
AAcc  11 222
Variabilidad
natural del
proceso
Fallas Aleatorias, existiría aun si las
fallas fueran constantes
Componente totalmente dependiente
de la variabilidad en los tiempos de
reparación.
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
Consideremos un ejemplo para entender el efecto de fallas sobre la variabilidad
de una maquina. En este caso tanto la maquina Tortuga como la Liebre tienen un
tiempo de proceso natural promedio To = 15 minutos y una desviación estándar
natural σo = 3.35 minutos. Por lo tanto ambas maquinas tienen una SCV = 0.05.
Ambas maquinas tienen una disponibilidad a largo plazo igual a 0.75%. Sin
embargo, en la maquina Liebre se presentan fallas de larga duración e
infrecuentes, mientras que en la maquine Tortuga se presentan fallas cortas y
frecuentes. Específicamente, el MTTF en la Liebre es de 744 minutos y el MTTR
de 248 minutos. En el caso de la Tortuga el MTTF es de 114 minutos y el MTTR de
38 minutos. Finalmente, supongamos que los tiempos de reparación son variable
y tienen un CV = 1.0, ósea una variabilidad moderada.
Entonces, debemos determinar el CV del tiempo efectivo de proceso.
- Causas de Variabilidad :
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
Ejemplo del texto (pagina 256):
- Causas de Variabilidad :
Liebre Tortuga
to 15 minutos 15 minutos
σo 3.35 minutos 3.35 minutos
mf 744 minutos 114 minutos
mr 248 minutos 38 minutos
cr 1.0 1.0
co ? ?
A ? ?
te ? ?
re ? ?
ce ? ?
Variabilidad
Variabilidad por fallas (Interrupciones Dominantes):
- Causas de Variabilidad :
Liebre Tortuga
to 15 minutos 15 minutos
σo 3.35 minutos 3.35 minutos
mf 744 minutos 114 minutos
mr 248 minutos 38 minutos
cr 1.0 1.0
co 0.05 0.05
A 0.75 0.75
te 20 minutos 20 minutos
re 3 trabajos/hora 3 trabajos/hora
ce 2.5 1.0
Conclusiones: ?
Variabilidad
Variabilidad por fallas (Interrupciones No-Dominantes):
Este tipo de fallas tienen que suceder pero en este caso se tiene mas control
sobre cuando se llevan acabo. En este caso se puede terminar de procesar el
trabajo actual para luego detener la maquina. Ejemplos incluyen, alistamientos,
mantenimiento preventivo, descansos y cambio de turnos.
Bajo estas condiciones utilizamos las siguientes ecuaciones para determinar la
media, varianza y el coeficiente de varianza al cuadrado para el tiempo de
procesamiento efectivo:
- Causas de Variabilidad :
El tiempo de procesamiento efectivo promedio, este esta dado por:
s
s
oe
N
t
tt 
Tiempo de alistamiento promedio.
Numero promedio de piezas
procesadas entre alistamientos.Tiempo natural de proceso promedio.
Variabilidad
Variabilidad por fallas (Interrupciones No-Dominantes):
- Causas de Variabilidad :
2
2
2
e
e
e
t
c


El coeficiente de variación al cuadrado (SCV) esta dado por:
La varianza del tiempo de procesamiento efectivo esta dada por:
2
2
2 12
2
s
s
s
s
s
oe t
N
N
N




Varianza de los tiempos de alistamiento.
Variabilidad
Variabilidad por fallas (Interrupciones No-Dominantes):
Ejemplo del texto:
- Causas de Variabilidad :
Maquina No.1 Maquina No.2
Flexible/Sin Alistamiento ----
to 1.2 horas 1.0 horas
CV(co) 0.5 0.25
Ns ---- 10 unidades
ts ---- 2 horas
CV(cs) ---- 0.25
re ? ?
ce ? ?
Qué maquina es menos variable?
Variabilidad
Variabilidad por fallas (Interrupciones No-Dominantes):
Ejemplo del texto:
- Causas de Variabilidad :
Maquina No.1 Maquina No.2
Flexible/Sin Alistamiento ----
to 1.2 horas 1.0 horas
CV(co) 0.5 0.25
Ns ---- 10 unidades
ts ---- 2 horas
CV(cs) ---- 0.25
re 0.8333 0.8333
ce 0.50 0.5575
Qué maquina es menos variable?
Variabilidad
- Causas de Variabilidad :
Variabilidad por reproceso:
Qué tiene en común la variabilidad causada por fallas y alistamientos con la
variabilidad causada por reproceso?
Las tres causas reducen la capacidad efectiva de un recurso.
Por lo tanto, mas reproceso implica mayor variabilidad y mas variabilidad causa
mas congestión, mas WIP y mayores tiempos de ciclo. Lo anterior combinado con
la perdida de capacidad hacen que el reproceso se considere como un verdadero
problema.
Variabilidad
- Causas de Variabilidad :
Resumen de las formulas para determinar los parámetros Tiempo Efectivo de
Procesamiento:
Situación Natural Fallas (AP) Fallas (BP)
Ejemplos Recurso Confiable Fallas Aleatorias Alistamientos
Parámetros
2
2
e
e
t
2
ec
et
2
e
ot
2
, oo ct(básicas)
(básicas mas) (básicas mas)
2
,, rrf cmm 2
,, sss ctN
rf
fo
mm
m
A
A
t

,
2
oc
22
oo ct   
r
orro
Am
tAm
A


1222
2

   
o
r
ro
t
m
AAcc  11 22
s
s
o
N
t
t 
2
2
2 12
s
s
s
s
s
o t
N
N
N




Qué seria varianza apilada (Stacked Variance)?
Variabilidad
- Variabilidad en el Flujo:
En lo visto hasta ahora se ha estudiado la variabilidad en una estación aislada,
sin embargo en la vida real una línea de producción esta compuesta de varias
estaciones. Por esta razón es importante estudiar y entender la relación entre
estaciones, lo cual nos conduce a otro tipo de variabilidad. Esta se denomina
variabilidad en el flujo.
El primer elemento a tener en cuenta es la tasa de llegada (arrival rate), medido
en trabajos por unidad de tiempo. Para mayor consistencia las unidades de la
tasa de llegada deben ser las mismas de la capacidad de la estación bajo
estudio. Así como una estación se caracteriza por su tiempo promedio de
proceso te, o su capacidad efectiva re la llegada a una estación también se
puede caracterizar por el tiempo promedio entre llegadas.
Las dos medidas anteriores son el inverso del otro, así:
a
a
t
r
1

Tasa de llegada.
Tiempo promedio entre llegadas.
Variabilidad
- Variabilidad en el Flujo:
Para que una estación no se recargue de trabajo la siguiente relación se debe
cumplir:
ae rr 
Capacidad Efectiva.
Tasa promedia entre llegadas.
Así como existe variabilidad en el tiempo de proceso también lo hay en el
tiempo entre llegadas y se define de la misma manera que en el primer caso:
a
a
a
t
c


Desviación estándar de los tiempos
entre llegadas.
Tiempo promedio
entre llegadas.
Intuitivamente, un CV bajo implica llegadas regulares y espaciadas igualmente,
mientras un CV alto implica llegadas irregulares y con picos.
Variabilidad
- Variabilidad en el Flujo:
El siguiente elemento a tener en cuenta para entender la variabilidad del flujo
es la caracterización de las salidas de una estación. Para esto haremos uso de
medidas similares a las usadas para describir las llegadas, específicamente el
tiempo promedio entre salidas (td) y la tasa de salidas (departure rate).
Las dos medidas anteriores son el inverso del otro, así:
d
d
t
r
1

Tasa de salidas.
Tiempo promedio entre salidas.
El coeficiente de variación correspondiente a las salidas esta representado por
cd.
Variabilidad
- Variabilidad en el Flujo:
Es importante considerar la siguiente condición, en una línea de producción en
serie la salida de una estación i es la llegada de la siguiente estación i+1.
Entonces la tasa de salida de i debe ser igual a la tasa de llegada de i+1, así:
)()1( ii da tt 
Tiempo promedio entre llegadas de la estación i+1.
Por supuesto, en una línea de producción en serie sin mermas o reproceso la
tasa de llegada de cada estación es igual al TH de la línea. Adicionalmente, en
una línea serial donde las salidas de i son las llegadas de i+1, el CV de salida
de la estación i es igual al CV de llegada de la estación i+1. Así:
Tiempo promedio entre salidas de la estación i.
)()1( ii da cc 
Coeficiente de Variación de llegadas de la estación i+1.
Coeficiente de Variación de salidas de la estación i.
Variabilidad
- Variabilidad en el Flujo:
Gráficamente, los conceptos anteriores se pueden ver de la siguiente manera:
Estación i
Estación
(i+1)
)(iar
)(iac
)(ier
)(iec
)1()(  ii ad cc
)1()(  ii ad rr
)1( ier
)1( iec
Tasas:
CVs:
Variabilidad
- Variabilidad en el Flujo:
Finalmente, es necesario determinar como caracterizar la variabilidad de salidas
de una estación a partir de la información existente de la variabilidad de llegada
y del tiempo de proceso.
Para lograr lo anterior se debe tener en cuenta la contribución relativa de ambos
factores en la utilización de la estación bajo estudio. Recordemos que la
utilización de una estación es la fracción de tiempo que está esta ocupada en el
largo plazo. Formalmente se define así:
m
tr
u
ea ))((

Corresponde al numero de maquinas idénticas
que compone la estación.
A medida que u se acerca a 1, esto quiere decir que la estación casi siempre
esta ocupada. Por lo tanto se puede esperar que el CV de salida de dicha
estación sea igual al CV del tiempo de proceso. Así:
ed cc 
Variabilidad
- Variabilidad en el Flujo:
El otro extremo, cuando u se acerca a 0, implica que la estación casi siempre
esta desocupada. Por lo tanto se puede esperar que el CV de salida de dicha
estación sea igual al CV de llegada. Así:
ad cc 
Para interpolar entre los dos extremos anteriores se puede utilizar la siguiente
ecuación:
Observe que cuando u=1, se obtiene cd
2 = ce
2. Igualmente, cuando u=0, se
obtiene cd
2 = ca
2.
  22222
1 aed cucuc 
Para determinar cd
2 cuando hay mas de una maquina por estación, entonces:
    1111 2
2
222
 ead c
m
u
cuc
Variabilidad
- Variabilidad en el Flujo:
En este momento es importante considerar el concepto de propagación de la
variabilidad.
HV
HV
LV
LV LV
LVLV
LV
HV
HV HV
HV
Caso 1: Estación con Alta Utilización
Qué podemos concluir?
La variabilidad en el flujo que sale de una estación de alta utilización esta
determinado primordialmente por la variabilidad en el proceso de dicha estación.
Variabilidad
- Variabilidad en el Flujo:
En este momento es importante considerar el concepto de propagación de la
variabilidad.
HV
HV
LV
LV HV
LVLV
LV
HV
HV HV
LV
Caso 2: Estación con Baja Utilización
Qué podemos concluir?
La variabilidad en el flujo que sale de una estación de baja utilización esta
determinado primordialmente por la variabilidad que entra a dicha estación.
Variabilidad
- Propagación de la Variabilidad:
Estación 1
(LV/HV)
Estación 1
(LV/HV)
Estación 1
(LV/HV)
Estación 1
(LV/HV)
Estación 2
(LV/HV)
Estación 2
(LV/HV)
Estación 2
(LV/HV)
Estación 2
(LV/HV)
Estación 3
(LV/HV)
Estación 3
(LV/HV)
Estación 3
(LV/HV)
Estación 3
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
Materiales
(LV/HV)
PT PT PT PT
JIT1 JIT2 JIT3 JIT4
Variabilidad
- Interacciones dentro de la Variabilidad “Colas”
Hasta el momento hemos considerado la variabilidad en los tiempos de
procesamiento y en el flujo, ahora entenderemos como estos caracterizan y
afectan la variabilidad de una línea de producción. Específicamente, nos
interesa evaluar el impacto de estos tipos de variabilidad sobre los principales
indicadores de desempeño de una línea cualquiera, siendo estos; WIP, CT y TH.
Pero antes, es importante resaltar que el tiempo efectivo de procesamiento solo
representa una fracción pequeña del tiempo de ciclo total dentro de una planta
y que el tiempo restante es causado por que el trabajo debe esperar a algún
recurso (estación de trabajo, equipo de transferencia, un operario, etc.).
Por esta razón Factory Physics dedica tanto esfuerzo en entender las causas
que generan esta espera. Solo después de entender esta causas podemos
entrar a proponer maneras de mejorar el desempeño del sistema.
La ciencia que estudia la espera en un sistema se conoce como la Teoría de
Colas. Un sistema de colas tiene en cuenta todo lo visto hasta el momento; un
proceso de llegadas, un proceso de “servicio” y una cola. Los procesos de
llegada pueden ser constantes o aleatorios. Las estaciones pueden estar
compuestas por una o varias maquinas en paralelo, las cuales pueden tener
tiempos de procesamiento constantes o aleatorios. Finalmente, la cola se
puede comportar FIFO, LIFO o ser administrada mediante algunas de las reglas
de secuenciamiento conocidas tales como EDD, SPT.
Variabilidad
- Teoría de Colas:
• ra: tasa de llegadas, especificada en trabajos por unidad de tiempo. En una línea sin
reproceso, ra es igual a TH de cada estación.
• Ta: tiempo promedio entre llegadas. Igual a 1/ra.
• ca: CV de llegada.
• m: numero de maquinas en paralelo en una estación.
• b: tamaño del buffer (máximo numero de trabajos permitidos en el sistema).
• te: tiempo efectivo promedio de proceso. Capacidad efectiva de una estación es re = m/te.
• ce: CV del tiempo efectivo de proceso.
Nomenclatura
Medidas de desempeño:
• pn: probabilidad que haya n trabajos en una estación.
• CTq: tiempo de espera en cola.
• CT: tiempo esperado en la estación (tiempo en cola mas tiempo de proceso).
• WIP: nivel promedio de WIP (trabajos) en la estación.
• WIPq: WIP (trabajos) esperados en cola.
Variabilidad
- Teoría de Colas:
Finalmente, utilizaremos la nomenclatura de Kendell para caracterizar un
sistemas de colas. Esta hace uso de 4 parámetros, siendo estos:
A/B/m/b
Donde A describe la distribución de tiempos entre llegadas. B describe la
distribución de tiempos de proceso. m el numero de maquinas que conforman
la estación y b es el numero máximo de trabajos permitidos en el sistema.
En general los parámetros A y B pueden asumir cualquiera de los siguientes
valores:
• D: distribución constante (deterministica).
• M: distribución exponencial (Markoviana).
• G: distribución completamente general (normal, uniforme).
Por lo general se asumen valores grandes para la cola (b), en cuyo caso la
nomenclatura queda:
A/B/m
Variabilidad
- Teoría de Colas:
Relaciones Fundamentales:
Antes de entrar a analizar cualquier sistema de colas es necesario anotar que
algunas relaciones se mantiene en un sistema compuesto por una estación
única. Estas son:
m
tr
r
r
u
ea
e
a ))((

Utilización
Tasa de llegada
Tasa Efectiva.
Tiempo esperado en la estación
eq tCTCT 
Tiempo de espera esperado en cola.
Tiempo efectivo promedio de proceso.
Variabilidad
- Teoría de Colas:
Relaciones Fundamentales:
WIP en la estación (aplicando la Ley de Little)
CTTHWIP 
Throughput de la estación.
Tiempo de ciclo de la estación.
WIP en la cola (aplicando la Ley de Little)
qaq CTrWIP 
tiempo de espera esperado en cola.
Tasa de llegada
Variabilidad
Este modelo asume los tiempos entre llegadas es exponencial, que esta compuesto
por una sola maquina y que esta tiene un tiempo de proceso exponencial. La cola
se comporta como PEPS y tiene un espacio ilimitado para trabajos en espera.
Dado que este modelo es el mas sencillo, su verdadera contribución esta en
entender que información se requiere para caracterizar el mismo. Como los
tiempos entre llegadas y de proceso son exponencial, solamente necesitamos las
medias. Entonces:
- Teoría de Colas – Caso M/M/1:
at
a
a
t
r
1

et
e
e
t
r
1

Tiempo promedio entre llegadas Tiempo efectivo promedio de proceso
Tasa de llegadas Tasa efectiva
Variabilidad
Fuera de lo anterior, la única otra información que necesitamos seria el numero de
trabajos en el sistema. Como ambos tiempos anteriores son exponenciales, el
tiempo desde la ultima llegada y el tiempo que el trabajo actual lleva en proceso
son irrelevantes. Entonces, el estado del sistema se puede expresar como un solo
numero n, que representa el numero de trabajos en el sistema. Con esta
información se puede caracterizar el desempeño a largo plazo del sistema (CT, WIP,
CTq y WIPq).
- Teoría de Colas – Caso M/M/1:
u
u
MMWIP


1
)1//(
Medidas de desempeño para M/M/1:
WIP Utilización
Variabilidad
- Teoría de Colas – Caso M/M/1:
u
t
r
MMWIP
MMCT
e
a 

1
)1//(
)1//(
Medidas de desempeño para M/M/1:
CT (a partir de la Ley de Little)
Tiempo efectivo promedio de proceso
CTq (a partir de la relaciones fundamentales)
u
ut
tMMCTMMCT
e
eq


1
)1//()1//(
Variabilidad
- Teoría de Colas – Caso M/M/1:
u
u
rMMCTMMWIP aqq


1
)1//()1//(
2
Medidas de desempeño para M/M/1:
WIPq (a partir de la Ley de Little)
Tasa de llegada, igual a TH
Conclusiones:
• WIP,CT, CTq y WIPq aumentan a medida que u aumenta. Por esta razón sistemas ocupados
tienden a demuestran mayor congestión que sistemas desocupados..
• Manteniendo u fijo, CT y CTq aumentan en términos de te. Por lo tanto maquinas lentas
causan mas tiempo de espera.
• Finalmente, observen que estas medidas implican congestión y todas tienen en el
denominador el termino 1-u, lo que tiene como consecuencias que a medida que u se
aproxima a 100 % la congestión aumenta en forma no lineal.
Variabilidad
- Teoría de Colas – Caso M/M/1:
Ejemplo (pag. 269):
Recordemos el caso de la Tortuga, donde el tiempo entre llegadas era de 2.875
trabajos por hora. Ahora supongamos que los tiempos entre llegadas están
distribuidos exponencialmente (puede ser el caso cuando los trabajos llegan de
diferentes fuentes). En el caso anterior, la tasa de efectiva era de 3 trabajos por
hora y el CV correspondiente era de 1.0.
Determinen las medidas de desempeño correspondientes al sistema bajo estudio.
Variabilidad
- Teoría de Colas – Caso G/G/1:
Medidas de desempeño para M/M/1:
CTq (ecuación VUT)
e
ea
q t
u
ucc
GGCT 












 

12
)1//(
22
Desafortunadamente, la mayoría de los sistemas de manufactura reales no
cumplen con los supuestos del modelo M/M/1. Cuando una estación es
alimentada por estaciones que tienen tiempos de procesamiento no
exponenciales es difícil mantener el supuesto que el tiempo entre llegadas es
exponencial. Por esta razón es necesario ampliar el modelo al caso mas
general, representado pos G/G/1.
Como en el caso anterior, primero se desarrolla la formulación para CTq y
luego obtenemos las otras medidas de desempeño.
Termino de tiempo T
Termino de utilización UTermino de variabilidad V
Variabilidad
- Teoría de Colas – Caso G/G/1:
Ejemplo (pag. 271):
De nuevo volvamos al caso de la Liebre, recordemos que dicha maquina
presentaba una alta variabilidad CVS efectivo de 6.25. Asumamos que el tiempo
entre llegadas esta exponencialmente distribuido y que la utilización es 0.9583.
Determinen el tiempo esperado en la cola CTq.
Ahora supongamos que la Liebre alimenta la Tortuga, que no hay perdidas entre las
dos maquinas y que por lo tanto la tasa de llegadas de la Tortuga es la misma de la
Liebre. Como ambas maquinas tienen una tasa efectiva igual, tendrán la misma
utilización. Ahora queremos determinar el CTq de la Tortuga. Recuerden que:
)()1( ii da cc 
Qué podemos concluir de los valores de CTq(Liebre) vs. CTq(Tortuga)?
Variabilidad
- Teoría de Colas – Maquinas en Paralelo M/M/1:
La ecuación VUT nos permite analizar estaciones compuestas por una sola
maquina, sin embargo en el mundo real se pueden encontrar estaciones de trabajo
conformadas por múltiples maquinas en paralelo. En este caso se deben hacer
ajustes a la formulación original, dando:
 
 
e
m
q t
um
u
mMMCT



1
)//(
112
Ejemplo (pag. 272):
Retomando de nuevo el caso de la Tortuga, donde el tiempo efectivo de proceso
presentaba un CV igual a 1 permitiéndonos utilizar el modelo exponencial. Pero
ahora supongamos que las llegadas ocurren a una tasa de 207 trabajos por día,
dando 2.875 trabajos por hora y tienen tiempos entre llegadas exponencialmente
distribuidos (ca = 1). Como esto excede la capacidad de la Tortuga, consideremos
cuando tenemos tres de estas maquinas en paralelo.
Variabilidad
- Teoría de Colas – Maquinas en Paralelo M/M/1:
Ejemplo (pag. 272):
Caso No.1: Caso No.2:
Tortuga No.1
Tortuga No.2
Tortuga No.3
Tortuga No.1
Tortuga No.2
Tortuga No.3
Determinar el CTq de cada caso.
Variabilidad
- Teoría de Colas – Maquinas en Paralelo G/G/m:
Una estación con m maquinas en paralelo, tiempos entre llegadas y de proceso
generales se representa por G/G/m.
Para llegar a una aproximación de esta situación, partamos de la aproximación
para el caso G/G/1. Este caso se puede escribir de la siguiente manera:
 
 
e
m
ea
q t
um
ucc
mGGCT














 


12
)//(
11222
)1//(
2
)1//(
22
MMCT
cc
GGCT q
ea
q







 

Lo anterior sugiere que una aproximación para el caso G/G/m se puede construir
basándose en la aproximación M/M/m, así:
CTq (ecuación VUT)
Termino de tiempo T
(idéntico)
Termino de utilización U
Termino de variabilidad V
(idéntico)
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Hasta el momento hemos considero sistemas sin ningún limite en la forma de
crecimiento de las colas. En los casos presentados podemos observar como el
tamaño promedio de la cola y el tiempo de ciclo crecen indefinidamente a medida
que u se aproxima a 100 %. Sin embargo en el mundo real esta situación no es
común, por lo general existen restricciones físicas, de tiempo o de política que
limitan el tamaño permitido de la cola. Por tal motivo Factory Physics considera el
caso de sistemas de colas con una capacidad finita.
Caso M/M/1/b
Consideremos el caso donde los tiempos entre llegadas y de proceso están
distribuidos exponencialmente como en el caso M/M/1, pero solamente hay
espacio en el sistema para b unidades.
Este sistema se comporta idéntico al caso M/M/1, con la excepción que cuando el
sistema se llena el proceso de llegadas se detiene. Cuando esto ocurre se dice que
el sistema se encuentra bloqueado.
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso M/M/1/b
En este nuevo caso el significado de u es diferente que en los casos anteriores, ya
no se trata de la probabilidad a largo plazo de encontrar la maquina ocupada.
Ahora representa el nivel de utilización si ningún trabajo es rechazado. Por esta
razón el valor de u puede ser uno o mayor.
Dado esta explicación obtenemos los siguientes casos:
Cuando u es diferente a 1
 
1
1
1
1
1
)/1//( 





 b
b
u
ub
u
u
bMMWIP
a
b
b
r
u
u
bMMTH 1
1
1
)/1//( 



Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso M/M/1/b
Cuando u es igual a 1
2
)/1//(
b
bMMWIP 
ea r
b
b
r
b
b
bMMTH
11
)/1//(




En ambos casos podemos usar la Ley de Little para calcular CT, CTq y WIPq.
)/1//(
)/1//(
)/1//(
bMMTH
bMMWIP
bMMCT 
eq tbMMCTbMMCT  )/1//()/1//(
)/1//()/1//()/1//( bMMCTbMMTHbMMWIP qq 
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso M/M/1/b – Ejemplo (pag.275):
Consideremos una línea de producción en serie compuesta por dos maquinas. La
primera en promedio tiene un tiempo efectivo te1 = 21 minutos por trabajo. La
segunda maquina toma te2 = 20 minutos. Ambas maquinas tienen tiempos de
proceso exponencial (ce1 = ce2 = 1). Entre ambas maquinas hay suficiente espacio
para permitir almacenar temporalmente hasta 2 trabajos.
Determinen las medidas de desempeño en los siguientes casos:
1. Buffer con tamaño infinito.
2. Buffer con tamaño finito.
Qué podemos concluir del análisis de los dos casos anteriores?
• El reducir el tamaño de la cola entre estaciones reduce considerablemente WIP y CT, pero
también lo hace al TH. Sin embargo esta ultima no es tan significativa. Por esta razón se
puede ver que el implementar kanban es mas que simple reducción del tamaño de una cola.
La perdida en TH es muy grande, la única manera de reducir WIP y CT sin sacrificar TH es la
reducción de la variabilidad.
• Una segunda conclusión es que las colas finitas establecen estabilidad en el sistema, sin
importar ra y re. La razón es sencilla, en un sistema de colas infinitas WIP y CT tienden a
crecer incontroladamente.
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Para poder analizar el efecto de la variabilidad debemos extender el modelo
M/M/1/b y considerar distribuciones de tiempo entre llegadas y de procesos
mas generales.
Para lograr esto, se consideran los siguientes tres casos:
• Cuando ra < re (u<1).
• Cuando ra > re (u>1).
• Cuando ra = re (u=1).
Tasa de llegada menor que la tasa efectiva: derivada de VUT y Little
ee
ea
anb tt
u
ucc
rWIP 












 

12
22
u
u
ucc ea













 

12
222
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Del modelo M/M/1 obtenemos:
WIP
uWIP
u


Usando el WIPnb obtenemos la utilización corregida:
nb
nb
WIP
uWIP 

Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Reemplazando la utilización corregida en la formulación de TH del modelo
M/M/1/b obtenemos:
a
b
b
r
u
u
TH 12
1
1
1







Para determinar WIP y CT usamos la siguiente formulación:
 1,min  bWIPWIP nb
 
TH
bWIP
CT
nb 1,min 

Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Tasa de llegada mayor que la tasa efectiva: derivada de M/M/1/b “inversa”
u
u
ucc
WIP
ea
nb
1
11
1
2
2
22


















 

De igual forma que en el caso anterior, obtenemos:
nb
nb
R
WIP
uWIP 1

Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Ahora definimos:
R

1

En este momento estamos listos para calcular TH con la misma formulación
anterior. Posteriormente usamos las mismas desigualdades para obtener unos
limites de WIP y CT.
Variabilidad
- Teoría de Colas – Bloqueo y sus efectos:
Caso G/G/1/b
Tasa de llegada igual a la tasa efectiva:
 
 12
12
2
2
2
2



bcc
bcc
TH
ea
ea
De igual forma que en el caso anterior, usamos esta aproximación de TH y las
desigualdades para obtener unos limites de WIP y CT.

Más contenido relacionado

La actualidad más candente

ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdf
ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdfING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdf
ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdfCarlos Chávez A
 
Diagrama hombre maquina
Diagrama hombre maquinaDiagrama hombre maquina
Diagrama hombre maquinaOscar Barrios
 
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...Oscar Danilo Fuentes Espinoza
 
Mapeo de valor (VSM)
Mapeo de valor (VSM)Mapeo de valor (VSM)
Mapeo de valor (VSM)Schz Mario
 
Unidad 3 y 4 programacion del personal
Unidad 3 y 4 programacion del personalUnidad 3 y 4 programacion del personal
Unidad 3 y 4 programacion del personalolguinm
 
Ejercicios de balanceo en linea
Ejercicios de balanceo en lineaEjercicios de balanceo en linea
Ejercicios de balanceo en lineaLetiGonzabay
 
Niveles para la aplicacion de la manufactura esbelta
Niveles para la aplicacion de la manufactura esbeltaNiveles para la aplicacion de la manufactura esbelta
Niveles para la aplicacion de la manufactura esbeltaAdriana Vazquez
 
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)MANUEL GARCIA
 
Programacion de PLC basado en Rslogix 500 por Roni Domínguez
Programacion de PLC basado en Rslogix 500 por Roni Domínguez Programacion de PLC basado en Rslogix 500 por Roni Domínguez
Programacion de PLC basado en Rslogix 500 por Roni Domínguez SANTIAGO PABLO ALBERTO
 
Mantenimiento productivo total
Mantenimiento productivo totalMantenimiento productivo total
Mantenimiento productivo totalJesus Sanchez
 
Toyotismo SISTEMAS DE MANUFACTURA
Toyotismo SISTEMAS DE MANUFACTURAToyotismo SISTEMAS DE MANUFACTURA
Toyotismo SISTEMAS DE MANUFACTURAroman1355
 
Tecnología de grupos
Tecnología de gruposTecnología de grupos
Tecnología de gruposJames Pacino
 
Producción continua e intermitente
Producción continua e intermitenteProducción continua e intermitente
Producción continua e intermitenteMyriam Ramírez
 

La actualidad más candente (20)

ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdf
ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdfING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdf
ING_MÉTODOS_1_SEMANA_3_UNIDAD_2.pdf
 
Diagrama hombre maquina
Diagrama hombre maquinaDiagrama hombre maquina
Diagrama hombre maquina
 
Problemas de colas con varios servidores
Problemas de colas con varios servidoresProblemas de colas con varios servidores
Problemas de colas con varios servidores
 
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...
5. Estudio de tiempos con cronómetro. Aplicaciones del estudio de tiempo a op...
 
Mapeo de valor (VSM)
Mapeo de valor (VSM)Mapeo de valor (VSM)
Mapeo de valor (VSM)
 
Unidad 3 y 4 programacion del personal
Unidad 3 y 4 programacion del personalUnidad 3 y 4 programacion del personal
Unidad 3 y 4 programacion del personal
 
Ejercicios de balanceo en linea
Ejercicios de balanceo en lineaEjercicios de balanceo en linea
Ejercicios de balanceo en linea
 
Niveles para la aplicacion de la manufactura esbelta
Niveles para la aplicacion de la manufactura esbeltaNiveles para la aplicacion de la manufactura esbelta
Niveles para la aplicacion de la manufactura esbelta
 
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)
AP - ADMINISTRACION DE LAS RESTRICCIONES (TOC)
 
Celulas de manufactura
Celulas de manufacturaCelulas de manufactura
Celulas de manufactura
 
Sistemas de manufactura
Sistemas de manufacturaSistemas de manufactura
Sistemas de manufactura
 
UNIDAD 1 MPR
UNIDAD 1 MPRUNIDAD 1 MPR
UNIDAD 1 MPR
 
Layout
LayoutLayout
Layout
 
Programacion de PLC basado en Rslogix 500 por Roni Domínguez
Programacion de PLC basado en Rslogix 500 por Roni Domínguez Programacion de PLC basado en Rslogix 500 por Roni Domínguez
Programacion de PLC basado en Rslogix 500 por Roni Domínguez
 
Jit y manufactura esbelta 7
Jit y manufactura esbelta 7Jit y manufactura esbelta 7
Jit y manufactura esbelta 7
 
Tecnologia de grupos
Tecnologia de gruposTecnologia de grupos
Tecnologia de grupos
 
Mantenimiento productivo total
Mantenimiento productivo totalMantenimiento productivo total
Mantenimiento productivo total
 
Toyotismo SISTEMAS DE MANUFACTURA
Toyotismo SISTEMAS DE MANUFACTURAToyotismo SISTEMAS DE MANUFACTURA
Toyotismo SISTEMAS DE MANUFACTURA
 
Tecnología de grupos
Tecnología de gruposTecnología de grupos
Tecnología de grupos
 
Producción continua e intermitente
Producción continua e intermitenteProducción continua e intermitente
Producción continua e intermitente
 

Destacado

Factory Physics - Parte 1
Factory Physics - Parte 1Factory Physics - Parte 1
Factory Physics - Parte 1jgonza2326
 
Factory Physics Parte 3
Factory Physics Parte 3Factory Physics Parte 3
Factory Physics Parte 3jgonza2326
 
Factory Physics Parte 7
Factory Physics Parte 7Factory Physics Parte 7
Factory Physics Parte 7jgonza2326
 
Factory Physics Parte 8
Factory Physics Parte 8Factory Physics Parte 8
Factory Physics Parte 8jgonza2326
 
Factory Physics Parte 4
Factory Physics Parte 4Factory Physics Parte 4
Factory Physics Parte 4jgonza2326
 
Factory Physics Parte 6
Factory Physics Parte 6Factory Physics Parte 6
Factory Physics Parte 6jgonza2326
 
Factory Physics Parte 9
Factory Physics Parte 9Factory Physics Parte 9
Factory Physics Parte 9jgonza2326
 
Factory Physics Parte 2
Factory Physics Parte 2Factory Physics Parte 2
Factory Physics Parte 2jgonza2326
 
La Estadistica en la Simulación
La Estadistica en la SimulaciónLa Estadistica en la Simulación
La Estadistica en la Simulaciónjgonza2326
 
Introducción a la Simulación
Introducción a la SimulaciónIntroducción a la Simulación
Introducción a la Simulaciónjgonza2326
 
Supply Chain Management
Supply Chain ManagementSupply Chain Management
Supply Chain ManagementAnupam Basu
 
Supply chain management
Supply chain managementSupply chain management
Supply chain managementBhabesh Gautam
 
Basics of Supply Chain Managment
Basics of Supply Chain ManagmentBasics of Supply Chain Managment
Basics of Supply Chain ManagmentYoussef Serroukh
 
Introduction to Operations Management by Stevenson
Introduction to Operations Management by StevensonIntroduction to Operations Management by Stevenson
Introduction to Operations Management by StevensonWafeeqa Wafiq
 
Logistics and Supply Chain Management-Overview
Logistics and Supply Chain Management-OverviewLogistics and Supply Chain Management-Overview
Logistics and Supply Chain Management-OverviewThomas Tanel
 
Supply chain management
Supply chain managementSupply chain management
Supply chain managementAniket Verma
 
Organization theories
Organization theoriesOrganization theories
Organization theoriesSSBinny
 

Destacado (20)

Factory Physics - Parte 1
Factory Physics - Parte 1Factory Physics - Parte 1
Factory Physics - Parte 1
 
Factory Physics Parte 3
Factory Physics Parte 3Factory Physics Parte 3
Factory Physics Parte 3
 
Factory Physics Parte 7
Factory Physics Parte 7Factory Physics Parte 7
Factory Physics Parte 7
 
Factory Physics Parte 8
Factory Physics Parte 8Factory Physics Parte 8
Factory Physics Parte 8
 
Factory Physics Parte 4
Factory Physics Parte 4Factory Physics Parte 4
Factory Physics Parte 4
 
Factory Physics Parte 6
Factory Physics Parte 6Factory Physics Parte 6
Factory Physics Parte 6
 
Factory Physics Parte 9
Factory Physics Parte 9Factory Physics Parte 9
Factory Physics Parte 9
 
Factory Physics Parte 2
Factory Physics Parte 2Factory Physics Parte 2
Factory Physics Parte 2
 
La Estadistica en la Simulación
La Estadistica en la SimulaciónLa Estadistica en la Simulación
La Estadistica en la Simulación
 
Introducción a la Simulación
Introducción a la SimulaciónIntroducción a la Simulación
Introducción a la Simulación
 
Supply chain
Supply chainSupply chain
Supply chain
 
Management Theory
Management TheoryManagement Theory
Management Theory
 
Supply Chain Management
Supply Chain ManagementSupply Chain Management
Supply Chain Management
 
Supply chain management
Supply chain managementSupply chain management
Supply chain management
 
Basics of Supply Chain Managment
Basics of Supply Chain ManagmentBasics of Supply Chain Managment
Basics of Supply Chain Managment
 
Introduction to Operations Management by Stevenson
Introduction to Operations Management by StevensonIntroduction to Operations Management by Stevenson
Introduction to Operations Management by Stevenson
 
Logistics and Supply Chain Management-Overview
Logistics and Supply Chain Management-OverviewLogistics and Supply Chain Management-Overview
Logistics and Supply Chain Management-Overview
 
Supply chain management
Supply chain managementSupply chain management
Supply chain management
 
Organization theories
Organization theoriesOrganization theories
Organization theories
 
Supply Chain Management
Supply Chain ManagementSupply Chain Management
Supply Chain Management
 

Similar a Factory Physics

Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdf
Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdfModelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdf
Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdfssuser7f595f
 
Clases unidad 2 cgc año 2011 clase2
Clases unidad 2 cgc año 2011 clase2Clases unidad 2 cgc año 2011 clase2
Clases unidad 2 cgc año 2011 clase2Illich Gálvez
 
Gestion de procesos
Gestion de procesosGestion de procesos
Gestion de procesoscarlosch2014
 
Exposicion de fiabilidad
Exposicion de fiabilidadExposicion de fiabilidad
Exposicion de fiabilidaddiegoso87
 
(Ebook) computer - itil - gestion y-mejora_de_procesos
(Ebook)   computer - itil - gestion  y-mejora_de_procesos(Ebook)   computer - itil - gestion  y-mejora_de_procesos
(Ebook) computer - itil - gestion y-mejora_de_procesosseveman
 
Sr. William Adamson - Productividad en la industria minera
Sr. William Adamson - Productividad en la industria mineraSr. William Adamson - Productividad en la industria minera
Sr. William Adamson - Productividad en la industria mineraINACAP
 
La simulación y el diseño de experimentos
La simulación y el diseño de experimentosLa simulación y el diseño de experimentos
La simulación y el diseño de experimentosJuan Angel
 
Proyecto fiabilidad disponibilidad
Proyecto fiabilidad   disponibilidadProyecto fiabilidad   disponibilidad
Proyecto fiabilidad disponibilidadCarlos Burgos
 
Balance de lineas
Balance de lineasBalance de lineas
Balance de lineasinnovacion
 
Presentacion servicio TPM/OEE
Presentacion servicio TPM/OEEPresentacion servicio TPM/OEE
Presentacion servicio TPM/OEELuis Villaverde
 
16 Complejidad
16 Complejidad16 Complejidad
16 ComplejidadUVM
 
El control numerico_computarizado_en_el_desarrollo_industrial
El control numerico_computarizado_en_el_desarrollo_industrialEl control numerico_computarizado_en_el_desarrollo_industrial
El control numerico_computarizado_en_el_desarrollo_industrialhumberto7
 
La simulación y el diseño de experimentos
La simulación y el diseño de experimentosLa simulación y el diseño de experimentos
La simulación y el diseño de experimentosj_angelchicaurzola
 

Similar a Factory Physics (20)

Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdf
Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdfModelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdf
Modelos matem醫icos para Optimizaci髇 de Reemplazo Preventivo e Inspecciones .pdf
 
Clases unidad 2 cgc año 2011 clase2
Clases unidad 2 cgc año 2011 clase2Clases unidad 2 cgc año 2011 clase2
Clases unidad 2 cgc año 2011 clase2
 
Gestion mejora procesos
Gestion mejora procesosGestion mejora procesos
Gestion mejora procesos
 
Gestion de procesos
Gestion de procesosGestion de procesos
Gestion de procesos
 
Folleto5
Folleto5Folleto5
Folleto5
 
Procesos1
Procesos1Procesos1
Procesos1
 
Exposicion de fiabilidad
Exposicion de fiabilidadExposicion de fiabilidad
Exposicion de fiabilidad
 
Practica 01-dcp
Practica 01-dcpPractica 01-dcp
Practica 01-dcp
 
(Ebook) computer - itil - gestion y-mejora_de_procesos
(Ebook)   computer - itil - gestion  y-mejora_de_procesos(Ebook)   computer - itil - gestion  y-mejora_de_procesos
(Ebook) computer - itil - gestion y-mejora_de_procesos
 
Folleto5
Folleto5Folleto5
Folleto5
 
Revista universitaria
Revista universitariaRevista universitaria
Revista universitaria
 
Sr. William Adamson - Productividad en la industria minera
Sr. William Adamson - Productividad en la industria mineraSr. William Adamson - Productividad en la industria minera
Sr. William Adamson - Productividad en la industria minera
 
La simulación y el diseño de experimentos
La simulación y el diseño de experimentosLa simulación y el diseño de experimentos
La simulación y el diseño de experimentos
 
Proyecto fiabilidad disponibilidad
Proyecto fiabilidad   disponibilidadProyecto fiabilidad   disponibilidad
Proyecto fiabilidad disponibilidad
 
balance_de_lineas_pptx.pptx
balance_de_lineas_pptx.pptxbalance_de_lineas_pptx.pptx
balance_de_lineas_pptx.pptx
 
Balance de lineas
Balance de lineasBalance de lineas
Balance de lineas
 
Presentacion servicio TPM/OEE
Presentacion servicio TPM/OEEPresentacion servicio TPM/OEE
Presentacion servicio TPM/OEE
 
16 Complejidad
16 Complejidad16 Complejidad
16 Complejidad
 
El control numerico_computarizado_en_el_desarrollo_industrial
El control numerico_computarizado_en_el_desarrollo_industrialEl control numerico_computarizado_en_el_desarrollo_industrial
El control numerico_computarizado_en_el_desarrollo_industrial
 
La simulación y el diseño de experimentos
La simulación y el diseño de experimentosLa simulación y el diseño de experimentos
La simulación y el diseño de experimentos
 

Último

INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsx
INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsxINFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsx
INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsxCORPORACIONJURIDICA
 
Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Gonzalo Morales Esparza
 
gua de docente para el curso de finanzas
gua de docente para el curso de finanzasgua de docente para el curso de finanzas
gua de docente para el curso de finanzassuperamigo2014
 
EVALUACIÓN PARCIAL de seminario de .pdf
EVALUACIÓN PARCIAL de seminario de  .pdfEVALUACIÓN PARCIAL de seminario de  .pdf
EVALUACIÓN PARCIAL de seminario de .pdfDIEGOSEBASTIANCAHUAN
 
Buenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasBuenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasmaicholfc
 
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAOANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAOCarlosAlbertoVillafu3
 
Contabilidad universitaria Septima edición de MCGrawsHill
Contabilidad universitaria Septima edición de MCGrawsHillContabilidad universitaria Septima edición de MCGrawsHill
Contabilidad universitaria Septima edición de MCGrawsHilldanilojaviersantiago
 
FORMAS DE TRANSPORTE EN MASA-PDF.pdf lclases
FORMAS DE TRANSPORTE EN MASA-PDF.pdf  lclasesFORMAS DE TRANSPORTE EN MASA-PDF.pdf  lclases
FORMAS DE TRANSPORTE EN MASA-PDF.pdf lclasesjvalenciama
 
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdf
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdfPresentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdf
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdfLuisAlbertoAlvaradoF2
 
instrumentos de mercados financieros para estudiantes
instrumentos de mercados financieros  para estudiantesinstrumentos de mercados financieros  para estudiantes
instrumentos de mercados financieros para estudiantessuperamigo2014
 
clase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteclase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteJanettCervantes1
 
MARKETING SENSORIAL -GABRIELA ARDON .pptx
MARKETING SENSORIAL -GABRIELA ARDON .pptxMARKETING SENSORIAL -GABRIELA ARDON .pptx
MARKETING SENSORIAL -GABRIELA ARDON .pptxgabyardon485
 
Clima-laboral-estrategias-de-medicion-e-book-1.pdf
Clima-laboral-estrategias-de-medicion-e-book-1.pdfClima-laboral-estrategias-de-medicion-e-book-1.pdf
Clima-laboral-estrategias-de-medicion-e-book-1.pdfConstructiva
 
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptxCarlosQuionez42
 
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESACOPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESADanielAndresBrand
 
exportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassexportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassJhonnyvalenssYupanqu
 
Efectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxEfectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxCONSTRUCTORAEINVERSI3
 
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxPLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxwilliamzaveltab
 
EGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxEGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxDr. Edwin Hernandez
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfJaquelinRamos6
 

Último (20)

INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsx
INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsxINFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsx
INFORMATIVO CIRCULAR FISCAL - RENTA 2023.ppsx
 
Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.
 
gua de docente para el curso de finanzas
gua de docente para el curso de finanzasgua de docente para el curso de finanzas
gua de docente para el curso de finanzas
 
EVALUACIÓN PARCIAL de seminario de .pdf
EVALUACIÓN PARCIAL de seminario de  .pdfEVALUACIÓN PARCIAL de seminario de  .pdf
EVALUACIÓN PARCIAL de seminario de .pdf
 
Buenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasBuenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en droguerias
 
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAOANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
 
Contabilidad universitaria Septima edición de MCGrawsHill
Contabilidad universitaria Septima edición de MCGrawsHillContabilidad universitaria Septima edición de MCGrawsHill
Contabilidad universitaria Septima edición de MCGrawsHill
 
FORMAS DE TRANSPORTE EN MASA-PDF.pdf lclases
FORMAS DE TRANSPORTE EN MASA-PDF.pdf  lclasesFORMAS DE TRANSPORTE EN MASA-PDF.pdf  lclases
FORMAS DE TRANSPORTE EN MASA-PDF.pdf lclases
 
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdf
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdfPresentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdf
Presentacion III ACTIVIDADES DE CONTROL. IV UNIDAD..pdf
 
instrumentos de mercados financieros para estudiantes
instrumentos de mercados financieros  para estudiantesinstrumentos de mercados financieros  para estudiantes
instrumentos de mercados financieros para estudiantes
 
clase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteclase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importante
 
MARKETING SENSORIAL -GABRIELA ARDON .pptx
MARKETING SENSORIAL -GABRIELA ARDON .pptxMARKETING SENSORIAL -GABRIELA ARDON .pptx
MARKETING SENSORIAL -GABRIELA ARDON .pptx
 
Clima-laboral-estrategias-de-medicion-e-book-1.pdf
Clima-laboral-estrategias-de-medicion-e-book-1.pdfClima-laboral-estrategias-de-medicion-e-book-1.pdf
Clima-laboral-estrategias-de-medicion-e-book-1.pdf
 
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
 
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESACOPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
 
exportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassexportacion y comercializacion de palta hass
exportacion y comercializacion de palta hass
 
Efectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxEfectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptx
 
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxPLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
 
EGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxEGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptx
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
 

Factory Physics

  • 2. Qué es? - La respuesta corta: En forma resumida, Factory Physics es la descripción sistémica del comportamiento fundamental de un sistema de manufactura. El entender este comportamiento le permitirá a la dirección y a los ingenieros trabajar a favor de las tendencias naturales del sistema de manufactura, permitiendo: • Identificar oportunidades de mejoramiento en el sistema existente. • Diseñar nuevos sistemas que verdaderamente son efectivos. • Facilitar las negociaciones necesarios para coordinar las políticas originadas en áreas diferentes. - La respuesta larga:
  • 3. Variabilidad - Introducción: Qué es variabilidad? * Cualquier desviación de cierta uniformidad bajo estudio. Cuál es la diferencia entre: Variación Controlable vs. Variación Aleatoria? Ejemplos: Variación Controlable Variación Aleatoria -Tamaño de Lote -Cantidad Pedida -Temperatura de Proceso -Tiempo entre Fallas (MTTF) -Secuencia de Producción -Calidad de una Materia Prima
  • 4. Variabilidad - Introducción: Cuáles pueden ser las causas de la aleatoriedad? * Interpretación No.1: La aleatoriedad ocurre por falta de información o por información imperfecta. * Interpretación No.2: El comportamiento del universo es aleatoriedad. Aunque contáramos con una descripción completa del universo y de todas las leyes físicas que lo definen, esto no seria suficiente para predecir el futuro. Si mucho nos daría unas estimaciones estadísticas de un posible futuro/comportamiento. Independientemente de las dos interpretaciones, los efectos son los mismos en el día a día, son inherentemente impredecibles. Lo anterior no quiere decir que debemos olvidarnos de la gestión de una planta, mas bien debemos dedicarnos en diseñar procesos robustos y no quedarnos estancados buscando procesos óptimos. Entonces, cuál es la diferencia entre: Procesos Robustos vs. Procesos Óptimos?
  • 5. Variabilidad - Introducción: Entonces, para poder diseñar dichos procesos robustos y efectivos en un entorno aleatorio el individuo debe poseer una buena intuición probabilística. Solo así se podrá medir, entender y administrar (apalancar) la variabilidad en un sistema de manufactura. Dando como resultado una gestión efectiva del mismo.
  • 6. Variabilidad - Intuición Probabilística: La intuición juega un papel importante en nuestro día a día, la utilizamos de una manera u otra para tomar todo tipo de decisiones. Desde la forma como conducimos hasta la forma como avisamos nuestras intenciones de asistir a la fiesta de fin de año. En la mayoría de los casos nuestra intuición es buena cuando se basa en efectos de primer orden (primer momento). Pero las cosas no son tan claras cuando basamos nuestra intuición en efectos de segundo orden (segundo momento). Entonces, cuál es la diferencia entre: Primer Momento vs. Segundo Momento? Ejemplos: Primer Momento Segundo Momento -TH aumenta con la velocidad de una maquina. -Cuál es mas variable, tiempos de procesamiento de una pieza o de un lote? -TH aumenta con la disponibilidad de una maquina. -Cuál es mas perjudicial, paradas largas e infrecuentes o cortas y frecuentes? -WIP aumenta con el tamaño de lote. -Cuál brinda el mejor desempeño, reducir tiempos de procesamiento al comienzo o al final de la línea?
  • 7. Variabilidad La variable aleatoria de interés primario para Factory Physics es el Tiempo Efectivo de Procesamiento de un trabajo en una estación. -Tiempo de Procesamiento -Tiempo de Alistamiento -Tiempo de Reparación -Tiempo de Reproceso -Otros tiempos La suma de estos tiempos nos da el Tiempo Efectivo de Procesamiento. Estación 1 Estación 2 ¿Por qué? Son los tiempos que causan que la Estación 2 no pueda iniciar su tarea. - Variabilidad en el Tiempo de Proceso:
  • 8. Variabilidad - Medidas y clases de Variabilidad: -Medidas de Variabilidad Absoluta: Varianza Desviación Estándar -Medidas de Variabilidad Relativa: Coeficiente de Variación al Cuadrado(SCV) Coeficiente de Variación(CV)   2 12 1    n tt s n i i   2 1 1    n tt s n i i t c  2 2 2 t c  
  • 9. Variabilidad - Variabilidad Baja y Moderada: La mayoría de los tiempos de procesos reales pueden ser representados por distribuciones que tienen una forma de campana. En estos casos el CV tiende a ser inferior a 0.75. Por lo tanto la variabilidad se puede clasificar en baja, moderada y alta. Clase de Variabilidad CV Ejemplo Baja (VB) c < 0.75 Tiempos de procesamientos sin faltantes. Moderada (VM) 0.75 ≤ c < 1.33 Tiempos de procesamientos con ajustes menores (alistamientos). Alta (VA) c ≥ 1.33 Tiempos de procesamientos con ajustes mayores (reparaciones).
  • 10. Variabilidad - Variabilidad Baja y Moderada: Tiempo de Proceso Tiempo de Proceso DensidaddeProbabilidad DensidaddeProbabilidad 20 20 Distribución de Variabilidad Baja Distribución de Variabilidad Baja Distribución de Variabilidad Moderada Qué efectos tiene un tiempo de procesamiento con una variabilidad moderada en una línea de producción? - Variabilidad Alta:
  • 11. Variabilidad - Causas de Variabilidad : Incluyen: - Variabilidad Natural del proceso causada por cambio de operarios, maquinas y materiales. - Fallas aleatorios. - Alistamientos. - Disponibilidad de mano de obra. - Reproceso. Variabilidad Natural: La mayoría de los sistemas tienen una VB (c0 < 0.75) asociada a sus tiempos de procesamiento. o o o t c   Desviación estándar del tiempo de proceso natural. Tiempo promedio del proceso natural.
  • 12. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): Este tipo de fallas sucede aunque queramos o no, inclusive durante el mismo procesamiento de una pieza. Otros ejemplos incluyen, apagones o falta de un consumible necesario para el proceso. Obviamente, en esta categoría se incluye información de MTTF y MTTR. Entonces, para el calculo del tiempo efectivo de proceso debemos tener en cuenta la disponibilidad (Availability) del recurso bajo estudio. Esta disponibilidad se determina de la siguiente manera: - Causas de Variabilidad : rf f mm m A   Tiempo el recurso esta disponible para procesar. Tiempo el recurso esta en reparación.
  • 13. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): Ahora es necesario tener en cuenta la disponibilidad para calcular el tiempo de procesamiento efectivo promedio, este esta dado por: - Causas de Variabilidad : A t t o e  Tiempo natural de proceso. Disponibilidad. La capacidad efectiva esta dada por: o oe e Ar t m A t m r  Capacidad Natural. Numero de maquinas.
  • 14. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): - Causas de Variabilidad :     o r ro e e e t m AAcc t c  11 22 2 2 2  CV de los tiempos de reparación. El coeficiente de variación al cuadrado (SCV) efectivo esta dado por: La varianza del tiempo de procesamiento efectivo esta dada por:    r orro e Am tAm A         122 2 2   Varianza de los tiempos de reparación.
  • 15. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): El coeficiente de variación al cuadrado (SCV) esta dado por: - Causas de Variabilidad :     o r r o r oe t m AAc t m AAcc  11 222 Variabilidad natural del proceso Fallas Aleatorias, existiría aun si las fallas fueran constantes Componente totalmente dependiente de la variabilidad en los tiempos de reparación.
  • 16. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): Consideremos un ejemplo para entender el efecto de fallas sobre la variabilidad de una maquina. En este caso tanto la maquina Tortuga como la Liebre tienen un tiempo de proceso natural promedio To = 15 minutos y una desviación estándar natural σo = 3.35 minutos. Por lo tanto ambas maquinas tienen una SCV = 0.05. Ambas maquinas tienen una disponibilidad a largo plazo igual a 0.75%. Sin embargo, en la maquina Liebre se presentan fallas de larga duración e infrecuentes, mientras que en la maquine Tortuga se presentan fallas cortas y frecuentes. Específicamente, el MTTF en la Liebre es de 744 minutos y el MTTR de 248 minutos. En el caso de la Tortuga el MTTF es de 114 minutos y el MTTR de 38 minutos. Finalmente, supongamos que los tiempos de reparación son variable y tienen un CV = 1.0, ósea una variabilidad moderada. Entonces, debemos determinar el CV del tiempo efectivo de proceso. - Causas de Variabilidad :
  • 17. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): Ejemplo del texto (pagina 256): - Causas de Variabilidad : Liebre Tortuga to 15 minutos 15 minutos σo 3.35 minutos 3.35 minutos mf 744 minutos 114 minutos mr 248 minutos 38 minutos cr 1.0 1.0 co ? ? A ? ? te ? ? re ? ? ce ? ?
  • 18. Variabilidad Variabilidad por fallas (Interrupciones Dominantes): - Causas de Variabilidad : Liebre Tortuga to 15 minutos 15 minutos σo 3.35 minutos 3.35 minutos mf 744 minutos 114 minutos mr 248 minutos 38 minutos cr 1.0 1.0 co 0.05 0.05 A 0.75 0.75 te 20 minutos 20 minutos re 3 trabajos/hora 3 trabajos/hora ce 2.5 1.0 Conclusiones: ?
  • 19. Variabilidad Variabilidad por fallas (Interrupciones No-Dominantes): Este tipo de fallas tienen que suceder pero en este caso se tiene mas control sobre cuando se llevan acabo. En este caso se puede terminar de procesar el trabajo actual para luego detener la maquina. Ejemplos incluyen, alistamientos, mantenimiento preventivo, descansos y cambio de turnos. Bajo estas condiciones utilizamos las siguientes ecuaciones para determinar la media, varianza y el coeficiente de varianza al cuadrado para el tiempo de procesamiento efectivo: - Causas de Variabilidad : El tiempo de procesamiento efectivo promedio, este esta dado por: s s oe N t tt  Tiempo de alistamiento promedio. Numero promedio de piezas procesadas entre alistamientos.Tiempo natural de proceso promedio.
  • 20. Variabilidad Variabilidad por fallas (Interrupciones No-Dominantes): - Causas de Variabilidad : 2 2 2 e e e t c   El coeficiente de variación al cuadrado (SCV) esta dado por: La varianza del tiempo de procesamiento efectivo esta dada por: 2 2 2 12 2 s s s s s oe t N N N     Varianza de los tiempos de alistamiento.
  • 21. Variabilidad Variabilidad por fallas (Interrupciones No-Dominantes): Ejemplo del texto: - Causas de Variabilidad : Maquina No.1 Maquina No.2 Flexible/Sin Alistamiento ---- to 1.2 horas 1.0 horas CV(co) 0.5 0.25 Ns ---- 10 unidades ts ---- 2 horas CV(cs) ---- 0.25 re ? ? ce ? ? Qué maquina es menos variable?
  • 22. Variabilidad Variabilidad por fallas (Interrupciones No-Dominantes): Ejemplo del texto: - Causas de Variabilidad : Maquina No.1 Maquina No.2 Flexible/Sin Alistamiento ---- to 1.2 horas 1.0 horas CV(co) 0.5 0.25 Ns ---- 10 unidades ts ---- 2 horas CV(cs) ---- 0.25 re 0.8333 0.8333 ce 0.50 0.5575 Qué maquina es menos variable?
  • 23. Variabilidad - Causas de Variabilidad : Variabilidad por reproceso: Qué tiene en común la variabilidad causada por fallas y alistamientos con la variabilidad causada por reproceso? Las tres causas reducen la capacidad efectiva de un recurso. Por lo tanto, mas reproceso implica mayor variabilidad y mas variabilidad causa mas congestión, mas WIP y mayores tiempos de ciclo. Lo anterior combinado con la perdida de capacidad hacen que el reproceso se considere como un verdadero problema.
  • 24. Variabilidad - Causas de Variabilidad : Resumen de las formulas para determinar los parámetros Tiempo Efectivo de Procesamiento: Situación Natural Fallas (AP) Fallas (BP) Ejemplos Recurso Confiable Fallas Aleatorias Alistamientos Parámetros 2 2 e e t 2 ec et 2 e ot 2 , oo ct(básicas) (básicas mas) (básicas mas) 2 ,, rrf cmm 2 ,, sss ctN rf fo mm m A A t  , 2 oc 22 oo ct    r orro Am tAm A   1222 2      o r ro t m AAcc  11 22 s s o N t t  2 2 2 12 s s s s s o t N N N     Qué seria varianza apilada (Stacked Variance)?
  • 25. Variabilidad - Variabilidad en el Flujo: En lo visto hasta ahora se ha estudiado la variabilidad en una estación aislada, sin embargo en la vida real una línea de producción esta compuesta de varias estaciones. Por esta razón es importante estudiar y entender la relación entre estaciones, lo cual nos conduce a otro tipo de variabilidad. Esta se denomina variabilidad en el flujo. El primer elemento a tener en cuenta es la tasa de llegada (arrival rate), medido en trabajos por unidad de tiempo. Para mayor consistencia las unidades de la tasa de llegada deben ser las mismas de la capacidad de la estación bajo estudio. Así como una estación se caracteriza por su tiempo promedio de proceso te, o su capacidad efectiva re la llegada a una estación también se puede caracterizar por el tiempo promedio entre llegadas. Las dos medidas anteriores son el inverso del otro, así: a a t r 1  Tasa de llegada. Tiempo promedio entre llegadas.
  • 26. Variabilidad - Variabilidad en el Flujo: Para que una estación no se recargue de trabajo la siguiente relación se debe cumplir: ae rr  Capacidad Efectiva. Tasa promedia entre llegadas. Así como existe variabilidad en el tiempo de proceso también lo hay en el tiempo entre llegadas y se define de la misma manera que en el primer caso: a a a t c   Desviación estándar de los tiempos entre llegadas. Tiempo promedio entre llegadas. Intuitivamente, un CV bajo implica llegadas regulares y espaciadas igualmente, mientras un CV alto implica llegadas irregulares y con picos.
  • 27. Variabilidad - Variabilidad en el Flujo: El siguiente elemento a tener en cuenta para entender la variabilidad del flujo es la caracterización de las salidas de una estación. Para esto haremos uso de medidas similares a las usadas para describir las llegadas, específicamente el tiempo promedio entre salidas (td) y la tasa de salidas (departure rate). Las dos medidas anteriores son el inverso del otro, así: d d t r 1  Tasa de salidas. Tiempo promedio entre salidas. El coeficiente de variación correspondiente a las salidas esta representado por cd.
  • 28. Variabilidad - Variabilidad en el Flujo: Es importante considerar la siguiente condición, en una línea de producción en serie la salida de una estación i es la llegada de la siguiente estación i+1. Entonces la tasa de salida de i debe ser igual a la tasa de llegada de i+1, así: )()1( ii da tt  Tiempo promedio entre llegadas de la estación i+1. Por supuesto, en una línea de producción en serie sin mermas o reproceso la tasa de llegada de cada estación es igual al TH de la línea. Adicionalmente, en una línea serial donde las salidas de i son las llegadas de i+1, el CV de salida de la estación i es igual al CV de llegada de la estación i+1. Así: Tiempo promedio entre salidas de la estación i. )()1( ii da cc  Coeficiente de Variación de llegadas de la estación i+1. Coeficiente de Variación de salidas de la estación i.
  • 29. Variabilidad - Variabilidad en el Flujo: Gráficamente, los conceptos anteriores se pueden ver de la siguiente manera: Estación i Estación (i+1) )(iar )(iac )(ier )(iec )1()(  ii ad cc )1()(  ii ad rr )1( ier )1( iec Tasas: CVs:
  • 30. Variabilidad - Variabilidad en el Flujo: Finalmente, es necesario determinar como caracterizar la variabilidad de salidas de una estación a partir de la información existente de la variabilidad de llegada y del tiempo de proceso. Para lograr lo anterior se debe tener en cuenta la contribución relativa de ambos factores en la utilización de la estación bajo estudio. Recordemos que la utilización de una estación es la fracción de tiempo que está esta ocupada en el largo plazo. Formalmente se define así: m tr u ea ))((  Corresponde al numero de maquinas idénticas que compone la estación. A medida que u se acerca a 1, esto quiere decir que la estación casi siempre esta ocupada. Por lo tanto se puede esperar que el CV de salida de dicha estación sea igual al CV del tiempo de proceso. Así: ed cc 
  • 31. Variabilidad - Variabilidad en el Flujo: El otro extremo, cuando u se acerca a 0, implica que la estación casi siempre esta desocupada. Por lo tanto se puede esperar que el CV de salida de dicha estación sea igual al CV de llegada. Así: ad cc  Para interpolar entre los dos extremos anteriores se puede utilizar la siguiente ecuación: Observe que cuando u=1, se obtiene cd 2 = ce 2. Igualmente, cuando u=0, se obtiene cd 2 = ca 2.   22222 1 aed cucuc  Para determinar cd 2 cuando hay mas de una maquina por estación, entonces:     1111 2 2 222  ead c m u cuc
  • 32. Variabilidad - Variabilidad en el Flujo: En este momento es importante considerar el concepto de propagación de la variabilidad. HV HV LV LV LV LVLV LV HV HV HV HV Caso 1: Estación con Alta Utilización Qué podemos concluir? La variabilidad en el flujo que sale de una estación de alta utilización esta determinado primordialmente por la variabilidad en el proceso de dicha estación.
  • 33. Variabilidad - Variabilidad en el Flujo: En este momento es importante considerar el concepto de propagación de la variabilidad. HV HV LV LV HV LVLV LV HV HV HV LV Caso 2: Estación con Baja Utilización Qué podemos concluir? La variabilidad en el flujo que sale de una estación de baja utilización esta determinado primordialmente por la variabilidad que entra a dicha estación.
  • 34. Variabilidad - Propagación de la Variabilidad: Estación 1 (LV/HV) Estación 1 (LV/HV) Estación 1 (LV/HV) Estación 1 (LV/HV) Estación 2 (LV/HV) Estación 2 (LV/HV) Estación 2 (LV/HV) Estación 2 (LV/HV) Estación 3 (LV/HV) Estación 3 (LV/HV) Estación 3 (LV/HV) Estación 3 (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) Materiales (LV/HV) PT PT PT PT JIT1 JIT2 JIT3 JIT4
  • 35. Variabilidad - Interacciones dentro de la Variabilidad “Colas” Hasta el momento hemos considerado la variabilidad en los tiempos de procesamiento y en el flujo, ahora entenderemos como estos caracterizan y afectan la variabilidad de una línea de producción. Específicamente, nos interesa evaluar el impacto de estos tipos de variabilidad sobre los principales indicadores de desempeño de una línea cualquiera, siendo estos; WIP, CT y TH. Pero antes, es importante resaltar que el tiempo efectivo de procesamiento solo representa una fracción pequeña del tiempo de ciclo total dentro de una planta y que el tiempo restante es causado por que el trabajo debe esperar a algún recurso (estación de trabajo, equipo de transferencia, un operario, etc.). Por esta razón Factory Physics dedica tanto esfuerzo en entender las causas que generan esta espera. Solo después de entender esta causas podemos entrar a proponer maneras de mejorar el desempeño del sistema. La ciencia que estudia la espera en un sistema se conoce como la Teoría de Colas. Un sistema de colas tiene en cuenta todo lo visto hasta el momento; un proceso de llegadas, un proceso de “servicio” y una cola. Los procesos de llegada pueden ser constantes o aleatorios. Las estaciones pueden estar compuestas por una o varias maquinas en paralelo, las cuales pueden tener tiempos de procesamiento constantes o aleatorios. Finalmente, la cola se puede comportar FIFO, LIFO o ser administrada mediante algunas de las reglas de secuenciamiento conocidas tales como EDD, SPT.
  • 36. Variabilidad - Teoría de Colas: • ra: tasa de llegadas, especificada en trabajos por unidad de tiempo. En una línea sin reproceso, ra es igual a TH de cada estación. • Ta: tiempo promedio entre llegadas. Igual a 1/ra. • ca: CV de llegada. • m: numero de maquinas en paralelo en una estación. • b: tamaño del buffer (máximo numero de trabajos permitidos en el sistema). • te: tiempo efectivo promedio de proceso. Capacidad efectiva de una estación es re = m/te. • ce: CV del tiempo efectivo de proceso. Nomenclatura Medidas de desempeño: • pn: probabilidad que haya n trabajos en una estación. • CTq: tiempo de espera en cola. • CT: tiempo esperado en la estación (tiempo en cola mas tiempo de proceso). • WIP: nivel promedio de WIP (trabajos) en la estación. • WIPq: WIP (trabajos) esperados en cola.
  • 37. Variabilidad - Teoría de Colas: Finalmente, utilizaremos la nomenclatura de Kendell para caracterizar un sistemas de colas. Esta hace uso de 4 parámetros, siendo estos: A/B/m/b Donde A describe la distribución de tiempos entre llegadas. B describe la distribución de tiempos de proceso. m el numero de maquinas que conforman la estación y b es el numero máximo de trabajos permitidos en el sistema. En general los parámetros A y B pueden asumir cualquiera de los siguientes valores: • D: distribución constante (deterministica). • M: distribución exponencial (Markoviana). • G: distribución completamente general (normal, uniforme). Por lo general se asumen valores grandes para la cola (b), en cuyo caso la nomenclatura queda: A/B/m
  • 38. Variabilidad - Teoría de Colas: Relaciones Fundamentales: Antes de entrar a analizar cualquier sistema de colas es necesario anotar que algunas relaciones se mantiene en un sistema compuesto por una estación única. Estas son: m tr r r u ea e a ))((  Utilización Tasa de llegada Tasa Efectiva. Tiempo esperado en la estación eq tCTCT  Tiempo de espera esperado en cola. Tiempo efectivo promedio de proceso.
  • 39. Variabilidad - Teoría de Colas: Relaciones Fundamentales: WIP en la estación (aplicando la Ley de Little) CTTHWIP  Throughput de la estación. Tiempo de ciclo de la estación. WIP en la cola (aplicando la Ley de Little) qaq CTrWIP  tiempo de espera esperado en cola. Tasa de llegada
  • 40. Variabilidad Este modelo asume los tiempos entre llegadas es exponencial, que esta compuesto por una sola maquina y que esta tiene un tiempo de proceso exponencial. La cola se comporta como PEPS y tiene un espacio ilimitado para trabajos en espera. Dado que este modelo es el mas sencillo, su verdadera contribución esta en entender que información se requiere para caracterizar el mismo. Como los tiempos entre llegadas y de proceso son exponencial, solamente necesitamos las medias. Entonces: - Teoría de Colas – Caso M/M/1: at a a t r 1  et e e t r 1  Tiempo promedio entre llegadas Tiempo efectivo promedio de proceso Tasa de llegadas Tasa efectiva
  • 41. Variabilidad Fuera de lo anterior, la única otra información que necesitamos seria el numero de trabajos en el sistema. Como ambos tiempos anteriores son exponenciales, el tiempo desde la ultima llegada y el tiempo que el trabajo actual lleva en proceso son irrelevantes. Entonces, el estado del sistema se puede expresar como un solo numero n, que representa el numero de trabajos en el sistema. Con esta información se puede caracterizar el desempeño a largo plazo del sistema (CT, WIP, CTq y WIPq). - Teoría de Colas – Caso M/M/1: u u MMWIP   1 )1//( Medidas de desempeño para M/M/1: WIP Utilización
  • 42. Variabilidad - Teoría de Colas – Caso M/M/1: u t r MMWIP MMCT e a   1 )1//( )1//( Medidas de desempeño para M/M/1: CT (a partir de la Ley de Little) Tiempo efectivo promedio de proceso CTq (a partir de la relaciones fundamentales) u ut tMMCTMMCT e eq   1 )1//()1//(
  • 43. Variabilidad - Teoría de Colas – Caso M/M/1: u u rMMCTMMWIP aqq   1 )1//()1//( 2 Medidas de desempeño para M/M/1: WIPq (a partir de la Ley de Little) Tasa de llegada, igual a TH Conclusiones: • WIP,CT, CTq y WIPq aumentan a medida que u aumenta. Por esta razón sistemas ocupados tienden a demuestran mayor congestión que sistemas desocupados.. • Manteniendo u fijo, CT y CTq aumentan en términos de te. Por lo tanto maquinas lentas causan mas tiempo de espera. • Finalmente, observen que estas medidas implican congestión y todas tienen en el denominador el termino 1-u, lo que tiene como consecuencias que a medida que u se aproxima a 100 % la congestión aumenta en forma no lineal.
  • 44. Variabilidad - Teoría de Colas – Caso M/M/1: Ejemplo (pag. 269): Recordemos el caso de la Tortuga, donde el tiempo entre llegadas era de 2.875 trabajos por hora. Ahora supongamos que los tiempos entre llegadas están distribuidos exponencialmente (puede ser el caso cuando los trabajos llegan de diferentes fuentes). En el caso anterior, la tasa de efectiva era de 3 trabajos por hora y el CV correspondiente era de 1.0. Determinen las medidas de desempeño correspondientes al sistema bajo estudio.
  • 45. Variabilidad - Teoría de Colas – Caso G/G/1: Medidas de desempeño para M/M/1: CTq (ecuación VUT) e ea q t u ucc GGCT                 12 )1//( 22 Desafortunadamente, la mayoría de los sistemas de manufactura reales no cumplen con los supuestos del modelo M/M/1. Cuando una estación es alimentada por estaciones que tienen tiempos de procesamiento no exponenciales es difícil mantener el supuesto que el tiempo entre llegadas es exponencial. Por esta razón es necesario ampliar el modelo al caso mas general, representado pos G/G/1. Como en el caso anterior, primero se desarrolla la formulación para CTq y luego obtenemos las otras medidas de desempeño. Termino de tiempo T Termino de utilización UTermino de variabilidad V
  • 46. Variabilidad - Teoría de Colas – Caso G/G/1: Ejemplo (pag. 271): De nuevo volvamos al caso de la Liebre, recordemos que dicha maquina presentaba una alta variabilidad CVS efectivo de 6.25. Asumamos que el tiempo entre llegadas esta exponencialmente distribuido y que la utilización es 0.9583. Determinen el tiempo esperado en la cola CTq. Ahora supongamos que la Liebre alimenta la Tortuga, que no hay perdidas entre las dos maquinas y que por lo tanto la tasa de llegadas de la Tortuga es la misma de la Liebre. Como ambas maquinas tienen una tasa efectiva igual, tendrán la misma utilización. Ahora queremos determinar el CTq de la Tortuga. Recuerden que: )()1( ii da cc  Qué podemos concluir de los valores de CTq(Liebre) vs. CTq(Tortuga)?
  • 47. Variabilidad - Teoría de Colas – Maquinas en Paralelo M/M/1: La ecuación VUT nos permite analizar estaciones compuestas por una sola maquina, sin embargo en el mundo real se pueden encontrar estaciones de trabajo conformadas por múltiples maquinas en paralelo. En este caso se deben hacer ajustes a la formulación original, dando:     e m q t um u mMMCT    1 )//( 112 Ejemplo (pag. 272): Retomando de nuevo el caso de la Tortuga, donde el tiempo efectivo de proceso presentaba un CV igual a 1 permitiéndonos utilizar el modelo exponencial. Pero ahora supongamos que las llegadas ocurren a una tasa de 207 trabajos por día, dando 2.875 trabajos por hora y tienen tiempos entre llegadas exponencialmente distribuidos (ca = 1). Como esto excede la capacidad de la Tortuga, consideremos cuando tenemos tres de estas maquinas en paralelo.
  • 48. Variabilidad - Teoría de Colas – Maquinas en Paralelo M/M/1: Ejemplo (pag. 272): Caso No.1: Caso No.2: Tortuga No.1 Tortuga No.2 Tortuga No.3 Tortuga No.1 Tortuga No.2 Tortuga No.3 Determinar el CTq de cada caso.
  • 49. Variabilidad - Teoría de Colas – Maquinas en Paralelo G/G/m: Una estación con m maquinas en paralelo, tiempos entre llegadas y de proceso generales se representa por G/G/m. Para llegar a una aproximación de esta situación, partamos de la aproximación para el caso G/G/1. Este caso se puede escribir de la siguiente manera:     e m ea q t um ucc mGGCT                   12 )//( 11222 )1//( 2 )1//( 22 MMCT cc GGCT q ea q           Lo anterior sugiere que una aproximación para el caso G/G/m se puede construir basándose en la aproximación M/M/m, así: CTq (ecuación VUT) Termino de tiempo T (idéntico) Termino de utilización U Termino de variabilidad V (idéntico)
  • 50. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Hasta el momento hemos considero sistemas sin ningún limite en la forma de crecimiento de las colas. En los casos presentados podemos observar como el tamaño promedio de la cola y el tiempo de ciclo crecen indefinidamente a medida que u se aproxima a 100 %. Sin embargo en el mundo real esta situación no es común, por lo general existen restricciones físicas, de tiempo o de política que limitan el tamaño permitido de la cola. Por tal motivo Factory Physics considera el caso de sistemas de colas con una capacidad finita. Caso M/M/1/b Consideremos el caso donde los tiempos entre llegadas y de proceso están distribuidos exponencialmente como en el caso M/M/1, pero solamente hay espacio en el sistema para b unidades. Este sistema se comporta idéntico al caso M/M/1, con la excepción que cuando el sistema se llena el proceso de llegadas se detiene. Cuando esto ocurre se dice que el sistema se encuentra bloqueado.
  • 51. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso M/M/1/b En este nuevo caso el significado de u es diferente que en los casos anteriores, ya no se trata de la probabilidad a largo plazo de encontrar la maquina ocupada. Ahora representa el nivel de utilización si ningún trabajo es rechazado. Por esta razón el valor de u puede ser uno o mayor. Dado esta explicación obtenemos los siguientes casos: Cuando u es diferente a 1   1 1 1 1 1 )/1//(        b b u ub u u bMMWIP a b b r u u bMMTH 1 1 1 )/1//(    
  • 52. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso M/M/1/b Cuando u es igual a 1 2 )/1//( b bMMWIP  ea r b b r b b bMMTH 11 )/1//(     En ambos casos podemos usar la Ley de Little para calcular CT, CTq y WIPq. )/1//( )/1//( )/1//( bMMTH bMMWIP bMMCT  eq tbMMCTbMMCT  )/1//()/1//( )/1//()/1//()/1//( bMMCTbMMTHbMMWIP qq 
  • 53. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso M/M/1/b – Ejemplo (pag.275): Consideremos una línea de producción en serie compuesta por dos maquinas. La primera en promedio tiene un tiempo efectivo te1 = 21 minutos por trabajo. La segunda maquina toma te2 = 20 minutos. Ambas maquinas tienen tiempos de proceso exponencial (ce1 = ce2 = 1). Entre ambas maquinas hay suficiente espacio para permitir almacenar temporalmente hasta 2 trabajos. Determinen las medidas de desempeño en los siguientes casos: 1. Buffer con tamaño infinito. 2. Buffer con tamaño finito. Qué podemos concluir del análisis de los dos casos anteriores? • El reducir el tamaño de la cola entre estaciones reduce considerablemente WIP y CT, pero también lo hace al TH. Sin embargo esta ultima no es tan significativa. Por esta razón se puede ver que el implementar kanban es mas que simple reducción del tamaño de una cola. La perdida en TH es muy grande, la única manera de reducir WIP y CT sin sacrificar TH es la reducción de la variabilidad. • Una segunda conclusión es que las colas finitas establecen estabilidad en el sistema, sin importar ra y re. La razón es sencilla, en un sistema de colas infinitas WIP y CT tienden a crecer incontroladamente.
  • 54. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Para poder analizar el efecto de la variabilidad debemos extender el modelo M/M/1/b y considerar distribuciones de tiempo entre llegadas y de procesos mas generales. Para lograr esto, se consideran los siguientes tres casos: • Cuando ra < re (u<1). • Cuando ra > re (u>1). • Cuando ra = re (u=1). Tasa de llegada menor que la tasa efectiva: derivada de VUT y Little ee ea anb tt u ucc rWIP                 12 22 u u ucc ea                 12 222
  • 55. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Del modelo M/M/1 obtenemos: WIP uWIP u   Usando el WIPnb obtenemos la utilización corregida: nb nb WIP uWIP  
  • 56. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Reemplazando la utilización corregida en la formulación de TH del modelo M/M/1/b obtenemos: a b b r u u TH 12 1 1 1        Para determinar WIP y CT usamos la siguiente formulación:  1,min  bWIPWIP nb   TH bWIP CT nb 1,min  
  • 57. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Tasa de llegada mayor que la tasa efectiva: derivada de M/M/1/b “inversa” u u ucc WIP ea nb 1 11 1 2 2 22                      De igual forma que en el caso anterior, obtenemos: nb nb R WIP uWIP 1 
  • 58. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Ahora definimos: R  1  En este momento estamos listos para calcular TH con la misma formulación anterior. Posteriormente usamos las mismas desigualdades para obtener unos limites de WIP y CT.
  • 59. Variabilidad - Teoría de Colas – Bloqueo y sus efectos: Caso G/G/1/b Tasa de llegada igual a la tasa efectiva:    12 12 2 2 2 2    bcc bcc TH ea ea De igual forma que en el caso anterior, usamos esta aproximación de TH y las desigualdades para obtener unos limites de WIP y CT.