SlideShare una empresa de Scribd logo
PRUEBA DEL RANGO MÚLTIPLE DE DUNCAN
La Prueba del Rango múltiple Duncan es otra prueba para determinar la
diferencia entre pares de medias después que se ha rechazado la hipótesis nula en
el análisis de varianza.
Este procedimiento emplea los valores de la tabla T-9 y consiste en calcular
varios "rangos" (Duncan los llama rangos significativos mínimos) dados por la
fórmula:
[13.8]
donde p toma valores entre 2 y K (K es el número de tratamientos), d se obtiene
de la tabla T-9 y el CMError se obtiene de la tabla de ANDEVA respectiva.
Ejemplo 4: Se realizó un experimento para determinar la cantidad (en gramos) de
grasa absorbida por 48 donas (doughnuts) usando ocho tipos diferentes de grasas
(aceites y mantecas). Las medias para los ocho tratamientos se muestran a
continuación:
Se usaron seis "donas" en cada tipo de grasa y se obtuvo un cuadrado medio del
error de 141.6, los grados de libertad del error son 48  8 =40.
Seleccionando  = 0.05 para este ejemplo, los rangos de Duncan son:
Los valores 3.300, 3.266,..., 2.858 se obtuvieron de la tabla de Duncan (T-9)
para  = 0.05, 2  p  8 y 40 grados de libertad.
El siguiente paso es ordenar las medias en orden creciente para establecer los
"rangos".
El rango entre las medias máxima y mínima se compara con D8, esto
es, , entonces existe diferencia significativa entre las grasas 4 y
7.
El próximo paso es comparar subconjuntos de siete medias con el rango D7.
, entonces
, entonces
Como los dos exceden el rango D7 se subdividen estos dos subconjuntos en
conjuntos de seis medias.
, entonces
, entonces
, entonces
Nuevamente éstos exceden D6, entonces éstos se subdividen en subconjuntos de
cinco medias
, entonces
, entonces
, entonces
, entonces
Como las medias para las grasas 3, 2, 6 y 1 están incluidos en el conjunto 43261
que fue no significativo, los rangos de las medias en el subconjunto 3261 no se
comparan con D4; solamente los rangos de las medias en el subconjunto 2615 se
comparan con D4; por lo tanto,
, entonces
Los otros subconjuntos de cuatro medias (3,2,6,1) y (6,1,5,3) no se comparan
con D4 porque ya fueron declarados no significativos en los conjuntos de cinco
medias. Por lo tanto, el proceso termina.
Los resultados se muestran gráficamente en la siguiente figura, donde las medias
que están debajo de una línea no son significativamente diferentes.
El investigador puede concluir que las cantidades absorbidas usando las grasas 4
y 3 son significativamente mayores que las 5, 8 y 7, y que la 2 es
significativamente mayor que las 8 y 7 y las demás grasas no son
significativamente diferentes en relación con la cantidad absorbida.
http://colposfesz.galeon.com/disenos/teoria/cap13bmj/cap13bmj.htm

Más contenido relacionado

La actualidad más candente

Análisis de varianza
Análisis de varianzaAnálisis de varianza
Análisis de varianza
Angel Salazar
 
Método duncan
Método duncan Método duncan
Método duncan
Graciella Chimal
 
Estadística: Prueba de Tukey
Estadística: Prueba de TukeyEstadística: Prueba de Tukey
Estadística: Prueba de Tukey
Luis Fernando Aguas Bucheli
 
Pruebas de bondad de ajuste vfinal
Pruebas de bondad de ajuste vfinalPruebas de bondad de ajuste vfinal
Pruebas de bondad de ajuste vfinal
Manuel García Naranjo B.
 
Capitulo 3 experimentos_con_un_solo_factor
Capitulo 3 experimentos_con_un_solo_factorCapitulo 3 experimentos_con_un_solo_factor
Capitulo 3 experimentos_con_un_solo_factor
Jorge Gonzalez Patiño
 
11 Diseño Completamente al Azar
11 Diseño Completamente al Azar11 Diseño Completamente al Azar
11 Diseño Completamente al Azar
lemalimentos
 
Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1
Instituto Tecnologico De Pachuca
 
Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7
Carmelo Perez
 
Introduccion al diseño de experimentos
 Introduccion al diseño de experimentos Introduccion al diseño de experimentos
Introduccion al diseño de experimentos
Isabel Leon
 
Ejercicios diseño de bloques completos al azar
Ejercicios diseño de bloques completos al azarEjercicios diseño de bloques completos al azar
Ejercicios diseño de bloques completos al azar
Instituto Tecnologico De Pachuca
 
Diseño completamente al azar
Diseño completamente al azarDiseño completamente al azar
Diseño completamente al azar
lordgusti
 
Ejercicios cuadrados latinos ejercicio 2
Ejercicios cuadrados latinos ejercicio 2Ejercicios cuadrados latinos ejercicio 2
Ejercicios cuadrados latinos ejercicio 2
Instituto Tecnologico De Pachuca
 
Estadistica 1
Estadistica 1Estadistica 1
Estadistica 1
Walter Perez
 
Compdiseñoaraciones multiples
Compdiseñoaraciones multiplesCompdiseñoaraciones multiples
Compdiseñoaraciones multiples
Wilson Fernando España
 
Ejercicios cuadrados latinos ejercicio 3
Ejercicios cuadrados latinos ejercicio 3Ejercicios cuadrados latinos ejercicio 3
Ejercicios cuadrados latinos ejercicio 3
Instituto Tecnologico De Pachuca
 
U1 introduccion a los diseños experimentales
U1 introduccion a los diseños experimentalesU1 introduccion a los diseños experimentales
U1 introduccion a los diseños experimentales
Robert Valverde
 
Diseño COMPLETAMENTE al azar
Diseño COMPLETAMENTE al azar Diseño COMPLETAMENTE al azar
Diseño COMPLETAMENTE al azar
Lpz Spaña Ing Odranoel
 
Cuadro Latino y grcolatino
Cuadro Latino y grcolatinoCuadro Latino y grcolatino
Cuadro Latino y grcolatino
benignacio
 
Ventajas y desventajas del cuadrado latino
Ventajas y desventajas del  cuadrado latinoVentajas y desventajas del  cuadrado latino
Ventajas y desventajas del cuadrado latino
Gendrik Moreno-Hernández
 
Solucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libroSolucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libro
Darkmono
 

La actualidad más candente (20)

Análisis de varianza
Análisis de varianzaAnálisis de varianza
Análisis de varianza
 
Método duncan
Método duncan Método duncan
Método duncan
 
Estadística: Prueba de Tukey
Estadística: Prueba de TukeyEstadística: Prueba de Tukey
Estadística: Prueba de Tukey
 
Pruebas de bondad de ajuste vfinal
Pruebas de bondad de ajuste vfinalPruebas de bondad de ajuste vfinal
Pruebas de bondad de ajuste vfinal
 
Capitulo 3 experimentos_con_un_solo_factor
Capitulo 3 experimentos_con_un_solo_factorCapitulo 3 experimentos_con_un_solo_factor
Capitulo 3 experimentos_con_un_solo_factor
 
11 Diseño Completamente al Azar
11 Diseño Completamente al Azar11 Diseño Completamente al Azar
11 Diseño Completamente al Azar
 
Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1
 
Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7Diseño de bloques completamente aleatorio (dbca) 7
Diseño de bloques completamente aleatorio (dbca) 7
 
Introduccion al diseño de experimentos
 Introduccion al diseño de experimentos Introduccion al diseño de experimentos
Introduccion al diseño de experimentos
 
Ejercicios diseño de bloques completos al azar
Ejercicios diseño de bloques completos al azarEjercicios diseño de bloques completos al azar
Ejercicios diseño de bloques completos al azar
 
Diseño completamente al azar
Diseño completamente al azarDiseño completamente al azar
Diseño completamente al azar
 
Ejercicios cuadrados latinos ejercicio 2
Ejercicios cuadrados latinos ejercicio 2Ejercicios cuadrados latinos ejercicio 2
Ejercicios cuadrados latinos ejercicio 2
 
Estadistica 1
Estadistica 1Estadistica 1
Estadistica 1
 
Compdiseñoaraciones multiples
Compdiseñoaraciones multiplesCompdiseñoaraciones multiples
Compdiseñoaraciones multiples
 
Ejercicios cuadrados latinos ejercicio 3
Ejercicios cuadrados latinos ejercicio 3Ejercicios cuadrados latinos ejercicio 3
Ejercicios cuadrados latinos ejercicio 3
 
U1 introduccion a los diseños experimentales
U1 introduccion a los diseños experimentalesU1 introduccion a los diseños experimentales
U1 introduccion a los diseños experimentales
 
Diseño COMPLETAMENTE al azar
Diseño COMPLETAMENTE al azar Diseño COMPLETAMENTE al azar
Diseño COMPLETAMENTE al azar
 
Cuadro Latino y grcolatino
Cuadro Latino y grcolatinoCuadro Latino y grcolatino
Cuadro Latino y grcolatino
 
Ventajas y desventajas del cuadrado latino
Ventajas y desventajas del  cuadrado latinoVentajas y desventajas del  cuadrado latino
Ventajas y desventajas del cuadrado latino
 
Solucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libroSolucion de ejercicios_capitulo_7_libro
Solucion de ejercicios_capitulo_7_libro
 

Destacado

Análisis de varianza: diseños completamente al azar
Análisis de varianza: diseños completamente al azarAnálisis de varianza: diseños completamente al azar
Análisis de varianza: diseños completamente al azar
Sergio Salgado Velazquez
 
Estadistica ok ok ok (2)
Estadistica ok ok ok (2)Estadistica ok ok ok (2)
Estadistica ok ok ok (2)
Fauricio Miranda
 
AnáLisis EstadíStico De Datos Usando R 1
AnáLisis EstadíStico De Datos Usando R 1AnáLisis EstadíStico De Datos Usando R 1
AnáLisis EstadíStico De Datos Usando R 1
Pablo R.
 
T de student
T de studentT de student
T de student
Mariana Narváez
 
39028492 distribucion-t-de-student-scrib
39028492 distribucion-t-de-student-scrib39028492 distribucion-t-de-student-scrib
39028492 distribucion-t-de-student-scrib
Jesus Blumer
 
Unidad 11 Prueba de normalidad. Comparación de medias t de Student con SPSS
Unidad 11 Prueba de normalidad. Comparación de medias  t de Student con SPSSUnidad 11 Prueba de normalidad. Comparación de medias  t de Student con SPSS
Unidad 11 Prueba de normalidad. Comparación de medias t de Student con SPSS
Ricardo Ruiz de Adana
 
T student
T  studentT  student
T student
Kassandra Gomez
 
Evaporación
EvaporaciónEvaporación
Evaporación
arturo_jimenez
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemplos
karemlucero
 
T de student para dos muestras independientes
T de student para dos muestras independientesT de student para dos muestras independientes
T de student para dos muestras independientes
Joseph AB
 
T student 5 ejemplos beeto
T student 5 ejemplos beetoT student 5 ejemplos beeto
T student 5 ejemplos beeto
rolandodesantiago
 
DISTRIBUCION T DE STUDENT
DISTRIBUCION T DE STUDENTDISTRIBUCION T DE STUDENT
DISTRIBUCION T DE STUDENT
Torimat Cordova
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Miguel Leonardo Sánchez Fajardo
 

Destacado (13)

Análisis de varianza: diseños completamente al azar
Análisis de varianza: diseños completamente al azarAnálisis de varianza: diseños completamente al azar
Análisis de varianza: diseños completamente al azar
 
Estadistica ok ok ok (2)
Estadistica ok ok ok (2)Estadistica ok ok ok (2)
Estadistica ok ok ok (2)
 
AnáLisis EstadíStico De Datos Usando R 1
AnáLisis EstadíStico De Datos Usando R 1AnáLisis EstadíStico De Datos Usando R 1
AnáLisis EstadíStico De Datos Usando R 1
 
T de student
T de studentT de student
T de student
 
39028492 distribucion-t-de-student-scrib
39028492 distribucion-t-de-student-scrib39028492 distribucion-t-de-student-scrib
39028492 distribucion-t-de-student-scrib
 
Unidad 11 Prueba de normalidad. Comparación de medias t de Student con SPSS
Unidad 11 Prueba de normalidad. Comparación de medias  t de Student con SPSSUnidad 11 Prueba de normalidad. Comparación de medias  t de Student con SPSS
Unidad 11 Prueba de normalidad. Comparación de medias t de Student con SPSS
 
T student
T  studentT  student
T student
 
Evaporación
EvaporaciónEvaporación
Evaporación
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemplos
 
T de student para dos muestras independientes
T de student para dos muestras independientesT de student para dos muestras independientes
T de student para dos muestras independientes
 
T student 5 ejemplos beeto
T student 5 ejemplos beetoT student 5 ejemplos beeto
T student 5 ejemplos beeto
 
DISTRIBUCION T DE STUDENT
DISTRIBUCION T DE STUDENTDISTRIBUCION T DE STUDENT
DISTRIBUCION T DE STUDENT
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
 

3 prueba del rango múltiple de duncan

  • 1. PRUEBA DEL RANGO MÚLTIPLE DE DUNCAN La Prueba del Rango múltiple Duncan es otra prueba para determinar la diferencia entre pares de medias después que se ha rechazado la hipótesis nula en el análisis de varianza. Este procedimiento emplea los valores de la tabla T-9 y consiste en calcular varios "rangos" (Duncan los llama rangos significativos mínimos) dados por la fórmula: [13.8] donde p toma valores entre 2 y K (K es el número de tratamientos), d se obtiene de la tabla T-9 y el CMError se obtiene de la tabla de ANDEVA respectiva. Ejemplo 4: Se realizó un experimento para determinar la cantidad (en gramos) de grasa absorbida por 48 donas (doughnuts) usando ocho tipos diferentes de grasas (aceites y mantecas). Las medias para los ocho tratamientos se muestran a continuación:
  • 2. Se usaron seis "donas" en cada tipo de grasa y se obtuvo un cuadrado medio del error de 141.6, los grados de libertad del error son 48  8 =40. Seleccionando  = 0.05 para este ejemplo, los rangos de Duncan son: Los valores 3.300, 3.266,..., 2.858 se obtuvieron de la tabla de Duncan (T-9) para  = 0.05, 2  p  8 y 40 grados de libertad. El siguiente paso es ordenar las medias en orden creciente para establecer los "rangos". El rango entre las medias máxima y mínima se compara con D8, esto es, , entonces existe diferencia significativa entre las grasas 4 y 7. El próximo paso es comparar subconjuntos de siete medias con el rango D7. , entonces , entonces Como los dos exceden el rango D7 se subdividen estos dos subconjuntos en conjuntos de seis medias. , entonces
  • 3. , entonces , entonces Nuevamente éstos exceden D6, entonces éstos se subdividen en subconjuntos de cinco medias , entonces , entonces , entonces , entonces Como las medias para las grasas 3, 2, 6 y 1 están incluidos en el conjunto 43261 que fue no significativo, los rangos de las medias en el subconjunto 3261 no se comparan con D4; solamente los rangos de las medias en el subconjunto 2615 se comparan con D4; por lo tanto, , entonces Los otros subconjuntos de cuatro medias (3,2,6,1) y (6,1,5,3) no se comparan con D4 porque ya fueron declarados no significativos en los conjuntos de cinco medias. Por lo tanto, el proceso termina. Los resultados se muestran gráficamente en la siguiente figura, donde las medias que están debajo de una línea no son significativamente diferentes.
  • 4. El investigador puede concluir que las cantidades absorbidas usando las grasas 4 y 3 son significativamente mayores que las 5, 8 y 7, y que la 2 es significativamente mayor que las 8 y 7 y las demás grasas no son significativamente diferentes en relación con la cantidad absorbida. http://colposfesz.galeon.com/disenos/teoria/cap13bmj/cap13bmj.htm