SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
SANTOS MAGARIÑO LIDER
ECUACIONES DIMENSIONALES
Son aquellas que expresan la
relación existen entre la magnitud
derivada y las magnitudes
fundamentales
Las ecuaciones dimensionales se
usan los símbolos de las
magnitudes fundamentales .Cada
símbolo está afectado de un
exponente que indica las veces
que dicha dimensión interviene en
la magnitud derivada.
El análisis dimensional es un método para verificar
ecuaciones y planificar experimentos sistemáticos. A partir
del análisis dimensional se obtienen una serie de grupos
adimensionales, que van a permitir utilizar los resultados
experimentales obtenidos en condiciones limitadas, a
situaciones en que se tengan diferentes dimensiones
geométricas, cinemáticas y dinámicas; y muchas veces en
casos en que las propiedades del fluido y del flujo son
distintas de las que se tuvieron durante los experimentos
UTILIDAD DEL ANALISIS
DIMENSIONAL
 Para determinar las dimensiones
de coeficientes empíricos.
 Para establecer y realizar
experimentos, descubriendo
aspectos desconocidos del
problema.
 Para formular leyes de similitud de
considerable importancia en la
investigación experimental.
 Para determinar la forma de
ecuaciones físicas a partir de las
variables principales y de sus
dimensiones. Para comprobar
cualitativamente ecuaciones.
MAGNITUDES FISICAS
En nuestra vida cotidiana todos
tenemos la necesidad de medir
longitudes , contar el tiempo o
pesar cuerpos, por ejemplo
podemos medir la longitud de
una tubería, el volumen de un
barril , la temperatura del
cuerpo humano, la velocidad del
bus, etc. todas estas son
magnitudes o cantidades físicas
Magnitud es todo aquello
que podemos medir directa
o indirectamente y
asignarle un numero y
unidad .
Las magnitudes fundamentales son aquellas magnitudes físicas que, gracias a
su combinación, dan origen a las magnitudes derivadas. Tres de las
magnitudes fundamentales más importantes son la masa, la longitud y
el tiempo, pero en ocasiones en la física también se agrega la temperatura,
la intensidad luminosa, la cantidad de sustancia y la intensidad de corriente.
MAGNITUDES FUNDAMENTALES
La siguiente
tabla muestra
las
unidades del
sistema
internacional (
SI).
Magnitud Unidad Símbol
o
DIM.
Longitud Metro m L
Masa Kilogramo Kg M
Tiempo Segundo s T
Temperatura Kelvin K 𝜃
Int.corriente Ampere Amp. I
Int.luminosa Candela cd J
Magnitud Dimensiones
Longitud (L) [L] = 𝐿
superficie(A) [A] = 𝐿2
Volumen(V) [V] = 𝐿3
Momento de inercia(I) [I] = 𝐿4
Velocidad(v) [v] =L𝑇−1
Aceleración(a) [a] = 𝐿 𝑇−2
Velocidad angular(𝜔) [𝜔] =T−1
Aceleración angular(𝛼) [𝛼] =T−2
Densidad(𝜌) [𝜌] =ML−3
Caudal volumétrico(Q) [Q] =L3
T−1
Las ecuaciones dimensionales tienen el siguiente objetivo :
Escribir las magnitudes derivadas en función de las magnitudes
fundamentales
Demostrar la validez de una formula
Determinar formulas empíricas.
MAGNITUD DIMENSIONES
Gravedad [g] =L𝑇−2
Fuerza [F] =ML𝑇−2
Presión [p] =M𝐿−1𝑇−2
Energía [E] =M𝐿2
𝑇−2
Calor especifico [c] =L2T-2 -1
Viscosidad absoluta [𝜇] =M𝐿−1𝑇−1
Viscosidad dinámica [𝑣] =𝐿2𝑇−1
Tensión superficial [𝜎] =M𝑇−2
compresibilidad [K] =M𝐿−1𝑇2
Método de Buckingham (Π)
Siendo V1, V2, ..., Vn las variables que
intervienen en el problema, se debe tener una
función que las relacione: f(V1, V2, ..., Vn) = 0; si
G1,G2,...,Gn-m, representan los grupos
adimensionales que representan a las variables
∏1, ∏2, ..., ∏n; el teorema de BUCKINGHAM
también establece que existe una función de la
forma:
El teorema Π de BUCKINGHAM establece
que en un problema físico en que se
tengan “n” variables que incluyan “m”
dimensiones distintas; las variables se
pueden agrupar en “n-m” grupos
adimensionales independientes.
Edgar Buckingham
Φ(∏1,∏2,..., ∏n-m) = 0
EJEMPLO 01:
Para el caso de un líquido ideal, expresar el caudal 𝑄 a través de un orificio en
función de la densidad del líquido, el diámetro del orificio y la diferencia de presiones.
SOLUCIÓN:
𝑄 = 𝑓(𝜌, 𝑃, 𝑑)
𝑄 = 𝐾 𝜌𝑎, 𝑃𝑏 , 𝑑𝑐
𝐹0
𝐿3
𝑇−1
= (𝐹𝑛
𝑇2𝑎
𝐿−4𝑎
)(𝐹𝑏
𝐿−2𝑏
)(𝐿𝑐
)
Matemáticamente:
Dimensionalmente:
0 = 𝑎 + 𝑏
−1 = 2𝑎 3 = −4𝑎 − 2𝑏 + 𝑐,
En donde
igualamos:
"𝑇” “𝐹" "𝐿”
𝑎 = −
1
2
, 𝑏 =
1
2
, 𝑐 = 2
Despejamos y nos
sale:
𝑄 = 𝐾 𝜌−
1
2, 𝑃
1
2 , 𝑑2
Sustituyendo:
𝑄 = 𝐾 𝑑2 𝑃/𝜌 (Fluido Ideal)
El coeficiente K ha de obtenerse mediante
el análisis físico o por experimento.
EJEMPLO 02:
Suponiendo que la potencia comunicada a una bomba es función del peso
específico del fluido del caudal en 𝑚3
/𝑠𝑒𝑔 y de la altura comunicada a la
corriente, resolver aplicando el teorema de Buckingham
𝑓 𝑃, 𝑤, 𝑄, 𝐻 = 0
SOLUCIÓN:
Matemáticamente:
Dimensionalmente: Potencia 𝑃 = 𝐹𝐿 𝑇−1
Peso Especifico 𝑤 = 𝐹𝐿−3
Caudal 𝑄 = 𝐿3𝑇−1
Carga 𝐻 = 𝐿
Usando el Teorema de Buckingham tenemos que existen 4 magnitudes
físicas y de ellas 3 son fundamentales, de donde (4-3)=1 (un grupo) 𝜋
Donde escogemos 𝑄, 𝑤 𝑦 𝐻 como magnitudes con los
exponentes desconocidos:
𝜋1 = (𝑄𝑥1) 𝑤𝑦1 𝐻𝑧1 𝑃
𝜋1 = (𝐿3𝑥1𝑇−𝑥1) 𝐹𝑦1𝐿−3𝑦1 𝐿𝑧1 (𝐹 𝐿 𝑇−1
)
Igualando los exponentes:
0 = 𝑦1 + 1 0 = 3𝑥1 − 3𝑦1 + 𝑧1 + 1
"𝐹” "𝐿” "𝐹”
0 = −𝑥1 − 1
Donde:
𝑥1 = −1
𝑦1 = −1
𝑧1 = −1
Lo sustituimos en:
𝜋1 = (𝑄𝑥1) 𝑤𝑦1 𝐻𝑧1 𝑃
𝜋1 = (𝑄−1
) 𝑤−1
𝐻−1
𝑃
𝝅𝟏 =
𝑷
𝒘𝑸𝑯

Más contenido relacionado

Similar a analisisdimensional-140529170544-phpapp01.pdf

01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf
01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf
01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdfDANIELDT4
 
Tema 2 Análisis dimensional tercero 2016
Tema  2 Análisis dimensional tercero 2016Tema  2 Análisis dimensional tercero 2016
Tema 2 Análisis dimensional tercero 2016Manuel Manay
 
SESION 01. 2022_BME_SISTEMA UNIDADES.pdf
SESION 01. 2022_BME_SISTEMA UNIDADES.pdfSESION 01. 2022_BME_SISTEMA UNIDADES.pdf
SESION 01. 2022_BME_SISTEMA UNIDADES.pdfJuan Stigeer
 
Tema 1 - Estequiometria.pdf
Tema 1 - Estequiometria.pdfTema 1 - Estequiometria.pdf
Tema 1 - Estequiometria.pdfLISSETTEBELTRN2
 
Física de nivel pre universitario de la UNS
Física de nivel pre universitario de la UNSFísica de nivel pre universitario de la UNS
Física de nivel pre universitario de la UNSKenyoHuamani
 
Dilatacion volumetrica
Dilatacion volumetricaDilatacion volumetrica
Dilatacion volumetricaDarwin Mendoza
 
4 Magnitudes y medidas.pdf
4 Magnitudes y medidas.pdf4 Magnitudes y medidas.pdf
4 Magnitudes y medidas.pdfssuserd0b271
 
Zaragoza 2009 segunda prueba - Olimpiada Fisica
Zaragoza 2009 segunda prueba - Olimpiada FisicaZaragoza 2009 segunda prueba - Olimpiada Fisica
Zaragoza 2009 segunda prueba - Olimpiada Fisicafisicayquimica-com-es
 
S01.s2 - MEDICION Y UNIDADES.pdf
S01.s2 - MEDICION Y UNIDADES.pdfS01.s2 - MEDICION Y UNIDADES.pdf
S01.s2 - MEDICION Y UNIDADES.pdfJeantr
 
(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)Walter Perez Terrel
 
Unmsm teoría física
Unmsm teoría físicaUnmsm teoría física
Unmsm teoría físicaLuisentk
 
Unidad 1.teoria de errores
Unidad 1.teoria de erroresUnidad 1.teoria de errores
Unidad 1.teoria de erroresLuis Gala Nevew
 
Conceptos preliminares física I
Conceptos preliminares física IConceptos preliminares física I
Conceptos preliminares física IYenny Apellidos
 
Analisis dimensional y ejercicios.pptx
Analisis dimensional y ejercicios.pptxAnalisis dimensional y ejercicios.pptx
Analisis dimensional y ejercicios.pptxYERALDA TAPIA
 

Similar a analisisdimensional-140529170544-phpapp01.pdf (20)

01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf
01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf
01_intro_fisica_1_oc_e2c2908b82c79bd9cef13ba739cfd316.pdf
 
Tema 2 Análisis dimensional tercero 2016
Tema  2 Análisis dimensional tercero 2016Tema  2 Análisis dimensional tercero 2016
Tema 2 Análisis dimensional tercero 2016
 
ANALISIS DIMENSIONAL.pptx
ANALISIS DIMENSIONAL.pptxANALISIS DIMENSIONAL.pptx
ANALISIS DIMENSIONAL.pptx
 
Clase Sesión #1..pptx
Clase Sesión #1..pptxClase Sesión #1..pptx
Clase Sesión #1..pptx
 
MF 5 Métodos dimensionales
MF 5 Métodos dimensionalesMF 5 Métodos dimensionales
MF 5 Métodos dimensionales
 
Cyt quinto
Cyt quintoCyt quinto
Cyt quinto
 
SESION 01. 2022_BME_SISTEMA UNIDADES.pdf
SESION 01. 2022_BME_SISTEMA UNIDADES.pdfSESION 01. 2022_BME_SISTEMA UNIDADES.pdf
SESION 01. 2022_BME_SISTEMA UNIDADES.pdf
 
Física.pdf
Física.pdfFísica.pdf
Física.pdf
 
Tema 1 - Estequiometria.pdf
Tema 1 - Estequiometria.pdfTema 1 - Estequiometria.pdf
Tema 1 - Estequiometria.pdf
 
Física de nivel pre universitario de la UNS
Física de nivel pre universitario de la UNSFísica de nivel pre universitario de la UNS
Física de nivel pre universitario de la UNS
 
Dilatacion volumetrica
Dilatacion volumetricaDilatacion volumetrica
Dilatacion volumetrica
 
4 Magnitudes y medidas.pdf
4 Magnitudes y medidas.pdf4 Magnitudes y medidas.pdf
4 Magnitudes y medidas.pdf
 
Zaragoza 2009 segunda prueba - Olimpiada Fisica
Zaragoza 2009 segunda prueba - Olimpiada FisicaZaragoza 2009 segunda prueba - Olimpiada Fisica
Zaragoza 2009 segunda prueba - Olimpiada Fisica
 
S01.s2 - MEDICION Y UNIDADES.pdf
S01.s2 - MEDICION Y UNIDADES.pdfS01.s2 - MEDICION Y UNIDADES.pdf
S01.s2 - MEDICION Y UNIDADES.pdf
 
(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)(Semana 01 analisis dimensiones primera edición)
(Semana 01 analisis dimensiones primera edición)
 
Unmsm teoría física
Unmsm teoría físicaUnmsm teoría física
Unmsm teoría física
 
Unidad 1.teoria de errores
Unidad 1.teoria de erroresUnidad 1.teoria de errores
Unidad 1.teoria de errores
 
Conceptos preliminares física I
Conceptos preliminares física IConceptos preliminares física I
Conceptos preliminares física I
 
Analisis dimensional y ejercicios.pptx
Analisis dimensional y ejercicios.pptxAnalisis dimensional y ejercicios.pptx
Analisis dimensional y ejercicios.pptx
 
CEPREVI Física.pdf
CEPREVI Física.pdfCEPREVI Física.pdf
CEPREVI Física.pdf
 

Último

DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfVerenice Del Rio
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfGonella
 
Libros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfLibros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfGalletitas default
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Pere Miquel Rosselló Espases
 
Presentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfPresentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfFranciscoJavierEstra11
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraJavier Andreu
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdfVanyraCumplido
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteinmaculadatorressanc
 
Educacion Basada en Evidencias SM5 Ccesa007.pdf
Educacion Basada en Evidencias  SM5  Ccesa007.pdfEducacion Basada en Evidencias  SM5  Ccesa007.pdf
Educacion Basada en Evidencias SM5 Ccesa007.pdfDemetrio Ccesa Rayme
 
Presentación NORMA TECNICA 2024. minedu peru
Presentación NORMA  TECNICA 2024. minedu peruPresentación NORMA  TECNICA 2024. minedu peru
Presentación NORMA TECNICA 2024. minedu peruCarlosAntonioBalbuen1
 
Planeacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxPlaneacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxSarisdelosSantos1
 
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxLorenaHualpachoque
 
Filo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaFilo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaJoaquinMaisanaba
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxMaria Jimena Leon Malharro
 
HISTORIA DE ARQUITECTURA PERUANA HORIZONTE
HISTORIA DE ARQUITECTURA PERUANA HORIZONTEHISTORIA DE ARQUITECTURA PERUANA HORIZONTE
HISTORIA DE ARQUITECTURA PERUANA HORIZONTEalidkbeast
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.JonathanCovena1
 

Último (20)

DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
Libros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdfLibros del Ministerio de Educación (2023-2024).pdf
Libros del Ministerio de Educación (2023-2024).pdf
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
 
Presentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfPresentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdf
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.
 
Educacion Basada en Evidencias SM5 Ccesa007.pdf
Educacion Basada en Evidencias  SM5  Ccesa007.pdfEducacion Basada en Evidencias  SM5  Ccesa007.pdf
Educacion Basada en Evidencias SM5 Ccesa007.pdf
 
flujo de materia y energía ecosistemas.
flujo de materia y  energía ecosistemas.flujo de materia y  energía ecosistemas.
flujo de materia y energía ecosistemas.
 
Presentación NORMA TECNICA 2024. minedu peru
Presentación NORMA  TECNICA 2024. minedu peruPresentación NORMA  TECNICA 2024. minedu peru
Presentación NORMA TECNICA 2024. minedu peru
 
Planeacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxPlaneacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docx
 
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docxMINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
MINEDU BASES JUEGOS ESCOLARES DEPORTIVOS PARADEPORTIVOS 2024.docx
 
Filo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucíaFilo Descartes para selectividad de andalucía
Filo Descartes para selectividad de andalucía
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
 
HISTORIA DE ARQUITECTURA PERUANA HORIZONTE
HISTORIA DE ARQUITECTURA PERUANA HORIZONTEHISTORIA DE ARQUITECTURA PERUANA HORIZONTE
HISTORIA DE ARQUITECTURA PERUANA HORIZONTE
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 

analisisdimensional-140529170544-phpapp01.pdf

  • 2. ECUACIONES DIMENSIONALES Son aquellas que expresan la relación existen entre la magnitud derivada y las magnitudes fundamentales Las ecuaciones dimensionales se usan los símbolos de las magnitudes fundamentales .Cada símbolo está afectado de un exponente que indica las veces que dicha dimensión interviene en la magnitud derivada.
  • 3. El análisis dimensional es un método para verificar ecuaciones y planificar experimentos sistemáticos. A partir del análisis dimensional se obtienen una serie de grupos adimensionales, que van a permitir utilizar los resultados experimentales obtenidos en condiciones limitadas, a situaciones en que se tengan diferentes dimensiones geométricas, cinemáticas y dinámicas; y muchas veces en casos en que las propiedades del fluido y del flujo son distintas de las que se tuvieron durante los experimentos
  • 4. UTILIDAD DEL ANALISIS DIMENSIONAL  Para determinar las dimensiones de coeficientes empíricos.  Para establecer y realizar experimentos, descubriendo aspectos desconocidos del problema.  Para formular leyes de similitud de considerable importancia en la investigación experimental.  Para determinar la forma de ecuaciones físicas a partir de las variables principales y de sus dimensiones. Para comprobar cualitativamente ecuaciones.
  • 5. MAGNITUDES FISICAS En nuestra vida cotidiana todos tenemos la necesidad de medir longitudes , contar el tiempo o pesar cuerpos, por ejemplo podemos medir la longitud de una tubería, el volumen de un barril , la temperatura del cuerpo humano, la velocidad del bus, etc. todas estas son magnitudes o cantidades físicas Magnitud es todo aquello que podemos medir directa o indirectamente y asignarle un numero y unidad .
  • 6. Las magnitudes fundamentales son aquellas magnitudes físicas que, gracias a su combinación, dan origen a las magnitudes derivadas. Tres de las magnitudes fundamentales más importantes son la masa, la longitud y el tiempo, pero en ocasiones en la física también se agrega la temperatura, la intensidad luminosa, la cantidad de sustancia y la intensidad de corriente. MAGNITUDES FUNDAMENTALES La siguiente tabla muestra las unidades del sistema internacional ( SI). Magnitud Unidad Símbol o DIM. Longitud Metro m L Masa Kilogramo Kg M Tiempo Segundo s T Temperatura Kelvin K 𝜃 Int.corriente Ampere Amp. I Int.luminosa Candela cd J
  • 7. Magnitud Dimensiones Longitud (L) [L] = 𝐿 superficie(A) [A] = 𝐿2 Volumen(V) [V] = 𝐿3 Momento de inercia(I) [I] = 𝐿4 Velocidad(v) [v] =L𝑇−1 Aceleración(a) [a] = 𝐿 𝑇−2 Velocidad angular(𝜔) [𝜔] =T−1 Aceleración angular(𝛼) [𝛼] =T−2 Densidad(𝜌) [𝜌] =ML−3 Caudal volumétrico(Q) [Q] =L3 T−1 Las ecuaciones dimensionales tienen el siguiente objetivo : Escribir las magnitudes derivadas en función de las magnitudes fundamentales Demostrar la validez de una formula Determinar formulas empíricas.
  • 8. MAGNITUD DIMENSIONES Gravedad [g] =L𝑇−2 Fuerza [F] =ML𝑇−2 Presión [p] =M𝐿−1𝑇−2 Energía [E] =M𝐿2 𝑇−2 Calor especifico [c] =L2T-2 -1 Viscosidad absoluta [𝜇] =M𝐿−1𝑇−1 Viscosidad dinámica [𝑣] =𝐿2𝑇−1 Tensión superficial [𝜎] =M𝑇−2 compresibilidad [K] =M𝐿−1𝑇2
  • 9. Método de Buckingham (Π) Siendo V1, V2, ..., Vn las variables que intervienen en el problema, se debe tener una función que las relacione: f(V1, V2, ..., Vn) = 0; si G1,G2,...,Gn-m, representan los grupos adimensionales que representan a las variables ∏1, ∏2, ..., ∏n; el teorema de BUCKINGHAM también establece que existe una función de la forma: El teorema Π de BUCKINGHAM establece que en un problema físico en que se tengan “n” variables que incluyan “m” dimensiones distintas; las variables se pueden agrupar en “n-m” grupos adimensionales independientes. Edgar Buckingham Φ(∏1,∏2,..., ∏n-m) = 0
  • 10. EJEMPLO 01: Para el caso de un líquido ideal, expresar el caudal 𝑄 a través de un orificio en función de la densidad del líquido, el diámetro del orificio y la diferencia de presiones. SOLUCIÓN: 𝑄 = 𝑓(𝜌, 𝑃, 𝑑) 𝑄 = 𝐾 𝜌𝑎, 𝑃𝑏 , 𝑑𝑐 𝐹0 𝐿3 𝑇−1 = (𝐹𝑛 𝑇2𝑎 𝐿−4𝑎 )(𝐹𝑏 𝐿−2𝑏 )(𝐿𝑐 ) Matemáticamente: Dimensionalmente: 0 = 𝑎 + 𝑏 −1 = 2𝑎 3 = −4𝑎 − 2𝑏 + 𝑐, En donde igualamos: "𝑇” “𝐹" "𝐿”
  • 11. 𝑎 = − 1 2 , 𝑏 = 1 2 , 𝑐 = 2 Despejamos y nos sale: 𝑄 = 𝐾 𝜌− 1 2, 𝑃 1 2 , 𝑑2 Sustituyendo: 𝑄 = 𝐾 𝑑2 𝑃/𝜌 (Fluido Ideal) El coeficiente K ha de obtenerse mediante el análisis físico o por experimento.
  • 12. EJEMPLO 02: Suponiendo que la potencia comunicada a una bomba es función del peso específico del fluido del caudal en 𝑚3 /𝑠𝑒𝑔 y de la altura comunicada a la corriente, resolver aplicando el teorema de Buckingham 𝑓 𝑃, 𝑤, 𝑄, 𝐻 = 0 SOLUCIÓN: Matemáticamente: Dimensionalmente: Potencia 𝑃 = 𝐹𝐿 𝑇−1 Peso Especifico 𝑤 = 𝐹𝐿−3 Caudal 𝑄 = 𝐿3𝑇−1 Carga 𝐻 = 𝐿
  • 13. Usando el Teorema de Buckingham tenemos que existen 4 magnitudes físicas y de ellas 3 son fundamentales, de donde (4-3)=1 (un grupo) 𝜋 Donde escogemos 𝑄, 𝑤 𝑦 𝐻 como magnitudes con los exponentes desconocidos: 𝜋1 = (𝑄𝑥1) 𝑤𝑦1 𝐻𝑧1 𝑃 𝜋1 = (𝐿3𝑥1𝑇−𝑥1) 𝐹𝑦1𝐿−3𝑦1 𝐿𝑧1 (𝐹 𝐿 𝑇−1 ) Igualando los exponentes: 0 = 𝑦1 + 1 0 = 3𝑥1 − 3𝑦1 + 𝑧1 + 1 "𝐹” "𝐿” "𝐹” 0 = −𝑥1 − 1
  • 14. Donde: 𝑥1 = −1 𝑦1 = −1 𝑧1 = −1 Lo sustituimos en: 𝜋1 = (𝑄𝑥1) 𝑤𝑦1 𝐻𝑧1 𝑃 𝜋1 = (𝑄−1 ) 𝑤−1 𝐻−1 𝑃 𝝅𝟏 = 𝑷 𝒘𝑸𝑯