SlideShare una empresa de Scribd logo
CLASES DE COMPLEJIDAD COMPUTACIONAL
DEFINICIÓN DE CLASES DE COMPLEJIDAD
COMPUTACIONAL:
Las clases de complejidad más sencillas se definen teniendo
en cuenta factores como:
 El tipo de problema computacional: Los problemas más
comúnmente utilizados son los problemas de decisión, pero
las clases de complejidad se pueden definir para otros tipos
de problemas.
 El modelo de cómputo: El modelo de cómputo más común es
la Máquina de Turing determinista, pero muchas clases de
complejidad se basan en Máquinas de Turing no
deterministas, Máquinas de Turing cuánticas, etc.
 El recurso (o recursos) que está(n) siendo acotado(s) y la(s)
cota(s): Estas dos propiedades usualmente se utilizan juntas,
por ejemplo, "tiempo polinomial", "espacio logarítmico",
"profundidad constante", etc.
CLASE P:
La clase P contiene a aquellos problemas que son solubles en
tiempo polinómico por una máquina de Turing determinista.5
Para la definición anterior se ha fijado el modelo de cómputo:
la Máquina de Turing determinista. Existen distintas variantes de la
Máquina de Turing y es conocido que la más débil de ellas puede
simular a la más fuerte, adicionando a lo sumo un tiempo
polinómico. En las décadas posteriores a la Tesis de Church-
Turing surgieron otros modelos de cómputo, y se pudo mostrar que
la Máquina de Turing también podía simularlos a lo sumo
adicionando también un tiempo polinómico. Por tanto, la clase
análoga a P para dichos modelos no es mayor que la clase P para el
modelo de cómputo de la máquina de Turing.
La clase P juega un papel importante en la teoría de la
complejidad computacional debido a que:
1. P es invariante para todos los modelos de cómputo que son
polinómicamente equivalentes a la Máquina de Turing
determinista.
2. A grandes rasgos, P corresponde a la clase de problemas que,
de manera realista, son solubles en una computadora.
CLASE NP:
La importancia de esta clase de problemas de decisión es que
contiene muchos problemas de búsqueda y de optimización para los
que se desea saber si existe una cierta solución o si existe una
mejor solución que las conocidas. En esta clase están el problema
del viajante (también llamado "problema del viajante de
comercio" o "problema del agente viajero") donde se quiere saber
si existe una ruta óptima que pasa por todos los nodos en un
cierto grafo y el problema de satisfacibilidad booleana en donde se
desea saber si una cierta fórmula de lógica proposicional puede ser
cierta para algún conjunto de valores booleanos para las variables.
Dada su importancia, se han hecho muchos esfuerzos para
encontrar algoritmos que decidan algún problema de NP en tiempo
polinómico. Sin embargo, pareciera que para algunos problemas de
NP (los del conjunto NP-completo) no es posible encontrar un
algoritmo mejor que simplemente realizar una búsqueda
exhaustiva.
En el artículo de 2002, "PRIMES is in P", Manindra Agrawal
con sus estudiantes1 ,2
encontró un algoritmo que trabaja en tiempo
polinómico para el problema de saber si un número es primo.
Anteriormente se sabía que ese problema estaba en NP, si bien no
en NP-completo, ahora se sabe que también está en P.
El primer problema natural que se demostró que es completo
NP fue el problema de satisfacibilidad booleana. Este resultado fue
demostrado por Stephen Cook en 1971, y se lo llamó el teorema de
Cook. La demostración de Cook de que la satisfacibilidad es un
problema NP-completo es muy complicada. Sin embargo, después
de que este problema se demostrara que es NP-Completo, es fácil
demostrar que muchos otros problemas pertenecen a esta clase.
Por lo tanto, una amplia clase de problemas en principio inconexos
son reducibles unos a otros, y por lo tanto resultan en "el mismo
problema" -- un resultado profundo e inesperado.
OTRAS CLASES DE COMPLEJIDAD COMPUTACIONAL:
AUTOR:
TORREALBA VICTOR
C.I.: 19.355.605

Más contenido relacionado

La actualidad más candente

Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1
Osiris Mirerus
 
Funcion computable y parcialmente computable
Funcion computable y parcialmente computableFuncion computable y parcialmente computable
Funcion computable y parcialmente computable
Aniitha Mtz
 
Ejercicios diagramas de bloques y gfs
Ejercicios diagramas de bloques y gfsEjercicios diagramas de bloques y gfs
Ejercicios diagramas de bloques y gfs
Edinson Michileno Segura
 
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regularesPortafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Humano Terricola
 
Tutorial de JFLAP
Tutorial de JFLAPTutorial de JFLAP
Tutorial de JFLAP
Sara Martínez Gómez
 
Ejercicios de Multiplexores y decodificadores
Ejercicios de Multiplexores y decodificadoresEjercicios de Multiplexores y decodificadores
Ejercicios de Multiplexores y decodificadores
Bertha Vega
 
Complemento a la base disminuida
Complemento a la base disminuidaComplemento a la base disminuida
Complemento a la base disminuida
Roberto Chen
 
Tipos de metodos numericos
Tipos de metodos numericosTipos de metodos numericos
Tipos de metodos numericos
Tensor
 
Ejercicios
EjerciciosEjercicios
Ejercicios
Ricardo Tejera
 
Sistema de control por computadora
Sistema de control por computadoraSistema de control por computadora
Sistema de control por computadora
Ramsés Velázquez
 
Conversión NAND y NOR
Conversión NAND y NORConversión NAND y NOR
Conversión NAND y NOR
IES Sebastián Fernández
 
Maquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e IrresolubilidadMaquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e Irresolubilidad
lluis31
 
Tópicos Avanzados de Programación - Unidad 4 Acceso a datos
Tópicos Avanzados de Programación - Unidad 4 Acceso a datosTópicos Avanzados de Programación - Unidad 4 Acceso a datos
Tópicos Avanzados de Programación - Unidad 4 Acceso a datos
José Antonio Sandoval Acosta
 
Ejercicios de búsqueda a Ciegas y Búsqueda informada
Ejercicios de búsqueda a Ciegas y Búsqueda informadaEjercicios de búsqueda a Ciegas y Búsqueda informada
Ejercicios de búsqueda a Ciegas y Búsqueda informada
Héctor Estigarribia
 
Programación Orientada a Objetos - Resumen
Programación Orientada a Objetos - ResumenProgramación Orientada a Objetos - Resumen
Programación Orientada a Objetos - Resumen
Karlytoz_36
 
Razonamiento monotono
Razonamiento monotonoRazonamiento monotono
Razonamiento monotono
joosbeen garcia solano
 
Máquinas de Turing - Tipos y Aplicaciones
Máquinas de Turing - Tipos y AplicacionesMáquinas de Turing - Tipos y Aplicaciones
Máquinas de Turing - Tipos y Aplicaciones
Rosviannis Barreiro
 
Presentación1 grafos
Presentación1 grafosPresentación1 grafos
Presentación1 grafos
ozilricardo
 
Arboles B y Arboles B+
Arboles B y Arboles B+Arboles B y Arboles B+
Arboles B y Arboles B+
neltherdaza
 
Respuesta en frecuencia
Respuesta en frecuenciaRespuesta en frecuencia
Respuesta en frecuencia
hebermartelo
 

La actualidad más candente (20)

Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1
 
Funcion computable y parcialmente computable
Funcion computable y parcialmente computableFuncion computable y parcialmente computable
Funcion computable y parcialmente computable
 
Ejercicios diagramas de bloques y gfs
Ejercicios diagramas de bloques y gfsEjercicios diagramas de bloques y gfs
Ejercicios diagramas de bloques y gfs
 
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regularesPortafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
Portafolio unidad 2 [Lenguajes y autómatas]- Expresiones y lenguajes regulares
 
Tutorial de JFLAP
Tutorial de JFLAPTutorial de JFLAP
Tutorial de JFLAP
 
Ejercicios de Multiplexores y decodificadores
Ejercicios de Multiplexores y decodificadoresEjercicios de Multiplexores y decodificadores
Ejercicios de Multiplexores y decodificadores
 
Complemento a la base disminuida
Complemento a la base disminuidaComplemento a la base disminuida
Complemento a la base disminuida
 
Tipos de metodos numericos
Tipos de metodos numericosTipos de metodos numericos
Tipos de metodos numericos
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Sistema de control por computadora
Sistema de control por computadoraSistema de control por computadora
Sistema de control por computadora
 
Conversión NAND y NOR
Conversión NAND y NORConversión NAND y NOR
Conversión NAND y NOR
 
Maquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e IrresolubilidadMaquina de turing y resolubilidad e Irresolubilidad
Maquina de turing y resolubilidad e Irresolubilidad
 
Tópicos Avanzados de Programación - Unidad 4 Acceso a datos
Tópicos Avanzados de Programación - Unidad 4 Acceso a datosTópicos Avanzados de Programación - Unidad 4 Acceso a datos
Tópicos Avanzados de Programación - Unidad 4 Acceso a datos
 
Ejercicios de búsqueda a Ciegas y Búsqueda informada
Ejercicios de búsqueda a Ciegas y Búsqueda informadaEjercicios de búsqueda a Ciegas y Búsqueda informada
Ejercicios de búsqueda a Ciegas y Búsqueda informada
 
Programación Orientada a Objetos - Resumen
Programación Orientada a Objetos - ResumenProgramación Orientada a Objetos - Resumen
Programación Orientada a Objetos - Resumen
 
Razonamiento monotono
Razonamiento monotonoRazonamiento monotono
Razonamiento monotono
 
Máquinas de Turing - Tipos y Aplicaciones
Máquinas de Turing - Tipos y AplicacionesMáquinas de Turing - Tipos y Aplicaciones
Máquinas de Turing - Tipos y Aplicaciones
 
Presentación1 grafos
Presentación1 grafosPresentación1 grafos
Presentación1 grafos
 
Arboles B y Arboles B+
Arboles B y Arboles B+Arboles B y Arboles B+
Arboles B y Arboles B+
 
Respuesta en frecuencia
Respuesta en frecuenciaRespuesta en frecuencia
Respuesta en frecuencia
 

Similar a Clases de complejidad computacional

Clase de Complejidad Computacional
Clase de Complejidad ComputacionalClase de Complejidad Computacional
Clase de Complejidad Computacional
lourdesnbv
 
Teoría de complejidad computacional (tcc).pptx
Teoría de complejidad computacional (tcc).pptxTeoría de complejidad computacional (tcc).pptx
Teoría de complejidad computacional (tcc).pptx
Yared Redman
 
Problemas NP
Problemas NPProblemas NP
Que es complejidad computacional
Que es complejidad computacionalQue es complejidad computacional
Que es complejidad computacional
Jonathan Bastidas
 
Teoria de la c.c.
Teoria de la c.c.Teoria de la c.c.
Teoria de la c.c.
belmont402
 
Categorías principales de la complejidad computacional
Categorías principales de la complejidad computacionalCategorías principales de la complejidad computacional
Categorías principales de la complejidad computacional
Jonathan Bastidas
 
Complejidad Computacional o Algoritmica
Complejidad Computacional o AlgoritmicaComplejidad Computacional o Algoritmica
Complejidad Computacional o Algoritmica
Marko ZP
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
Johnfornerod
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
Patricia Correa
 
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
erickenamorado
 
Clasificación de los problemas
Clasificación de los problemasClasificación de los problemas
Clasificación de los problemas
Cristopher Morales Ruiz
 
Monografia problema de la mochila
Monografia   problema de la mochilaMonografia   problema de la mochila
Monografia problema de la mochila
vaneyui
 
Monografia - Problema de la Mochila
Monografia - Problema de la MochilaMonografia - Problema de la Mochila
Monografia - Problema de la Mochila
vaneyui
 
Complejidad de problemas
Complejidad de problemasComplejidad de problemas
Complejidad de problemas
rodrigoalseco
 
Final introduccion a la informatica
Final introduccion a la informaticaFinal introduccion a la informatica
Final introduccion a la informatica
Aldahir Rojas
 
Final introduccion a la informatica
Final introduccion a la informaticaFinal introduccion a la informatica
Final introduccion a la informatica
Aldahir Rojas
 
Programacion dinamica
Programacion dinamicaProgramacion dinamica
Programacion dinamica
José Padrón
 
Complejidad
ComplejidadComplejidad
2022-T10 P vs NP
2022-T10 P vs NP2022-T10 P vs NP
2022-T10 P vs NP
Ricardo Lopez-Ruiz
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
Johnfornerod
 

Similar a Clases de complejidad computacional (20)

Clase de Complejidad Computacional
Clase de Complejidad ComputacionalClase de Complejidad Computacional
Clase de Complejidad Computacional
 
Teoría de complejidad computacional (tcc).pptx
Teoría de complejidad computacional (tcc).pptxTeoría de complejidad computacional (tcc).pptx
Teoría de complejidad computacional (tcc).pptx
 
Problemas NP
Problemas NPProblemas NP
Problemas NP
 
Que es complejidad computacional
Que es complejidad computacionalQue es complejidad computacional
Que es complejidad computacional
 
Teoria de la c.c.
Teoria de la c.c.Teoria de la c.c.
Teoria de la c.c.
 
Categorías principales de la complejidad computacional
Categorías principales de la complejidad computacionalCategorías principales de la complejidad computacional
Categorías principales de la complejidad computacional
 
Complejidad Computacional o Algoritmica
Complejidad Computacional o AlgoritmicaComplejidad Computacional o Algoritmica
Complejidad Computacional o Algoritmica
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
 
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
Pteg i-grupo7-lista 4,13,38,39,40,45-visita4-expo cap 12 -teoria de la comput...
 
Clasificación de los problemas
Clasificación de los problemasClasificación de los problemas
Clasificación de los problemas
 
Monografia problema de la mochila
Monografia   problema de la mochilaMonografia   problema de la mochila
Monografia problema de la mochila
 
Monografia - Problema de la Mochila
Monografia - Problema de la MochilaMonografia - Problema de la Mochila
Monografia - Problema de la Mochila
 
Complejidad de problemas
Complejidad de problemasComplejidad de problemas
Complejidad de problemas
 
Final introduccion a la informatica
Final introduccion a la informaticaFinal introduccion a la informatica
Final introduccion a la informatica
 
Final introduccion a la informatica
Final introduccion a la informaticaFinal introduccion a la informatica
Final introduccion a la informatica
 
Programacion dinamica
Programacion dinamicaProgramacion dinamica
Programacion dinamica
 
Complejidad
ComplejidadComplejidad
Complejidad
 
2022-T10 P vs NP
2022-T10 P vs NP2022-T10 P vs NP
2022-T10 P vs NP
 
Clasificacion de los problemas
Clasificacion de los problemasClasificacion de los problemas
Clasificacion de los problemas
 

Más de vmtorrealba

INFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
INFOGRAFÍA LIDERAZGO TRANSFORMACIONALINFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
INFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
vmtorrealba
 
Mapa conceptual - Antecedentes de la Investigacion
Mapa conceptual - Antecedentes de la InvestigacionMapa conceptual - Antecedentes de la Investigacion
Mapa conceptual - Antecedentes de la Investigacion
vmtorrealba
 
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONESCOMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
vmtorrealba
 
DIAPOSITIVAS - GRAMATICAS FORMALES
DIAPOSITIVAS - GRAMATICAS FORMALESDIAPOSITIVAS - GRAMATICAS FORMALES
DIAPOSITIVAS - GRAMATICAS FORMALES
vmtorrealba
 
EJERCICIOS LENGUAJES FORMALES
EJERCICIOS LENGUAJES FORMALESEJERCICIOS LENGUAJES FORMALES
EJERCICIOS LENGUAJES FORMALES
vmtorrealba
 
Investigacion expositiva
Investigacion expositivaInvestigacion expositiva
Investigacion expositiva
vmtorrealba
 
AUTOMATAS Y LENGUAJES FORMALES
AUTOMATAS Y LENGUAJES FORMALESAUTOMATAS Y LENGUAJES FORMALES
AUTOMATAS Y LENGUAJES FORMALES
vmtorrealba
 
Mapa conceptual victortorrealba
Mapa conceptual   victortorrealbaMapa conceptual   victortorrealba
Mapa conceptual victortorrealba
vmtorrealba
 
Mapa conceptual - Auditoría de Sistemas
Mapa conceptual - Auditoría de SistemasMapa conceptual - Auditoría de Sistemas
Mapa conceptual - Auditoría de Sistemas
vmtorrealba
 
Ejercicio máquina de turing
Ejercicio máquina de turingEjercicio máquina de turing
Ejercicio máquina de turing
vmtorrealba
 
Estudios de la complejidad computacional
Estudios de la complejidad computacionalEstudios de la complejidad computacional
Estudios de la complejidad computacional
vmtorrealba
 
Teoría de la complejidad computacional
Teoría de la complejidad computacionalTeoría de la complejidad computacional
Teoría de la complejidad computacional
vmtorrealba
 
Lenguajes aceptados por una maquina de turing
Lenguajes aceptados por una maquina de turingLenguajes aceptados por una maquina de turing
Lenguajes aceptados por una maquina de turing
vmtorrealba
 
Tipos de maquina de turing
Tipos de maquina de turingTipos de maquina de turing
Tipos de maquina de turing
vmtorrealba
 
Elementos de una máquina de turing
Elementos de una máquina de turingElementos de una máquina de turing
Elementos de una máquina de turing
vmtorrealba
 
¿Qué es la máquina de turing y como funciona?
¿Qué es la máquina de turing y como funciona?¿Qué es la máquina de turing y como funciona?
¿Qué es la máquina de turing y como funciona?
vmtorrealba
 
Qué es la máquina de turing
Qué es la máquina de turingQué es la máquina de turing
Qué es la máquina de turing
vmtorrealba
 
Máquina de turing - Complejidad Computacional
Máquina de turing - Complejidad ComputacionalMáquina de turing - Complejidad Computacional
Máquina de turing - Complejidad Computacional
vmtorrealba
 
Prototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
Prototipo del sistema - Sistema Automatizado de Entrevistas de TrabajoPrototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
Prototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
vmtorrealba
 
Ensayo calidad, control y estandarización
Ensayo   calidad, control y estandarizaciónEnsayo   calidad, control y estandarización
Ensayo calidad, control y estandarización
vmtorrealba
 

Más de vmtorrealba (20)

INFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
INFOGRAFÍA LIDERAZGO TRANSFORMACIONALINFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
INFOGRAFÍA LIDERAZGO TRANSFORMACIONAL
 
Mapa conceptual - Antecedentes de la Investigacion
Mapa conceptual - Antecedentes de la InvestigacionMapa conceptual - Antecedentes de la Investigacion
Mapa conceptual - Antecedentes de la Investigacion
 
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONESCOMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
COMPETENCIAS EN EL ANÁLISIS DEL PROBLEMA Y LA TOMA DE DECISIONES
 
DIAPOSITIVAS - GRAMATICAS FORMALES
DIAPOSITIVAS - GRAMATICAS FORMALESDIAPOSITIVAS - GRAMATICAS FORMALES
DIAPOSITIVAS - GRAMATICAS FORMALES
 
EJERCICIOS LENGUAJES FORMALES
EJERCICIOS LENGUAJES FORMALESEJERCICIOS LENGUAJES FORMALES
EJERCICIOS LENGUAJES FORMALES
 
Investigacion expositiva
Investigacion expositivaInvestigacion expositiva
Investigacion expositiva
 
AUTOMATAS Y LENGUAJES FORMALES
AUTOMATAS Y LENGUAJES FORMALESAUTOMATAS Y LENGUAJES FORMALES
AUTOMATAS Y LENGUAJES FORMALES
 
Mapa conceptual victortorrealba
Mapa conceptual   victortorrealbaMapa conceptual   victortorrealba
Mapa conceptual victortorrealba
 
Mapa conceptual - Auditoría de Sistemas
Mapa conceptual - Auditoría de SistemasMapa conceptual - Auditoría de Sistemas
Mapa conceptual - Auditoría de Sistemas
 
Ejercicio máquina de turing
Ejercicio máquina de turingEjercicio máquina de turing
Ejercicio máquina de turing
 
Estudios de la complejidad computacional
Estudios de la complejidad computacionalEstudios de la complejidad computacional
Estudios de la complejidad computacional
 
Teoría de la complejidad computacional
Teoría de la complejidad computacionalTeoría de la complejidad computacional
Teoría de la complejidad computacional
 
Lenguajes aceptados por una maquina de turing
Lenguajes aceptados por una maquina de turingLenguajes aceptados por una maquina de turing
Lenguajes aceptados por una maquina de turing
 
Tipos de maquina de turing
Tipos de maquina de turingTipos de maquina de turing
Tipos de maquina de turing
 
Elementos de una máquina de turing
Elementos de una máquina de turingElementos de una máquina de turing
Elementos de una máquina de turing
 
¿Qué es la máquina de turing y como funciona?
¿Qué es la máquina de turing y como funciona?¿Qué es la máquina de turing y como funciona?
¿Qué es la máquina de turing y como funciona?
 
Qué es la máquina de turing
Qué es la máquina de turingQué es la máquina de turing
Qué es la máquina de turing
 
Máquina de turing - Complejidad Computacional
Máquina de turing - Complejidad ComputacionalMáquina de turing - Complejidad Computacional
Máquina de turing - Complejidad Computacional
 
Prototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
Prototipo del sistema - Sistema Automatizado de Entrevistas de TrabajoPrototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
Prototipo del sistema - Sistema Automatizado de Entrevistas de Trabajo
 
Ensayo calidad, control y estandarización
Ensayo   calidad, control y estandarizaciónEnsayo   calidad, control y estandarización
Ensayo calidad, control y estandarización
 

Clases de complejidad computacional

  • 1. CLASES DE COMPLEJIDAD COMPUTACIONAL DEFINICIÓN DE CLASES DE COMPLEJIDAD COMPUTACIONAL: Las clases de complejidad más sencillas se definen teniendo en cuenta factores como:  El tipo de problema computacional: Los problemas más comúnmente utilizados son los problemas de decisión, pero las clases de complejidad se pueden definir para otros tipos de problemas.  El modelo de cómputo: El modelo de cómputo más común es la Máquina de Turing determinista, pero muchas clases de complejidad se basan en Máquinas de Turing no deterministas, Máquinas de Turing cuánticas, etc.  El recurso (o recursos) que está(n) siendo acotado(s) y la(s) cota(s): Estas dos propiedades usualmente se utilizan juntas, por ejemplo, "tiempo polinomial", "espacio logarítmico", "profundidad constante", etc. CLASE P: La clase P contiene a aquellos problemas que son solubles en tiempo polinómico por una máquina de Turing determinista.5 Para la definición anterior se ha fijado el modelo de cómputo: la Máquina de Turing determinista. Existen distintas variantes de la
  • 2. Máquina de Turing y es conocido que la más débil de ellas puede simular a la más fuerte, adicionando a lo sumo un tiempo polinómico. En las décadas posteriores a la Tesis de Church- Turing surgieron otros modelos de cómputo, y se pudo mostrar que la Máquina de Turing también podía simularlos a lo sumo adicionando también un tiempo polinómico. Por tanto, la clase análoga a P para dichos modelos no es mayor que la clase P para el modelo de cómputo de la máquina de Turing. La clase P juega un papel importante en la teoría de la complejidad computacional debido a que: 1. P es invariante para todos los modelos de cómputo que son polinómicamente equivalentes a la Máquina de Turing determinista. 2. A grandes rasgos, P corresponde a la clase de problemas que, de manera realista, son solubles en una computadora. CLASE NP: La importancia de esta clase de problemas de decisión es que contiene muchos problemas de búsqueda y de optimización para los que se desea saber si existe una cierta solución o si existe una mejor solución que las conocidas. En esta clase están el problema del viajante (también llamado "problema del viajante de comercio" o "problema del agente viajero") donde se quiere saber si existe una ruta óptima que pasa por todos los nodos en un cierto grafo y el problema de satisfacibilidad booleana en donde se
  • 3. desea saber si una cierta fórmula de lógica proposicional puede ser cierta para algún conjunto de valores booleanos para las variables. Dada su importancia, se han hecho muchos esfuerzos para encontrar algoritmos que decidan algún problema de NP en tiempo polinómico. Sin embargo, pareciera que para algunos problemas de NP (los del conjunto NP-completo) no es posible encontrar un algoritmo mejor que simplemente realizar una búsqueda exhaustiva. En el artículo de 2002, "PRIMES is in P", Manindra Agrawal con sus estudiantes1 ,2 encontró un algoritmo que trabaja en tiempo polinómico para el problema de saber si un número es primo. Anteriormente se sabía que ese problema estaba en NP, si bien no en NP-completo, ahora se sabe que también está en P. El primer problema natural que se demostró que es completo NP fue el problema de satisfacibilidad booleana. Este resultado fue demostrado por Stephen Cook en 1971, y se lo llamó el teorema de Cook. La demostración de Cook de que la satisfacibilidad es un problema NP-completo es muy complicada. Sin embargo, después de que este problema se demostrara que es NP-Completo, es fácil demostrar que muchos otros problemas pertenecen a esta clase. Por lo tanto, una amplia clase de problemas en principio inconexos son reducibles unos a otros, y por lo tanto resultan en "el mismo problema" -- un resultado profundo e inesperado.
  • 4. OTRAS CLASES DE COMPLEJIDAD COMPUTACIONAL: AUTOR: TORREALBA VICTOR C.I.: 19.355.605