SlideShare una empresa de Scribd logo
Elasticidad y resortes:
La fuerza electromagnética básica a nivel molecular se pone de
manifiesto en el momento de establecerse contacto entre dos cuerpos. La
vida diaria está llena de fuerzas de contacto como por ejemplo cuerdas,
resortes, objetos apoyados en superficies, estructuras, etc. En todos los
cuerpos sólidos existen fuerzas contrarias de atracción y repulsión, pero
entre las propiedades más importantes de los materiales están sus
características elásticas.
Fue Robert Hooke (1635-1703), físico-matemático, químico y astrónomo
inglés, quien primero demostró el comportamiento sencillo relativo a la
elasticidad de un cuerpo. Hooke estudió los efectos producidos por las
fuerzas de tensión, observó que había un aumento de la longitud del
cuerpo que era proporcional a la fuerza aplicada.
Hooke estableció la ley fundamental que relaciona la fuerza aplicada y la
deformación producida. Para una deformación unidimensional, la Ley de
Hooke se puede expresar matemáticamente así:
= -k
K es la constante de proporcionalidad o de elasticidad.
es la deformación, esto es, lo que se ha comprimido o estirado a partir
del estado que no tiene deformación. Se conoce también como el
alargamiento de su posición de equilibrio.
es la fuerza resistente del sólido.
El signo ( - ) en la ecuación se debe a la fuerza restauradora que tiene
sentido contrario al desplazamiento. La fuerza se opone o se resiste a la
deformación.
Las unidades son: Newton/metro (New/m) – Libras/pies (Lb/p).
La fuerza más pequeña que produce deformación se llama límite de
elasticidad.
El límite de elasticidad es la máxima longitud que puede alargarse un
cuerpo elástico sin que pierda sus características originales. Más allá del
límite elástico las fuerzas no se pueden especificar mediante una función
de energía potencial, porque las fuerzas dependen de muchos factores
entre ellos el tipo de material.
Para fuerzas deformadoras que sobrepasan el límite de elasticidad no es
aplicable la Ley de Hooke.
Por consiguiente, mientras la amplitud de la vibración sea
suficientemente pequeña, esto es, mientras la deformación no exceda el
límite elástico, las vibraciones mecánicas son idénticas a las de los
osciladores armónicos.
Modulo de Elasticidad:
La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal-
tangencial) y sus correspondientes deformaciones desempeña una
función importante en la rama de la física denominada teoría de
elasticidad o su equivalente de ingeniería, resistencias de materiales.
Si se dibuja una gráfica del esfuerzo en función de la correspondiente
deformación, se encuentra que el diagrama resultante esfuerzo-
deformación presenta formas diferentes dependiendo del tipo de
material.
La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal-
tangencial) y sus correspondientes deformaciones desempeña una
función importante en la rama de la física denominada teoría de
elasticidad o su equivalente de ingeniería, resistencias de materiales.
Si se dibuja una gráfica del esfuerzo en función de la correspondiente
deformación, se encuentra que el diagrama resultante esfuerzo-
deformación presenta formas diferentes dependiendo del tipo de
material.
En la primera parte de la curva el esfuerzo y la deformación son
proporcionales hasta alcanzar el punto H , que es el límite de
proporcionalidad . El hecho de que haya una región en la que el esfuerzo
y la deformación son proporcionales, se denomina Ley de Hooke .
De H a E , el esfuerzo y la deformación son proporcionales; no obstante,
si se suprime el esfuerzo en cualquier punto situado entre O y E, la curva
recorrerá el itinerario inverso y el material recuperará su longitud inicial.
En la región OE , se dice que el material es elástico o que presenta
comportamiento elástico, y el punto E se denomina límite de elasticidad o
punto cedente. Hasta alcanzar este punto, las fuerzas ejercidas por el
material son conservativas; cuando el material vuelve a su forma original,
se recupera el trabajo realizado en la producción de la deformación. Se
dice que la deformación es reversible.
Si se sigue cargando el material, la deformación aumenta rápidamente,
pero si se suprime la carga en cualquier punto más allá de E , por
ejemplo C , el material no recupera su longitud inicial. El objeto pierde sus
características de cohesión molecular. La longitud que corresponde a
esfuerzo nulo es ahora mayor que la longitud inicial, y se dice que el
material presenta unadeformación permanente . Al aumentar la carga
más allá de C , se produce gran aumento de la deformación (incluso si
disminuye el esfuerzo) hasta alcanzar el punto R , donde se produce la
fractura o ruptura. Desde E hasta R , se dice que el metal sufre de
formación plástica.
Una deformación plástica es irreversible. Si la deformación plástica entre
el límite de elasticidad y el punto de fractura es grande, el metal es dúctil.
Sin embargo, si la fractura tiene lugar después del límite de elasticidad, el
metal se denomina quebradizo.
La mayor parte de las estructuras se diseñan para sufrir pequeñas
deformaciones, que involucran solo la parte lineal del diagrama esfuerzo-
deformación, donde el esfuerzo P es directamente proporcional a la
deformación unitaria D y puede escribirse:
P = Y.D. Donde Y es el módulo de elasticidad o módulo de Young.
Resortes:
El resorte es un dispositivo fabricado con un material elástico, que
experimenta una deformación significativa pero reversible cuando se le
aplica una fuerza. Los resortes se utilizan para pesar objetos en las
básculas de resorte o para almacenar energía mecánica, como en los
relojes de cuerda. Los resortes también se emplean para absorber
impactos y reducir vibraciones, como en los resortes de ballestas (donde
se apoyan los ejes de las ruedas) empleados en las suspensiones de
automóvil.
La forma de los resortes depende de su uso.
En una báscula de resorte, por ejemplo, suele estar arrollado en forma de
hélice, y su elongación (estiramiento) es proporcional a la fuerza
aplicada. Estos resortes helicoidales reciben el nombre de muelles. Los
resortes de relojes están arrollados en forma de espiral. Los resortes de
ballesta están formados por un conjunto de láminas u hojas situadas una
sobre otra.
Sistemas de resortes:
Los resortes se pueden configurar en sistemas en serie y paralelo.
Sistemas de resorte en serie:
Cuando se dispone los resortes uno a continuación del otro.
Para determinar la constante elástica equivalente (keq) se define de la
siguiente manera:
Por ejemplo:
Para dos resortes iguales la constante de elasticidad del sistema es: k / 2
Para n resortes iguales la constante de elasticidad del sistema es: k / n.
Si se coloca dos resortes diferentes en serie la constante de elasticidad
equivalente del sistema es:
Sistema de resortes en paralelo
Cuando los resortes tienen un punto común de conexión.
Para determinar la constante elástica equivalente
( keq) se define de la siguiente manera:
Por ejemplo:
Para dos resortes iguales la constante de elasticidad del sistema es; 2k.
Para n resortes iguales la constante de elasticidad del sistema es: n k
Para dos resortes diferentes en paralelos la constante de elasticidad del
sistema es:
k = k1 + k2
Algunos Tipos De Resortes:
Elasticidad y resortes

Más contenido relacionado

La actualidad más candente

centro de masa
centro de masacentro de masa
Tabla de integrales inmediatas- con ejemplos
Tabla de integrales inmediatas- con ejemplosTabla de integrales inmediatas- con ejemplos
Tabla de integrales inmediatas- con ejemplos
Daniela Daffunchio Diez
 
Ejercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-CarbonoEjercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-Carbono
Roy Roger Zamudio Orbeso
 
DINAMICA CLASE VI.pdf
DINAMICA CLASE VI.pdfDINAMICA CLASE VI.pdf
DINAMICA CLASE VI.pdf
EdwinGarciaCubas
 
Determinantes con matrices
Determinantes con matricesDeterminantes con matrices
Determinantes con matrices
Crist Oviedo
 
Laboratorio resortes analisis
Laboratorio resortes analisisLaboratorio resortes analisis
Laboratorio resortes analisis
Diego Fernando Rodriguez Guarin
 
Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12
EliotHdz10
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materiales
RJosue2015
 
Esfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasEsfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigas
Jess Lee
 
Movimiento de Varias Partículas
Movimiento de Varias Partículas Movimiento de Varias Partículas
Movimiento de Varias Partículas
Carlos Alvarez
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
Ignacio Roldán Nogueras
 
2 estatica de las particulas estatica
2 estatica de las particulas estatica2 estatica de las particulas estatica
2 estatica de las particulas estatica
jrubio802
 
Equilibrio del cuerpo rigido y dinámica de rotación
Equilibrio del cuerpo rigido y dinámica de rotaciónEquilibrio del cuerpo rigido y dinámica de rotación
Equilibrio del cuerpo rigido y dinámica de rotación
Sergio Barrios
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingeniería
Abel Rivera Cervantes
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídos
Ebnezr Decena
 
Torsion (3)
Torsion (3)Torsion (3)
Torsion (3)
Eyair Tovar
 
Dinamica grupo 9-ejercicios
Dinamica grupo 9-ejerciciosDinamica grupo 9-ejercicios
Dinamica grupo 9-ejercicios
etubay
 
Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.
Ignacio Roldán Nogueras
 
Problemas sobre la ley de gauss
Problemas sobre la ley de gaussProblemas sobre la ley de gauss
Problemas sobre la ley de gauss
alejaescalante
 
MéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto FijoMéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto Fijo
lisset neyra
 

La actualidad más candente (20)

centro de masa
centro de masacentro de masa
centro de masa
 
Tabla de integrales inmediatas- con ejemplos
Tabla de integrales inmediatas- con ejemplosTabla de integrales inmediatas- con ejemplos
Tabla de integrales inmediatas- con ejemplos
 
Ejercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-CarbonoEjercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-Carbono
 
DINAMICA CLASE VI.pdf
DINAMICA CLASE VI.pdfDINAMICA CLASE VI.pdf
DINAMICA CLASE VI.pdf
 
Determinantes con matrices
Determinantes con matricesDeterminantes con matrices
Determinantes con matrices
 
Laboratorio resortes analisis
Laboratorio resortes analisisLaboratorio resortes analisis
Laboratorio resortes analisis
 
Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12Beer dinamica 9na solucionario 12
Beer dinamica 9na solucionario 12
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materiales
 
Esfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasEsfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigas
 
Movimiento de Varias Partículas
Movimiento de Varias Partículas Movimiento de Varias Partículas
Movimiento de Varias Partículas
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
 
2 estatica de las particulas estatica
2 estatica de las particulas estatica2 estatica de las particulas estatica
2 estatica de las particulas estatica
 
Equilibrio del cuerpo rigido y dinámica de rotación
Equilibrio del cuerpo rigido y dinámica de rotaciónEquilibrio del cuerpo rigido y dinámica de rotación
Equilibrio del cuerpo rigido y dinámica de rotación
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingeniería
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídos
 
Torsion (3)
Torsion (3)Torsion (3)
Torsion (3)
 
Dinamica grupo 9-ejercicios
Dinamica grupo 9-ejerciciosDinamica grupo 9-ejercicios
Dinamica grupo 9-ejercicios
 
Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.
 
Problemas sobre la ley de gauss
Problemas sobre la ley de gaussProblemas sobre la ley de gauss
Problemas sobre la ley de gauss
 
MéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto FijoMéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto Fijo
 

Similar a Elasticidad y resortes

Ley de los Resortes
Ley de los ResortesLey de los Resortes
Ley de los Resortes
AngelicaAMGarcia
 
Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5
Johan Moya
 
Elmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iiiElmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iii
Andres Gonzalo
 
Elmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iiiElmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iii
Andres Gonzalo
 
Capítulo I, II y III
Capítulo I, II y IIICapítulo I, II y III
Capítulo I, II y III
Johan Moya
 
Resortes
ResortesResortes
Ley de hooke
Ley de hookeLey de hooke
Ley de hooke
Ernesto Yañez Rivera
 
Ley de los resortes
Ley de los resortesLey de los resortes
Ley de los resortes
Yexica Bello Montoya
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
Maria Aular
 
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDROESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
PradoJose90
 
Resortes, Leyes que rigen los resortes
Resortes, Leyes que rigen los resortesResortes, Leyes que rigen los resortes
Resortes, Leyes que rigen los resortes
Mariana Sánchez
 
Leyes que rigen los resortes
Leyes que rigen los resortesLeyes que rigen los resortes
Leyes que rigen los resortes
yenny0
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
AriannysG
 
MAS
MASMAS
Instituto universitario de tecnología
Instituto universitario de tecnologíaInstituto universitario de tecnología
Instituto universitario de tecnología
Angel Rojas
 
Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)
Vladimir Espinoza O
 
elementos de maquina.
elementos de maquina.elementos de maquina.
elementos de maquina.
johanguevara
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación
jesusjmartinez
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
luisindriago
 
José julián martí pérez
José julián martí pérezJosé julián martí pérez
José julián martí pérez
julio vanegas
 

Similar a Elasticidad y resortes (20)

Ley de los Resortes
Ley de los ResortesLey de los Resortes
Ley de los Resortes
 
Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5
 
Elmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iiiElmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iii
 
Elmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iiiElmentos de maquinas cap i,ii y iii
Elmentos de maquinas cap i,ii y iii
 
Capítulo I, II y III
Capítulo I, II y IIICapítulo I, II y III
Capítulo I, II y III
 
Resortes
ResortesResortes
Resortes
 
Ley de hooke
Ley de hookeLey de hooke
Ley de hooke
 
Ley de los resortes
Ley de los resortesLey de los resortes
Ley de los resortes
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDROESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
ESFUERZO Y DEFORMACIÓN - PRADO MILLAN, JOSE ALEJANDRO
 
Resortes, Leyes que rigen los resortes
Resortes, Leyes que rigen los resortesResortes, Leyes que rigen los resortes
Resortes, Leyes que rigen los resortes
 
Leyes que rigen los resortes
Leyes que rigen los resortesLeyes que rigen los resortes
Leyes que rigen los resortes
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
 
MAS
MASMAS
MAS
 
Instituto universitario de tecnología
Instituto universitario de tecnologíaInstituto universitario de tecnología
Instituto universitario de tecnología
 
Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)
 
elementos de maquina.
elementos de maquina.elementos de maquina.
elementos de maquina.
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
José julián martí pérez
José julián martí pérezJosé julián martí pérez
José julián martí pérez
 

Último

HERRAMIENTAS WEB--------------------.pptx
HERRAMIENTAS WEB--------------------.pptxHERRAMIENTAS WEB--------------------.pptx
HERRAMIENTAS WEB--------------------.pptx
maralache30
 
Projecte Iniciativa TIC 2024 HPE. inCV.pdf
Projecte Iniciativa TIC 2024 HPE. inCV.pdfProjecte Iniciativa TIC 2024 HPE. inCV.pdf
Projecte Iniciativa TIC 2024 HPE. inCV.pdf
Festibity
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
CesarPazosQuispe
 
IA en entornos rurales aplicada a la viticultura
IA en entornos rurales aplicada a la viticulturaIA en entornos rurales aplicada a la viticultura
IA en entornos rurales aplicada a la viticultura
Miguel Rebollo
 
mantenimiento de chasis y carroceria1.pptx
mantenimiento de chasis y carroceria1.pptxmantenimiento de chasis y carroceria1.pptx
mantenimiento de chasis y carroceria1.pptx
MiguelAtencio10
 
Nuevos tiempos, nuevos espacios.docxdsdsad
Nuevos tiempos, nuevos espacios.docxdsdsadNuevos tiempos, nuevos espacios.docxdsdsad
Nuevos tiempos, nuevos espacios.docxdsdsad
larapalaciosmonzon28
 
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
alejandromanuelve
 
Manual de Soporte y mantenimiento de equipo de cómputos
Manual de Soporte y mantenimiento de equipo de cómputosManual de Soporte y mantenimiento de equipo de cómputos
Manual de Soporte y mantenimiento de equipo de cómputos
cbtechchihuahua
 
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
AMADO SALVADOR
 
Manual de soporte y mantenimiento de equipo de cómputo
Manual de soporte y mantenimiento de equipo de cómputoManual de soporte y mantenimiento de equipo de cómputo
Manual de soporte y mantenimiento de equipo de cómputo
doctorsoluciones34
 
Presentacion de Estado del Arte del The Clean
Presentacion de Estado del Arte del The CleanPresentacion de Estado del Arte del The Clean
Presentacion de Estado del Arte del The Clean
juanchogame18
 
herramientas de sitio web 3.0 2024
herramientas de sitio web 3.0  2024herramientas de sitio web 3.0  2024
herramientas de sitio web 3.0 2024
julio05042006
 
Actividad Conceptos básicos de programación.pdf
Actividad Conceptos básicos de programación.pdfActividad Conceptos básicos de programación.pdf
Actividad Conceptos básicos de programación.pdf
NajwaNimri1
 
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdfProjecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
Festibity
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
LilibethEstupian
 
Informació Projecte Iniciativa TIC HPE.pdf
Informació Projecte Iniciativa TIC HPE.pdfInformació Projecte Iniciativa TIC HPE.pdf
Informació Projecte Iniciativa TIC HPE.pdf
Festibity
 
Manual Web soporte y mantenimiento de equipo de computo
Manual Web soporte y mantenimiento de equipo de computoManual Web soporte y mantenimiento de equipo de computo
Manual Web soporte y mantenimiento de equipo de computo
mantenimientocarbra6
 
Computacion cuántica y sus ventajas y desventajas
Computacion cuántica y sus ventajas y desventajasComputacion cuántica y sus ventajas y desventajas
Computacion cuántica y sus ventajas y desventajas
sofiahuarancabellido
 
Conceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdfConceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdf
ValeriaAyala48
 
Presentación de Tic en educación y sobre blogger
Presentación de Tic en educación y sobre bloggerPresentación de Tic en educación y sobre blogger
Presentación de Tic en educación y sobre blogger
larapalaciosmonzon28
 

Último (20)

HERRAMIENTAS WEB--------------------.pptx
HERRAMIENTAS WEB--------------------.pptxHERRAMIENTAS WEB--------------------.pptx
HERRAMIENTAS WEB--------------------.pptx
 
Projecte Iniciativa TIC 2024 HPE. inCV.pdf
Projecte Iniciativa TIC 2024 HPE. inCV.pdfProjecte Iniciativa TIC 2024 HPE. inCV.pdf
Projecte Iniciativa TIC 2024 HPE. inCV.pdf
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
 
IA en entornos rurales aplicada a la viticultura
IA en entornos rurales aplicada a la viticulturaIA en entornos rurales aplicada a la viticultura
IA en entornos rurales aplicada a la viticultura
 
mantenimiento de chasis y carroceria1.pptx
mantenimiento de chasis y carroceria1.pptxmantenimiento de chasis y carroceria1.pptx
mantenimiento de chasis y carroceria1.pptx
 
Nuevos tiempos, nuevos espacios.docxdsdsad
Nuevos tiempos, nuevos espacios.docxdsdsadNuevos tiempos, nuevos espacios.docxdsdsad
Nuevos tiempos, nuevos espacios.docxdsdsad
 
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
Informe DATA & IA 2024 Primera encuesta sobre el uso de IA en las empresas pe...
 
Manual de Soporte y mantenimiento de equipo de cómputos
Manual de Soporte y mantenimiento de equipo de cómputosManual de Soporte y mantenimiento de equipo de cómputos
Manual de Soporte y mantenimiento de equipo de cómputos
 
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
Catalogo General Electrodomesticos Teka Distribuidor Oficial Amado Salvador V...
 
Manual de soporte y mantenimiento de equipo de cómputo
Manual de soporte y mantenimiento de equipo de cómputoManual de soporte y mantenimiento de equipo de cómputo
Manual de soporte y mantenimiento de equipo de cómputo
 
Presentacion de Estado del Arte del The Clean
Presentacion de Estado del Arte del The CleanPresentacion de Estado del Arte del The Clean
Presentacion de Estado del Arte del The Clean
 
herramientas de sitio web 3.0 2024
herramientas de sitio web 3.0  2024herramientas de sitio web 3.0  2024
herramientas de sitio web 3.0 2024
 
Actividad Conceptos básicos de programación.pdf
Actividad Conceptos básicos de programación.pdfActividad Conceptos básicos de programación.pdf
Actividad Conceptos básicos de programación.pdf
 
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdfProjecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
Projecte Iniciativa TIC 2024 KAWARU CONSULTING. inCV.pdf
 
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVATECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
TECLADO ERGONÓMICO Y PANTALLAS TACTILES - GESTIÓN INTEGRAL EDUCATIVA
 
Informació Projecte Iniciativa TIC HPE.pdf
Informació Projecte Iniciativa TIC HPE.pdfInformació Projecte Iniciativa TIC HPE.pdf
Informació Projecte Iniciativa TIC HPE.pdf
 
Manual Web soporte y mantenimiento de equipo de computo
Manual Web soporte y mantenimiento de equipo de computoManual Web soporte y mantenimiento de equipo de computo
Manual Web soporte y mantenimiento de equipo de computo
 
Computacion cuántica y sus ventajas y desventajas
Computacion cuántica y sus ventajas y desventajasComputacion cuántica y sus ventajas y desventajas
Computacion cuántica y sus ventajas y desventajas
 
Conceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdfConceptos básicos de programación 10-5.pdf
Conceptos básicos de programación 10-5.pdf
 
Presentación de Tic en educación y sobre blogger
Presentación de Tic en educación y sobre bloggerPresentación de Tic en educación y sobre blogger
Presentación de Tic en educación y sobre blogger
 

Elasticidad y resortes

  • 1. Elasticidad y resortes: La fuerza electromagnética básica a nivel molecular se pone de manifiesto en el momento de establecerse contacto entre dos cuerpos. La vida diaria está llena de fuerzas de contacto como por ejemplo cuerdas, resortes, objetos apoyados en superficies, estructuras, etc. En todos los cuerpos sólidos existen fuerzas contrarias de atracción y repulsión, pero entre las propiedades más importantes de los materiales están sus características elásticas. Fue Robert Hooke (1635-1703), físico-matemático, químico y astrónomo inglés, quien primero demostró el comportamiento sencillo relativo a la elasticidad de un cuerpo. Hooke estudió los efectos producidos por las fuerzas de tensión, observó que había un aumento de la longitud del cuerpo que era proporcional a la fuerza aplicada. Hooke estableció la ley fundamental que relaciona la fuerza aplicada y la deformación producida. Para una deformación unidimensional, la Ley de Hooke se puede expresar matemáticamente así: = -k K es la constante de proporcionalidad o de elasticidad. es la deformación, esto es, lo que se ha comprimido o estirado a partir
  • 2. del estado que no tiene deformación. Se conoce también como el alargamiento de su posición de equilibrio. es la fuerza resistente del sólido. El signo ( - ) en la ecuación se debe a la fuerza restauradora que tiene sentido contrario al desplazamiento. La fuerza se opone o se resiste a la deformación. Las unidades son: Newton/metro (New/m) – Libras/pies (Lb/p). La fuerza más pequeña que produce deformación se llama límite de elasticidad. El límite de elasticidad es la máxima longitud que puede alargarse un cuerpo elástico sin que pierda sus características originales. Más allá del límite elástico las fuerzas no se pueden especificar mediante una función de energía potencial, porque las fuerzas dependen de muchos factores entre ellos el tipo de material. Para fuerzas deformadoras que sobrepasan el límite de elasticidad no es aplicable la Ley de Hooke. Por consiguiente, mientras la amplitud de la vibración sea suficientemente pequeña, esto es, mientras la deformación no exceda el límite elástico, las vibraciones mecánicas son idénticas a las de los osciladores armónicos. Modulo de Elasticidad: La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal- tangencial) y sus correspondientes deformaciones desempeña una función importante en la rama de la física denominada teoría de elasticidad o su equivalente de ingeniería, resistencias de materiales. Si se dibuja una gráfica del esfuerzo en función de la correspondiente deformación, se encuentra que el diagrama resultante esfuerzo- deformación presenta formas diferentes dependiendo del tipo de
  • 3. material. La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal- tangencial) y sus correspondientes deformaciones desempeña una función importante en la rama de la física denominada teoría de elasticidad o su equivalente de ingeniería, resistencias de materiales. Si se dibuja una gráfica del esfuerzo en función de la correspondiente deformación, se encuentra que el diagrama resultante esfuerzo- deformación presenta formas diferentes dependiendo del tipo de material. En la primera parte de la curva el esfuerzo y la deformación son proporcionales hasta alcanzar el punto H , que es el límite de proporcionalidad . El hecho de que haya una región en la que el esfuerzo y la deformación son proporcionales, se denomina Ley de Hooke . De H a E , el esfuerzo y la deformación son proporcionales; no obstante, si se suprime el esfuerzo en cualquier punto situado entre O y E, la curva recorrerá el itinerario inverso y el material recuperará su longitud inicial. En la región OE , se dice que el material es elástico o que presenta comportamiento elástico, y el punto E se denomina límite de elasticidad o punto cedente. Hasta alcanzar este punto, las fuerzas ejercidas por el material son conservativas; cuando el material vuelve a su forma original, se recupera el trabajo realizado en la producción de la deformación. Se dice que la deformación es reversible. Si se sigue cargando el material, la deformación aumenta rápidamente, pero si se suprime la carga en cualquier punto más allá de E , por ejemplo C , el material no recupera su longitud inicial. El objeto pierde sus características de cohesión molecular. La longitud que corresponde a esfuerzo nulo es ahora mayor que la longitud inicial, y se dice que el material presenta unadeformación permanente . Al aumentar la carga más allá de C , se produce gran aumento de la deformación (incluso si disminuye el esfuerzo) hasta alcanzar el punto R , donde se produce la fractura o ruptura. Desde E hasta R , se dice que el metal sufre de
  • 4. formación plástica. Una deformación plástica es irreversible. Si la deformación plástica entre el límite de elasticidad y el punto de fractura es grande, el metal es dúctil. Sin embargo, si la fractura tiene lugar después del límite de elasticidad, el metal se denomina quebradizo. La mayor parte de las estructuras se diseñan para sufrir pequeñas deformaciones, que involucran solo la parte lineal del diagrama esfuerzo- deformación, donde el esfuerzo P es directamente proporcional a la deformación unitaria D y puede escribirse: P = Y.D. Donde Y es el módulo de elasticidad o módulo de Young. Resortes: El resorte es un dispositivo fabricado con un material elástico, que experimenta una deformación significativa pero reversible cuando se le aplica una fuerza. Los resortes se utilizan para pesar objetos en las básculas de resorte o para almacenar energía mecánica, como en los relojes de cuerda. Los resortes también se emplean para absorber impactos y reducir vibraciones, como en los resortes de ballestas (donde se apoyan los ejes de las ruedas) empleados en las suspensiones de automóvil. La forma de los resortes depende de su uso. En una báscula de resorte, por ejemplo, suele estar arrollado en forma de hélice, y su elongación (estiramiento) es proporcional a la fuerza aplicada. Estos resortes helicoidales reciben el nombre de muelles. Los resortes de relojes están arrollados en forma de espiral. Los resortes de ballesta están formados por un conjunto de láminas u hojas situadas una sobre otra. Sistemas de resortes: Los resortes se pueden configurar en sistemas en serie y paralelo.
  • 5. Sistemas de resorte en serie: Cuando se dispone los resortes uno a continuación del otro. Para determinar la constante elástica equivalente (keq) se define de la siguiente manera: Por ejemplo: Para dos resortes iguales la constante de elasticidad del sistema es: k / 2 Para n resortes iguales la constante de elasticidad del sistema es: k / n. Si se coloca dos resortes diferentes en serie la constante de elasticidad equivalente del sistema es: Sistema de resortes en paralelo Cuando los resortes tienen un punto común de conexión. Para determinar la constante elástica equivalente ( keq) se define de la siguiente manera: Por ejemplo: Para dos resortes iguales la constante de elasticidad del sistema es; 2k. Para n resortes iguales la constante de elasticidad del sistema es: n k Para dos resortes diferentes en paralelos la constante de elasticidad del sistema es: k = k1 + k2
  • 6. Algunos Tipos De Resortes: