GEOMETRIA
   DESCRIPTIVA
INTRODUCCION
• La Arquitectura y el Urbanismo históricamente y en la actualidad
  se proyectan y construyen sobre principios formales y
  compositivos universales dentro de los cuales la geometría es
  fundamental.
• Dice William Blackwell, arquitecto norteamericano, que la
  Geometría es el esqueleto de la Arquitectura, lo que no esta
  alejado de la realidad ya que toda obra arquitectónica o urbana
  nace de diferentes trazos en el plano bidimensional del papel y
  se concretiza en la formalidad material tridimensional en la que
  vivimos: nuestro medio ambiente natural o artificial.
• Las relaciones geométricas dan formalidad a la obra
  arquitectónica y urbana, tanto a nivel bidimensional como
  tridimensional, por tanto el futuro arquitecto debe ser capaz de
  percibir y representar en un plano bidimensional su entorno
  tridimensional, así como la proyección de nuevos espacios de
  actividad humana.
La asignatura de Geometría Descriptiva pretende desarrollar y
perfeccionar la capacidad de percepción y representación
tridimensional en un plano bidimensional para que los futuros
arquitectos puedan proyectar con calidad formal y técnica los
distintos espacios funcionales arquitectónicos o urbanos que la
sociedad demanda.

Previamente el estudiante deberá haber cursado y aprobado el
curso propedéutico de la carrera de arquitectura a fin de que
tenga manejo previo del uso de los instrumentos, valor y calidad de
líneas, uso de escalas, cotas, construcciones Geométricas, etc.

OBJETIVO GENERAL

Conocer y saber aplicar los principios básicos de la Geometría
Descriptiva en la solución de problemas de la Arquitectura y el
Urbanismo.
OBJETIVOS ESPECIFICOS

• Conocer los principios básicos de las proyecciones ortogonales
  para la percepción y representación de espacios tridimensionales
  en el plano bidimensional del papel.

• Saber los procedimientos fundamentales para la representación
  en diferentes vistas de un objeto arquitectónico y su posterior
  materialización en un modelo a escala.

• Saber aplicar los principios y procedimientos de las Proyecciones
  Ortogonales en la percepción y representación de sombras
  elementales y complejas

• Desarrollar soluciones volumétricas, formal y técnicamente
  aceptables, en la composición arquitectónica desde el punto de
  vista geométrico, asegurando con ello su lógica constructiva.
Introducción a la Geometría Descriptiva


• Puede decirse que la Geometría Descriptiva como ciencia se
  inicia en 1790 con Gaspard Monge, Matemático e Ingeniero
  Militar francés; quien ideó la manera de determinar los
  ángulos de corte en las piedras utilizadas para construir
  fortificaciones mediante un análisis gráfico, las que deberían
  ser trabajadas con precisión para unirlas entre sí, de modo
  que la torre o muro pudiera soportar su propio peso y con la
  rigidez necesaria para soportar el bombardeo.

• Dichos ángulos se determinaban con cálculos aritméticos
  muy laboriosos, mientras con el análisis de Monge esto se
  realizó en un tiempo sin precedentes. Dicho análisis originó la
  teoría de la Geometría Descriptiva como una nueva rama de la
  ciencia. Debido al significado militar de los estudios de
  Monge; debieron mantenerse en secreto varios años y hasta
  en 1795 se comenzó a publicar en forma de artículos en
  revistas de las escuelas normales, ya en 1798 se publicó el
  libro "Geometrie Descriptive'' con la teoria completa del
  análisis gráfico, propuesto por Monge.
Métodos de Representación Tridimensional: en el desarrollo
histórico de la Geometría Descriptiva se han desarrollado
distintos Métodos de Representación Tridimensional que son
los procedimientos que permiten determinar la imagen o
representación precisa de cualquier figura u objeto. Estos han
evolucionado paulatinamente.

Los métodos de representación tridimensional dependen del
Tipo de Proyección en que se fundamenta, lo que no es más
que la posición del centro de proyección con respecto al plano
de proyección determinando la forma en que las líneas
proyectantes inciden sobre dicho plano.
La Proyección Central o Cónica: el centro de proyección se ubica
en un punto finito y por el pasan todas las líneas proyectantes,
antes de reflejar la imagen en el plano de proyección. Este tipo de
proyección es comúnmente conocida como Perspectiva
entendida como el resultado de la percepción del ojo humano de
los espacios en que se desarrolla, por lo que se considera la mas
cercana a la realidad.
La Proyección Paralela o Cilíndrica el centro de proyección se
considera en el infinito, las líneas de proyección son paralelas
entre sí, y son tangentes a los límites de la figura u objeto a
reflejar en el plano de proyección

Esta forma de proyección es convencional, por la ubicación del
centro de proyección, en ella las líneas de proyección se
consideran perpendiculares al plano de proyección y paralelas
entre sí, de lo que resulta la denominada Proyección Ortogonal.
Proyección Ortogonal en un Plano de Proyección: permitía conocer la
representación de una figura u objeto en un espacio bidimensional, definiendo dos
dimensiones del mismo directamente en un sólo plano de proyección cada uno de
los puntos componentes era imagen de infinitos puntos, por lo que para conocer la
altura de cada uno de ellos debía elaborarse la escala de alturas en una tabla
numérica de referencia. Esta situación complicaba y retrasaba la comprensión clara
y directa de lo representado.




 Proyección Ortogonal en Dos Planos de Proyección: ante este problema de
 manejo espacial Monge propuso un segundo plano de proyección
 perpendicular al primero obteniendo con ello una segunda imagen de la figura
 u objeto analizado en la que se apreció las alturas de cada punto, obviando así
 la necesidad de la escala de alturas. Este método de proyección ortogonal
 denominado Proyección Diédrica, aseguró fuerza de expresión, precisión y
 fácil medición de las imágenes de cada plano de proyección.
La solución de múltiples problemas de
Geometría Descriptiva se logró con la
proyección de vistas en solo dos planos, pero
algunos problemas demandaron una tercera
vista, que debido a su complejidad requerían
hacerlos más claros y fáciles de entender.




Proyección Ortogonal en Tres Planos de
Proyección: en el anterior sistema teníamos un
plano vertical y uno horizontal mutuamente
perpendiculares, el tercer plano en utilizarse fue
un segundo plano vertical perpendicular
también a los primeros En éste sistema
denominado Proyección Triédrica el espacio
queda dividido en ocho regiones llamados
octantes. El primer octante es el espacio más
próximo al observador y es el que dá paso a un
sistema de proyecciones más simple y de fácil
manejo.
Proyección Ortogonal del cubo opaco: el primer
octante ofrece una vista horizontal y dos
verticales, mostrando el plano horizontal inferior
la vista superior del objeto analizado, el plano
vertical lateral izquierdo muestra el perfil derecho
y el vertical posterior muestra la vista de frente
del objeto.

El primer octante cerrado como un cubo de seis
caras opacas, muestran en su interior las vistas
del objeto, para analizarse se abre a un solo
plano a partir de sus caras interiores
destacándose las vistas que ofrece originalmente
fuera del cubo no se pueden apreciar las vistas
del objeto.

Este sistema se utiliza principalmente en Europa
y en algunos países latinoamericanos.
Ambos métodos funcionan, es indispensable el
dominio completo de ambos sistemas, pero el
tiempo disponible de estudio obliga a enfatizar
uno de ellos. Por experiencia, se comprende
mejor el segundo, 'y es el que se detalla en el
desarrollo de nuestro curso; aunque en algunas
etapas se deberá utilizar también el primero.
Proyección Ortogonal del Cubo de-Cristal: se
parte siempre de un octante del sistema
triédrico,   en   este     caso     del   tercero
considerándolo    también     un    Cubo,    pero
totalmente transparente. Por lo tanto desde fuera
de el se aprecian seis vistas distintas de un
mismo objeto, y al llevarlas a un solo plano se
hace a partir de sus vistas exteriores, que son
las que muestran el objeto.



El plano horizontal, que esta sobre el objeto,
muestra su vista superior. El plano vertical
lateral, a la derecha del objeto, muestra su
perfil derecho, mientras el plano vertical al
frente del objeto, muestra la vista, frontal del
mismo.

En ambos sistemas obtenemos iguales puntos
de vista de un objeto, pero ordenados de forma
distinta. En el primero el plano de referencia se
ubica atrás o abajo del objeto, mientras en el
segundo se ubica entre el observador y el
objeto.
Proyección Ortogonal: método para representar objetos tridimensionales
   por medio del uso de vistas proyectadas sobre planos de proyección
   con líneas de proyección paralelas entre sí y perpendiculares a los
   planos.

La proyección ortogonal como método de representación posee diversas
Propiedades, entre las que tenemos:

a) Cada punto y cada línea dispuestos en el espacio, tienen en el plano de
    proyección al menos una proyección.
b) Cada punto y cada línea sobre el plano de proyección, puede ser la
    proyección de infinidad de puntos y líneas dispuestos en el espacio.
c) Para construir la proyección de una línea recta es suficiente proyectar
    dos de sus puntos y trazar una línea recta que una las proyecciones
    obtenidas de estos puntos.
d) La línea recta se proyecta en general, en forma de línea recta, siempre
    que no sea paralela a la dirección de las líneas proyectantes ya que
    proyectaría un punto.
e) Si un punto pertenece a la recta, entonces la proyección del punto
    pertenece a la proyección de la recta.
f) La relación entre los segmentos de la línea recta es igual a la de sus
    proyecciones.
Vistas Principales: la proyección ortogonal permite dibujar Seis Vistas
Principales de un objeto dado. Estas vistas las obtenemos introduciendo
el objeto en un cubo imaginario transparente formado por Seis Planos de
Proyección, sobre los que se proyectan dichas vistas.

Los planos de proyección son mutuamente perpendiculares y muestran
dos vistas horizontales del objeto y cuatro verticales. Estos planos son:
Horizontal Superior e Inferior, Frontal, Posterior, y Lateral Derecho e
Izquierdo.
Planos Principales de Proyección: debido a lo complejo que resulta percibir
de una vez las seis vistas que los seis planos de proyección nos muestran
de un objeto tridimensional, en un espacio bidimensional; prácticamente
nunca se utilizan en su totalidad, por lo que
                   convencionalmente se trabaja únicamente en tres
                   planos de proyección denominados Planos Principales
                   de Proyección, y son: el horizontal superior, el frontal y
                   el lateral derecho nombrados simplemente Horizontal,
                   Frontal y Perfil. Dichos planos principales de
                   proyección nos muestran entonces las llamadas Tres
                   Vistas Principales de un objeto.
En matemática la ubicación de
                                         puntos, rectas, planos o volúmenes
                                         en el espacio se realiza mediante
                                         coordenadas (x, y, z) a partir del plano
                                         cartesiano. En Geometría Descriptiva
a
                                         se ubican mediante direcciones,
                                    a
r                                   r
                                                               las cuales se
ri                                  ri                         basan en las
b
a
                                    b                          mismas
                                    a
                                                               coordenadas,
                   a                                           pero            se
             a
             b     b                                           interpretan
             a     a                                           espacialmente,
                   j
             j
                   o
                                                               no
             o
                                                               numéricamente.



Línea de Pliegue H/F equivale a X
Línea de Pliegue H/P equivale a Y
Línea de Pliegue F/P equivale a Z
Para lograr la visión tridimensional de los objetos en el cubo imaginario a pesar
de mostrarlo en un espacio bidimensional se debe conocer las características de
la denominada Proyección Axonométrica, (axis:eje) que es una forma de
proyección ortogonal en la cual el objeto dentro del cubo se coloca con ninguna
de sus caras paralelas al plano de dibujo proyectándose perpendicularmente
sobre el plano de proyección, con líneas de proyección paralelas.




Esta posición oblicua del objeto, resulta de girarlo e inclinarlo con respecto a los
PPP. Esto se puede notar claramente en los planos horizontal (giro) y de perfil
(inclinación), lo que nos permite la representación tridimensional buscada,
obtenida en la vista frontal.
Proyección Ortogonal de Rectas:
la recta, representada por al menos dos de sus puntos componentes, se
presenta en proyecciones ortogonales en tres situaciones específicas, que
dependen de la posición de la recta respecto a los planos de proyección.
Debe decirse que la recta tiene una dimensión, ya que sólo puede medirse
en un sentido por tanto tiene una determinada longitud únicamente.

Cuando la recta se sitúa paralela al plano de proyección, se verá en su
verdadera longitud ó magnitud (VL.) en el plano al cual se proyecta paralela.
Si la recta está situada perpendicular al plano de proyección se verá
como si fuese un punto, o sea vista de punta (VP) en el plano al cual se
proyecta perpendicular.
Si la recta no se encuentra paralela ni perpendicular a ningún plano de
proyección, no aparecerá en su verdadera longitud ni vista de punta, se
dice que aparece deformada o escorzada.
De acuerdo a las posiciones mencionadas las rectas se conocen como
rectas principales, proyectantes y oblicuas respectivamente; las rectas
principales y proyectantes complementan su notación tomando el
nombre del plano de proyección en que aparecen en verdadera
dimensión o vista de punta.

Proyección Ortogonal de Planos:
el plano representado por al menos tres de sus puntos componentes. En
   proyecciones ortogonales existen cinco formas de representar un
   plano:
a) Por tres puntos no lineales.
b) Por una recta y un punto situado fuera de ella.
c) Por dos rectas que se Intersecan.
d) Por dos rectas paralelas entre si.
e) Por cualquier figura geométrica plana.

Al igual que las rectas, los planos se visualizan en proyecciones
   ortogonales de distintas formas según la posición que tienen respecto
   a los planos de proyección. Debe decirse que los planos tienen dos
   dimensiones, ya que pueden medirse en dos sentidos.
Cuando un plano se sitúa perpendicular a dos planos de proyección estará
paralelo al tercero, por tanto se verá en Verdadero Tamaño ó forma (V.T.)
en ése plano, mientras se ve como una línea recta o Visto de Filo en los
otros.
Cuando un plano se sitúa perpendicular a un sólo plano de proyección se
verá como una línea recta o sea Visto de Filo o de canto en él, mientras en
los otros dos se verá deformado ó escorzado.
Si el plano no es perpendicular, ni paralelo a ningún plano de proyección
se verá simplemente deformado ó escorzado en todas las vistas o sea no
se verá de filo ni en verdadero tamaño en ninguna de las vistas.
De acuerdo a las posiciones mencionadas las rectas se conocen
como rectas principales, proyectantes y oblicuas respectivamente; las
rectas principales y proyectantes complementan su notación tomando
el nombre del plano de proyección en que aparecen en verdadera
dimensión o vista de punta.

Dependiendo de estas posiciones respecto a los planos de
proyección, al igual que las rectas, tendremos respectivamente:
planos proyectantes, principales y oblicuos. Los principales y
proyectantes complementan su notación tomando el nombre del plano
de proyección en que aparecen en verdadero tamaño, o solo visto de
filo.

Conociendo las características de las rectas y los planos por separado,
podemos ahora relacionarlos mutuamente y con los otros elementos
geométricos.

Para localizar un punto sobre una recta, se le ubica por medio de las
proyecciones ortogonales del punto, que deberá estar sobre la recta en
sus tres vistas principales.

GENERALIDADES

  • 1.
    GEOMETRIA DESCRIPTIVA
  • 2.
    INTRODUCCION • La Arquitecturay el Urbanismo históricamente y en la actualidad se proyectan y construyen sobre principios formales y compositivos universales dentro de los cuales la geometría es fundamental. • Dice William Blackwell, arquitecto norteamericano, que la Geometría es el esqueleto de la Arquitectura, lo que no esta alejado de la realidad ya que toda obra arquitectónica o urbana nace de diferentes trazos en el plano bidimensional del papel y se concretiza en la formalidad material tridimensional en la que vivimos: nuestro medio ambiente natural o artificial. • Las relaciones geométricas dan formalidad a la obra arquitectónica y urbana, tanto a nivel bidimensional como tridimensional, por tanto el futuro arquitecto debe ser capaz de percibir y representar en un plano bidimensional su entorno tridimensional, así como la proyección de nuevos espacios de actividad humana.
  • 3.
    La asignatura deGeometría Descriptiva pretende desarrollar y perfeccionar la capacidad de percepción y representación tridimensional en un plano bidimensional para que los futuros arquitectos puedan proyectar con calidad formal y técnica los distintos espacios funcionales arquitectónicos o urbanos que la sociedad demanda. Previamente el estudiante deberá haber cursado y aprobado el curso propedéutico de la carrera de arquitectura a fin de que tenga manejo previo del uso de los instrumentos, valor y calidad de líneas, uso de escalas, cotas, construcciones Geométricas, etc. OBJETIVO GENERAL Conocer y saber aplicar los principios básicos de la Geometría Descriptiva en la solución de problemas de la Arquitectura y el Urbanismo.
  • 4.
    OBJETIVOS ESPECIFICOS • Conocerlos principios básicos de las proyecciones ortogonales para la percepción y representación de espacios tridimensionales en el plano bidimensional del papel. • Saber los procedimientos fundamentales para la representación en diferentes vistas de un objeto arquitectónico y su posterior materialización en un modelo a escala. • Saber aplicar los principios y procedimientos de las Proyecciones Ortogonales en la percepción y representación de sombras elementales y complejas • Desarrollar soluciones volumétricas, formal y técnicamente aceptables, en la composición arquitectónica desde el punto de vista geométrico, asegurando con ello su lógica constructiva.
  • 5.
    Introducción a laGeometría Descriptiva • Puede decirse que la Geometría Descriptiva como ciencia se inicia en 1790 con Gaspard Monge, Matemático e Ingeniero Militar francés; quien ideó la manera de determinar los ángulos de corte en las piedras utilizadas para construir fortificaciones mediante un análisis gráfico, las que deberían ser trabajadas con precisión para unirlas entre sí, de modo que la torre o muro pudiera soportar su propio peso y con la rigidez necesaria para soportar el bombardeo. • Dichos ángulos se determinaban con cálculos aritméticos muy laboriosos, mientras con el análisis de Monge esto se realizó en un tiempo sin precedentes. Dicho análisis originó la teoría de la Geometría Descriptiva como una nueva rama de la ciencia. Debido al significado militar de los estudios de Monge; debieron mantenerse en secreto varios años y hasta en 1795 se comenzó a publicar en forma de artículos en revistas de las escuelas normales, ya en 1798 se publicó el libro "Geometrie Descriptive'' con la teoria completa del análisis gráfico, propuesto por Monge.
  • 6.
    Métodos de RepresentaciónTridimensional: en el desarrollo histórico de la Geometría Descriptiva se han desarrollado distintos Métodos de Representación Tridimensional que son los procedimientos que permiten determinar la imagen o representación precisa de cualquier figura u objeto. Estos han evolucionado paulatinamente. Los métodos de representación tridimensional dependen del Tipo de Proyección en que se fundamenta, lo que no es más que la posición del centro de proyección con respecto al plano de proyección determinando la forma en que las líneas proyectantes inciden sobre dicho plano.
  • 7.
    La Proyección Centralo Cónica: el centro de proyección se ubica en un punto finito y por el pasan todas las líneas proyectantes, antes de reflejar la imagen en el plano de proyección. Este tipo de proyección es comúnmente conocida como Perspectiva entendida como el resultado de la percepción del ojo humano de los espacios en que se desarrolla, por lo que se considera la mas cercana a la realidad.
  • 8.
    La Proyección Paralelao Cilíndrica el centro de proyección se considera en el infinito, las líneas de proyección son paralelas entre sí, y son tangentes a los límites de la figura u objeto a reflejar en el plano de proyección Esta forma de proyección es convencional, por la ubicación del centro de proyección, en ella las líneas de proyección se consideran perpendiculares al plano de proyección y paralelas entre sí, de lo que resulta la denominada Proyección Ortogonal.
  • 9.
    Proyección Ortogonal enun Plano de Proyección: permitía conocer la representación de una figura u objeto en un espacio bidimensional, definiendo dos dimensiones del mismo directamente en un sólo plano de proyección cada uno de los puntos componentes era imagen de infinitos puntos, por lo que para conocer la altura de cada uno de ellos debía elaborarse la escala de alturas en una tabla numérica de referencia. Esta situación complicaba y retrasaba la comprensión clara y directa de lo representado. Proyección Ortogonal en Dos Planos de Proyección: ante este problema de manejo espacial Monge propuso un segundo plano de proyección perpendicular al primero obteniendo con ello una segunda imagen de la figura u objeto analizado en la que se apreció las alturas de cada punto, obviando así la necesidad de la escala de alturas. Este método de proyección ortogonal denominado Proyección Diédrica, aseguró fuerza de expresión, precisión y fácil medición de las imágenes de cada plano de proyección.
  • 10.
    La solución demúltiples problemas de Geometría Descriptiva se logró con la proyección de vistas en solo dos planos, pero algunos problemas demandaron una tercera vista, que debido a su complejidad requerían hacerlos más claros y fáciles de entender. Proyección Ortogonal en Tres Planos de Proyección: en el anterior sistema teníamos un plano vertical y uno horizontal mutuamente perpendiculares, el tercer plano en utilizarse fue un segundo plano vertical perpendicular también a los primeros En éste sistema denominado Proyección Triédrica el espacio queda dividido en ocho regiones llamados octantes. El primer octante es el espacio más próximo al observador y es el que dá paso a un sistema de proyecciones más simple y de fácil manejo.
  • 11.
    Proyección Ortogonal delcubo opaco: el primer octante ofrece una vista horizontal y dos verticales, mostrando el plano horizontal inferior la vista superior del objeto analizado, el plano vertical lateral izquierdo muestra el perfil derecho y el vertical posterior muestra la vista de frente del objeto. El primer octante cerrado como un cubo de seis caras opacas, muestran en su interior las vistas del objeto, para analizarse se abre a un solo plano a partir de sus caras interiores destacándose las vistas que ofrece originalmente fuera del cubo no se pueden apreciar las vistas del objeto. Este sistema se utiliza principalmente en Europa y en algunos países latinoamericanos. Ambos métodos funcionan, es indispensable el dominio completo de ambos sistemas, pero el tiempo disponible de estudio obliga a enfatizar uno de ellos. Por experiencia, se comprende mejor el segundo, 'y es el que se detalla en el desarrollo de nuestro curso; aunque en algunas etapas se deberá utilizar también el primero.
  • 12.
    Proyección Ortogonal delCubo de-Cristal: se parte siempre de un octante del sistema triédrico, en este caso del tercero considerándolo también un Cubo, pero totalmente transparente. Por lo tanto desde fuera de el se aprecian seis vistas distintas de un mismo objeto, y al llevarlas a un solo plano se hace a partir de sus vistas exteriores, que son las que muestran el objeto. El plano horizontal, que esta sobre el objeto, muestra su vista superior. El plano vertical lateral, a la derecha del objeto, muestra su perfil derecho, mientras el plano vertical al frente del objeto, muestra la vista, frontal del mismo. En ambos sistemas obtenemos iguales puntos de vista de un objeto, pero ordenados de forma distinta. En el primero el plano de referencia se ubica atrás o abajo del objeto, mientras en el segundo se ubica entre el observador y el objeto.
  • 13.
    Proyección Ortogonal: métodopara representar objetos tridimensionales por medio del uso de vistas proyectadas sobre planos de proyección con líneas de proyección paralelas entre sí y perpendiculares a los planos. La proyección ortogonal como método de representación posee diversas Propiedades, entre las que tenemos: a) Cada punto y cada línea dispuestos en el espacio, tienen en el plano de proyección al menos una proyección. b) Cada punto y cada línea sobre el plano de proyección, puede ser la proyección de infinidad de puntos y líneas dispuestos en el espacio. c) Para construir la proyección de una línea recta es suficiente proyectar dos de sus puntos y trazar una línea recta que una las proyecciones obtenidas de estos puntos. d) La línea recta se proyecta en general, en forma de línea recta, siempre que no sea paralela a la dirección de las líneas proyectantes ya que proyectaría un punto. e) Si un punto pertenece a la recta, entonces la proyección del punto pertenece a la proyección de la recta. f) La relación entre los segmentos de la línea recta es igual a la de sus proyecciones.
  • 14.
    Vistas Principales: laproyección ortogonal permite dibujar Seis Vistas Principales de un objeto dado. Estas vistas las obtenemos introduciendo el objeto en un cubo imaginario transparente formado por Seis Planos de Proyección, sobre los que se proyectan dichas vistas. Los planos de proyección son mutuamente perpendiculares y muestran dos vistas horizontales del objeto y cuatro verticales. Estos planos son: Horizontal Superior e Inferior, Frontal, Posterior, y Lateral Derecho e Izquierdo.
  • 15.
    Planos Principales deProyección: debido a lo complejo que resulta percibir de una vez las seis vistas que los seis planos de proyección nos muestran de un objeto tridimensional, en un espacio bidimensional; prácticamente nunca se utilizan en su totalidad, por lo que convencionalmente se trabaja únicamente en tres planos de proyección denominados Planos Principales de Proyección, y son: el horizontal superior, el frontal y el lateral derecho nombrados simplemente Horizontal, Frontal y Perfil. Dichos planos principales de proyección nos muestran entonces las llamadas Tres Vistas Principales de un objeto.
  • 16.
    En matemática laubicación de puntos, rectas, planos o volúmenes en el espacio se realiza mediante coordenadas (x, y, z) a partir del plano cartesiano. En Geometría Descriptiva a se ubican mediante direcciones, a r r las cuales se ri ri basan en las b a b mismas a coordenadas, a pero se a b b interpretan a a espacialmente, j j o no o numéricamente. Línea de Pliegue H/F equivale a X Línea de Pliegue H/P equivale a Y Línea de Pliegue F/P equivale a Z
  • 17.
    Para lograr lavisión tridimensional de los objetos en el cubo imaginario a pesar de mostrarlo en un espacio bidimensional se debe conocer las características de la denominada Proyección Axonométrica, (axis:eje) que es una forma de proyección ortogonal en la cual el objeto dentro del cubo se coloca con ninguna de sus caras paralelas al plano de dibujo proyectándose perpendicularmente sobre el plano de proyección, con líneas de proyección paralelas. Esta posición oblicua del objeto, resulta de girarlo e inclinarlo con respecto a los PPP. Esto se puede notar claramente en los planos horizontal (giro) y de perfil (inclinación), lo que nos permite la representación tridimensional buscada, obtenida en la vista frontal.
  • 18.
    Proyección Ortogonal deRectas: la recta, representada por al menos dos de sus puntos componentes, se presenta en proyecciones ortogonales en tres situaciones específicas, que dependen de la posición de la recta respecto a los planos de proyección. Debe decirse que la recta tiene una dimensión, ya que sólo puede medirse en un sentido por tanto tiene una determinada longitud únicamente. Cuando la recta se sitúa paralela al plano de proyección, se verá en su verdadera longitud ó magnitud (VL.) en el plano al cual se proyecta paralela.
  • 19.
    Si la rectaestá situada perpendicular al plano de proyección se verá como si fuese un punto, o sea vista de punta (VP) en el plano al cual se proyecta perpendicular.
  • 20.
    Si la rectano se encuentra paralela ni perpendicular a ningún plano de proyección, no aparecerá en su verdadera longitud ni vista de punta, se dice que aparece deformada o escorzada.
  • 21.
    De acuerdo alas posiciones mencionadas las rectas se conocen como rectas principales, proyectantes y oblicuas respectivamente; las rectas principales y proyectantes complementan su notación tomando el nombre del plano de proyección en que aparecen en verdadera dimensión o vista de punta. Proyección Ortogonal de Planos: el plano representado por al menos tres de sus puntos componentes. En proyecciones ortogonales existen cinco formas de representar un plano: a) Por tres puntos no lineales. b) Por una recta y un punto situado fuera de ella. c) Por dos rectas que se Intersecan. d) Por dos rectas paralelas entre si. e) Por cualquier figura geométrica plana. Al igual que las rectas, los planos se visualizan en proyecciones ortogonales de distintas formas según la posición que tienen respecto a los planos de proyección. Debe decirse que los planos tienen dos dimensiones, ya que pueden medirse en dos sentidos.
  • 22.
    Cuando un planose sitúa perpendicular a dos planos de proyección estará paralelo al tercero, por tanto se verá en Verdadero Tamaño ó forma (V.T.) en ése plano, mientras se ve como una línea recta o Visto de Filo en los otros.
  • 23.
    Cuando un planose sitúa perpendicular a un sólo plano de proyección se verá como una línea recta o sea Visto de Filo o de canto en él, mientras en los otros dos se verá deformado ó escorzado.
  • 24.
    Si el planono es perpendicular, ni paralelo a ningún plano de proyección se verá simplemente deformado ó escorzado en todas las vistas o sea no se verá de filo ni en verdadero tamaño en ninguna de las vistas.
  • 25.
    De acuerdo alas posiciones mencionadas las rectas se conocen como rectas principales, proyectantes y oblicuas respectivamente; las rectas principales y proyectantes complementan su notación tomando el nombre del plano de proyección en que aparecen en verdadera dimensión o vista de punta. Dependiendo de estas posiciones respecto a los planos de proyección, al igual que las rectas, tendremos respectivamente: planos proyectantes, principales y oblicuos. Los principales y proyectantes complementan su notación tomando el nombre del plano de proyección en que aparecen en verdadero tamaño, o solo visto de filo. Conociendo las características de las rectas y los planos por separado, podemos ahora relacionarlos mutuamente y con los otros elementos geométricos. Para localizar un punto sobre una recta, se le ubica por medio de las proyecciones ortogonales del punto, que deberá estar sobre la recta en sus tres vistas principales.