SlideShare una empresa de Scribd logo
Republica Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación Universitaria Ciencias y
Tecnologías Universidad Politécnica Territorial ”Andrés Eloy Blanco”
Barquisimeto Estado Lara
Números Reales
Integrantes:
Javier Torrealba
C.I : 30.657.556
Sección: 0102
Definición de Conjuntos
Un conjunto es una colección de elementos con características similares considerada en sí misma como
un objeto. Los elementos de un conjunto, pueden ser las
siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro)
pertenece al conjunto si está definido como incluido de algún modo dentro de él.
Ejemplo: El conjunto de los colores del arcoíris es : AI = {rojo, naranja, amarillo, verde, añil, violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo,
para los números naturales, si se considera la propiedad de ser un número primos, el conjunto de los
números primos es:
P = {2, 3, 5, 7, 11, 13, …}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto
puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos
repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, martes, miércoles, jueves, viernes} = {martes, viernes, jueves, lunes, miércoles}
AI = {Rojo, naranja, amarillo, verde, azul, añil, violeta} = {amarillo, naranja, rojo, verde, violeta, añil, azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el
conjunto de los planetas del sistema solar es finito (tiene ocho elementos). Además, los conjuntos
pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Operaciones con conjuntos
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar
operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos
las siguientes unión, intersección, diferencia, diferencia simétrica y complemento.
Unión o reunión de conjuntos.
Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a
todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un
conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A,
con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la
operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de
conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la
operación de unión.
Ejemplo: Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será
A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
También se puede graficar del siguiente modo:
Diferencia de conjuntos
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto
resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir
dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no
comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia
simétrica es el siguiente: △.
Ejemplo: Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos
conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de
referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en
el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos
los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto
A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto
que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación
de complemento.
Ejemplo: Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A'
estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría
lo siguiente:
Números reales
Los números reales son el conjunto que incluye los números naturales, enteros, racionales e
irracionales. Se representa con la letra ℜ.
La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz
cuadrada de -1, o √-1. Esta expresión se usa para simplificar la interpretación matemática de
efectos como los fenómenos eléctricos.
Además de las características particulares de cada conjunto que compone el supe conjunto de los
números reales, mencionamos las siguientes características.
Orden
Todos los números reales tienen un orden: 1>2>3>4>5…
… - 5<-4<-3<-2<-1 <0 ….
En el caso de las fracciones y decimales:
0,550 < 0,560 < 0,565…
Integral
La característica de integridad de los números reales es que no hay espacios vacíos en este conjunto
de números.
Infinitud
Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen final, ya sea
del lado positivo como del negativo.
Expansión decimal
Un número real es una cantidad que puede ser expresada como una expansión decimal infinita. Se
usan en mediciones de cantidades continuas, como la longitud y el tiempo.
Clasificación de los números reales
Desigualdades
es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se
trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor,
menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad
debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones
matemáticas diferente según su naturaleza.
Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de
palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos
sujetos matemáticos expresan valores diferentes.
Ejemplos : Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos
miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la
derecha.
Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita
menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La
resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o
superior a 3 (x≥3).
VALOR ABSOLUTO
se utiliza para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el
valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin
importar si su signo es positivo o negativo.
Cuando tomamos el valor absoluto de un número, éste es siempre positivo o cero. Si el valor
original ya es positivo o cero, el valor absoluto es el mismo. Si el valor original es negativo,
simplemente nos deshacemos del signo. Por ejemplo, el valor absoluto de 5 es 5. El valor absoluto
de -5 es también 5.
Ejemplo:
Por ejemplo, -1(-3) = 3. Los signos negativos dentro y fuera de los paréntesis se cancelan cuando
son multiplicados.
Valor Valor
Absoluto
5 5
-5 5
Problema -1(-3) =
-1 • -3 = 3
Pero -1|-3| = -3. No puedes multiplicar a través de las barras de valor absoluto, por lo que primero
tienes que encontrar el valor absoluto del número contenido entre ellas. Como el valor absoluto de -3
es 3, la operación se convierte en -1(+3).
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Problema -1|-3| =
-1 • 3 = -3
Así, x > -4 Y x < 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b .
Ejemplo:
Resuelva y grafique.
| x – 7| < 3
• Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad
compuesta.
x – 7 < 3 Y x – 7 > –3
–3 < x – 7 < 3
Sume 7 en cada expresión. La gráfica se vería así:
-3 + 7 < x - 7 + 7 < 3 + 7
4 < x <10
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b .
Ejemplo :
Resuelva y grafique.
Separe en dos desigualdades.
Reste 2 de cada lado en cada desigualdad.
La gráfica se vería así:
Bibliografía
. https://es.wikipedia.org/wiki/Conjunto
. https://www.conoce3000.com
. https://www.todamateria.com/numeros-reales
. https://www.sdelsol.com/glosario/desigualdad-matematica/
. https://definicion.de/valor-absoluto/
. https://www.varsitytutors.com

Más contenido relacionado

La actualidad más candente

Matematica ii presentacion
Matematica ii presentacionMatematica ii presentacion
Matematica ii presentacionMildredCarreo4
 
Conjuntos y números reales
Conjuntos y números realesConjuntos y números reales
Conjuntos y números realesmendozaparicio
 
Números reales-Griselis Mendoza
Números reales-Griselis MendozaNúmeros reales-Griselis Mendoza
Números reales-Griselis MendozaGriselisMendoza
 
Conjunto de los números naturales
Conjunto de los números naturalesConjunto de los números naturales
Conjunto de los números naturalesJhony Colop
 
Presentación números reales
Presentación números realesPresentación números reales
Presentación números realesKeishmer Amaro
 
Numeros reales suarez genesis
Numeros reales suarez genesis Numeros reales suarez genesis
Numeros reales suarez genesis Genesis Suarez
 
Operaciones en Conjuntos - Matemática
Operaciones en Conjuntos - MatemáticaOperaciones en Conjuntos - Matemática
Operaciones en Conjuntos - MatemáticaNilmarManrique
 
Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.luisrodriguez1873
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numericoReirisFernandez
 

La actualidad más candente (20)

Definicion de conjuntos
Definicion de conjuntosDefinicion de conjuntos
Definicion de conjuntos
 
Los conjuntos
Los conjuntosLos conjuntos
Los conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Unidad 2 de matematica
Unidad 2 de matematicaUnidad 2 de matematica
Unidad 2 de matematica
 
Matematica ii presentacion
Matematica ii presentacionMatematica ii presentacion
Matematica ii presentacion
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Conjuntos y números reales
Conjuntos y números realesConjuntos y números reales
Conjuntos y números reales
 
Números reales-Griselis Mendoza
Números reales-Griselis MendozaNúmeros reales-Griselis Mendoza
Números reales-Griselis Mendoza
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Matemática Conjuntos
Matemática ConjuntosMatemática Conjuntos
Matemática Conjuntos
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Conjunto de los números naturales
Conjunto de los números naturalesConjunto de los números naturales
Conjunto de los números naturales
 
Presentación números reales
Presentación números realesPresentación números reales
Presentación números reales
 
Numeros reales suarez genesis
Numeros reales suarez genesis Numeros reales suarez genesis
Numeros reales suarez genesis
 
Operaciones en Conjuntos - Matemática
Operaciones en Conjuntos - MatemáticaOperaciones en Conjuntos - Matemática
Operaciones en Conjuntos - Matemática
 
Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 

Similar a Números Reales

Números Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptxNúmeros Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptxJavierlisuarez
 
Unidad ii matemáticas
Unidad ii matemáticasUnidad ii matemáticas
Unidad ii matemáticasTatiana Bello
 
presentación de matemáticas UPTAEB.pptx
presentación de matemáticas UPTAEB.pptxpresentación de matemáticas UPTAEB.pptx
presentación de matemáticas UPTAEB.pptxFranyerlinCuica
 
Conjunto Numérico
Conjunto Numérico Conjunto Numérico
Conjunto Numérico JosAngelRojo
 
Matemática Numeros Reales
Matemática Numeros RealesMatemática Numeros Reales
Matemática Numeros RealesNombre Apellidos
 
Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.diegoarmando515673
 
Números Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxNúmeros Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxLeopoldo Torres
 
numeros reales.pptx
numeros reales.pptxnumeros reales.pptx
numeros reales.pptxNaimarRiera
 
matematica conjunto.docx
matematica conjunto.docxmatematica conjunto.docx
matematica conjunto.docxRoiverBarragan
 
Números Reales. Michell Urra IN0114
Números Reales.  Michell Urra IN0114Números Reales.  Michell Urra IN0114
Números Reales. Michell Urra IN0114Michell Urra Juarez
 
Numeros reales.docx
Numeros reales.docxNumeros reales.docx
Numeros reales.docxDueinRada
 

Similar a Números Reales (20)

Números Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptxNúmeros Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptx
 
Unidad ii matemáticas
Unidad ii matemáticasUnidad ii matemáticas
Unidad ii matemáticas
 
presentación de matemáticas UPTAEB.pptx
presentación de matemáticas UPTAEB.pptxpresentación de matemáticas UPTAEB.pptx
presentación de matemáticas UPTAEB.pptx
 
Conjunto Numérico
Conjunto Numérico Conjunto Numérico
Conjunto Numérico
 
Matemática Numeros Reales
Matemática Numeros RealesMatemática Numeros Reales
Matemática Numeros Reales
 
Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.
 
Números Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxNúmeros Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptx
 
Matemáticas.pdf
Matemáticas.pdfMatemáticas.pdf
Matemáticas.pdf
 
Numeros Reales.pptx
Numeros Reales.pptxNumeros Reales.pptx
Numeros Reales.pptx
 
NUMEROS REALES.pptx
NUMEROS REALES.pptxNUMEROS REALES.pptx
NUMEROS REALES.pptx
 
numeros reales.pptx
numeros reales.pptxnumeros reales.pptx
numeros reales.pptx
 
DESIGUALDADES.pptx
DESIGUALDADES.pptxDESIGUALDADES.pptx
DESIGUALDADES.pptx
 
DOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptxDOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptx
 
Presentación1.pptx
Presentación1.pptxPresentación1.pptx
Presentación1.pptx
 
matematica conjunto.docx
matematica conjunto.docxmatematica conjunto.docx
matematica conjunto.docx
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Números Reales. Michell Urra IN0114
Números Reales.  Michell Urra IN0114Números Reales.  Michell Urra IN0114
Números Reales. Michell Urra IN0114
 
Numeros reales.docx
Numeros reales.docxNumeros reales.docx
Numeros reales.docx
 
Matematica
MatematicaMatematica
Matematica
 
Presentación1 2023.pptx
Presentación1 2023.pptxPresentación1 2023.pptx
Presentación1 2023.pptx
 

Último

Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )portafoliodigitalyos
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfsandradianelly
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfANEP - DETP
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxNoe Castillo
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitalesnievesjiesc03
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaEdurne Navarro Bueno
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRDanielGrajeda7
 
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfDescripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfrehabilitvet
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
Orientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteOrientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteEducaclip
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...crcamora123
 
Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialDanita2111
 
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxPLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxDavidAlvarez758073
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºCEIP TIERRA DE PINARES
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)portafoliodigitalyos
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdfnataliavera27
 

Último (20)

Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdfDescripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
Descripción anatómica de los músculos de la cabeza de equino y bovino (6).pdf
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico
 
Orientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteOrientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArte
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
 
3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencial
 
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docxPLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
PLAN DE TRABAJO CONCURSO NACIONAL CREA Y EMPRENDE.docx
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6º
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 

Números Reales

  • 1. Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Ciencias y Tecnologías Universidad Politécnica Territorial ”Andrés Eloy Blanco” Barquisimeto Estado Lara Números Reales Integrantes: Javier Torrealba C.I : 30.657.556 Sección: 0102
  • 2. Definición de Conjuntos Un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él. Ejemplo: El conjunto de los colores del arcoíris es : AI = {rojo, naranja, amarillo, verde, añil, violeta} Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primos, el conjunto de los números primos es: P = {2, 3, 5, 7, 11, 13, …} Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo: S = {Lunes, martes, miércoles, jueves, viernes} = {martes, viernes, jueves, lunes, miércoles} AI = {Rojo, naranja, amarillo, verde, azul, añil, violeta} = {amarillo, naranja, rojo, verde, violeta, añil, azul} Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas del sistema solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
  • 3. Operaciones con conjuntos Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. Ejemplo: Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
  • 4. También se puede graficar del siguiente modo: Diferencia de conjuntos Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo: Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
  • 5. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación de complemento. Ejemplo: Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  • 6. Números reales Los números reales son el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se representa con la letra ℜ. La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz cuadrada de -1, o √-1. Esta expresión se usa para simplificar la interpretación matemática de efectos como los fenómenos eléctricos. Además de las características particulares de cada conjunto que compone el supe conjunto de los números reales, mencionamos las siguientes características. Orden Todos los números reales tienen un orden: 1>2>3>4>5… … - 5<-4<-3<-2<-1 <0 …. En el caso de las fracciones y decimales: 0,550 < 0,560 < 0,565…
  • 7. Integral La característica de integridad de los números reales es que no hay espacios vacíos en este conjunto de números. Infinitud Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen final, ya sea del lado positivo como del negativo. Expansión decimal Un número real es una cantidad que puede ser expresada como una expansión decimal infinita. Se usan en mediciones de cantidades continuas, como la longitud y el tiempo. Clasificación de los números reales
  • 8. Desigualdades es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor, menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones matemáticas diferente según su naturaleza. Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos sujetos matemáticos expresan valores diferentes. Ejemplos : Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la derecha. Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o superior a 3 (x≥3).
  • 9. VALOR ABSOLUTO se utiliza para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. Cuando tomamos el valor absoluto de un número, éste es siempre positivo o cero. Si el valor original ya es positivo o cero, el valor absoluto es el mismo. Si el valor original es negativo, simplemente nos deshacemos del signo. Por ejemplo, el valor absoluto de 5 es 5. El valor absoluto de -5 es también 5. Ejemplo: Por ejemplo, -1(-3) = 3. Los signos negativos dentro y fuera de los paréntesis se cancelan cuando son multiplicados. Valor Valor Absoluto 5 5 -5 5 Problema -1(-3) = -1 • -3 = 3
  • 10. Pero -1|-3| = -3. No puedes multiplicar a través de las barras de valor absoluto, por lo que primero tienes que encontrar el valor absoluto del número contenido entre ellas. Como el valor absoluto de -3 es 3, la operación se convierte en -1(+3). Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Problema -1|-3| = -1 • 3 = -3
  • 11. Así, x > -4 Y x < 4. El conjunto solución es Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b . Ejemplo: Resuelva y grafique. | x – 7| < 3 • Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad compuesta. x – 7 < 3 Y x – 7 > –3 –3 < x – 7 < 3 Sume 7 en cada expresión. La gráfica se vería así: -3 + 7 < x - 7 + 7 < 3 + 7 4 < x <10
  • 12. Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b . Ejemplo : Resuelva y grafique.
  • 13. Separe en dos desigualdades. Reste 2 de cada lado en cada desigualdad. La gráfica se vería así:
  • 14. Bibliografía . https://es.wikipedia.org/wiki/Conjunto . https://www.conoce3000.com . https://www.todamateria.com/numeros-reales . https://www.sdelsol.com/glosario/desigualdad-matematica/ . https://definicion.de/valor-absoluto/ . https://www.varsitytutors.com