Potencial eléctrico
    Presentación PowerPoint de
 Paul E. Tippens, Profesor de Física
Southern Polytechnic State University
Objetivos: Después de completar
             este módulo deberá:
• Comprender y aplicar los conceptos de energía
  potencial eléctrica, potencial eléctrico y diferencia de
  potencial eléctrico.
• Calcular el trabajo requerido para mover una carga
  conocida de un punto a otro en un campo eléctrico
  creado por cargas puntuales.
• Escribir y aplicar relaciones entre campo eléctrico,
  diferencia de potencial y separación de placas para
  placas paralelas de carga igual y opuesta.
Revisión: Trabajo y energía
    El trabajo se define como el producto del
desplazamiento d y una fuerza paralela aplicada F.


       Trabajo = Fd; unidades: 1 J = 1 N m

  La energía potencial U se define como la habilidad para
realizar trabajo en virtud de la posición o condición. (Joules)


   La energía cinética K se define como la habilidad para
   realizar trabajo en virtud del movimiento (velocidad).
                     (También en joules)
Signos para trabajo y energía
El trabajo (Fd) es positivo si una fuerza aplicada F
está en la misma dirección que el desplazamiento d.

                La fuerza F realiza trabajo positivo.
  B
      F         La fuerza mg realiza trabajo negativo.
      m    d     La E.P. en B relativa a A es positiva
   mg            porque el campo puede realizar
  A              trabajo positivo si m se libera.
                La E.P. en A relativa a B es negativa; se
                necesita fuerza externa para mover m.
Trabajo y energía gravitacionales
Considere el trabajo contra g para mover
m de A a B, una altura vertical h.            B
                                              F
          Trabajo = Fh = mgh                  m    h
                                              mg    g
En el nivel B, la energía potencial U es:
                                              A
       U = mgh (gravitacional)
La fuerza externa realiza trabajo positivo;
la gravedad g realiza trabajo negativo.

La fuerza externa F contra el campo g aumenta la
energía potencial. Si se libera, el campo proporciona
trabajo de vuelta.
Trabajo y energía eléctricos
Una fuerza externa F mueve a +q de
A a B contra la fuerza de campo qE.         B ++++
      Trabajo = Fd = (qE)d                   Fe
En el nivel B, la energía potencial U es:   +q + d
                                             qE     E
         U = qEd (eléctrica)
                                            A - - - -
El campo E realiza trabajo negativo; la
fuerza externa realiza trabajo positivo.
La fuerza externa F contra el campo E aumenta la
energía potencial. Si se libera el campo proporciona
trabajo de vuelta.
Trabajo y cargas negativas
  Suponga que una carga negativa –q
  se mueve contra E de A a B.             B ++++
         Trabajo por E = qEd               qE
                                           -q      d
  En A, la energía potencial U es:
                                                   E
         U = qEd (eléctrica)
                                          A - - - -
  ¡No se requiere fuerza externa!

El campo E realiza trabajo positivo –q y disminuye la
energía potencial. Si se libera desde B no ocurre nada.
Trabajo par mover una carga
                                                  Trabajo para mover
                                                     +q de A a B.
              rb
       + ++
      +Q +                      F                              kqQ
      ++ +                                        En A: Fa
                                         qE                     ra2
                   ra                                          kqQ
                                                  En B: Fb
                                                                 rb2
                               kqQ
Fuerza promedio: Favg                         Distancia: ra - rb
                               ra rb
                    kQq                                   1    1
Trabajo   Fd              ra        rb    Trabajo     kQq
                    ra rb                                 rb   ra
Energía potencial absoluta
                                              La E.P. absoluta
                                              es relativa a
              rb
                                          Es trabajo para traer
       + ++
      +Q +                    F
      ++ +                                +q de infinito a un
                                  qE
                   ra                     punto cerca de Q;
                                          es decir, de a rb
                                                       0
                1       1                     1    1       kQq
Trabajo     kQq               Trabajo   kQq
                rb      ra                    rb            rb

          Energía potencial             kQq
             absoluta:            U
                                         r
Ejemplo 1. ¿Cuál es la energía potencial si
  una carga de +2 nC se mueve de al punto
  A, a 8 cm de una carga de +6 C?
La E.P. será positiva en el punto         A
A, porque el campo puede                             +2 nC
realizar trabajo + si q se libera.            8 cm
                                          +Q
      Energía           kQq
     potencial:   U                       +6 C
                         r
                   9 Nm2             -6              -9
            (9 x 10   C2
                           )( 6 x 10 C)(+2 x 10 C)
      U
                             (0.08 m)

          U = 1.35 mJ      Energía potencial positiva
Signos para energía potencial
 Considere los puntos A, B y C.        A                  B
Para +2 nC en A: U = +1.35 mJ        8 cm            12 cm

          Preguntas:                     +Q           C
                                               4 cm
Si +2 nC se mueve de A a B, ¿el         +6 C
campo E realiza trabajo + o –? ¿La   q positiva en
E.P. aumenta o disminuye?            movimiento       +2 nC

El campo E realiza trabajo positivo, la E.P. disminuye.
    Si +2 nC se mueve de A a C (más cerca de +Q), el
   campo E realiza trabajo negativo y la E.P. aumenta.
Ejemplo 2. ¿Cuál es el cambio en energía
 potencial si una carga +2 nC se mueve de                a B?

      Energía           kQq            A             B
     potencial:   U
                         r           8 cm        12 cm

                                        +Q
 Del Ej. 1: UA = + 1.35 mJ
                                        +6 C
             9 Nm2
     (9 x 19    C2
                     )( 6 x 10-6C)(+2 x 10-9C)
UB                                               0.900 mJ
                       (0.12 m)
 U = UB – UA = 0.9 mJ – 1.35 mJ             U = -0.450 mJ

 Note que E.P. disminuye conforme E realiza trabajo.
Movimiento de una carga negativa
Considere los puntos A, B y C.            A                  B
Suponga que se mueve una -q negativa.                   12 cm
                                        8 cm

          Preguntas:                        +Q           C
                                                  4 cm
Si -q se mueve de A a B, ¿el               +6 C
campo E realiza trabajo + o –?          q negativa en
¿E.P. aumenta o disminuye?               movimiento      -

   El campo E realiza trabajo negativo, E.P. aumenta.

 ¿Qué ocurre si se mueve una carga de–2 nC de A a B,
 en lugar de una carga de +2 nC?. Continúa este
 ejemplo. . .
Ejemplo 3. ¿Cuál es el cambio en energía
   potencial si una carga de -2 nC se mueve de
   a B?
      Energía        kQq          A          B
     potencial: U
                           r           8 cm        12 cm
   Del Ej. 1: UA = -1.35 mJ               +Q
 (Negativo debido a carga –)             +6 C
              9 Nm2
      (9 x 19    C2
                      )(6 x 10-6C)(-2 x 10-9C)
UB                                                 0.900 mJ
                       (0.12 m)
UB – UA = -0.9 mJ – (-1.35 mJ)                U = +0.450 mJ

Una carga – que se mueve alejándose de una carga + gana E.P.
Propiedades del espacio
Campo eléctrico      Un campo eléctrico es una propiedad
                     del espacio que permite predecir la
     .       E       fuerza sobre una carga en dicho punto.
         r                     F
                          E      ;       F   qE
      +                        q
   ++ +
    Q
   ++ ++
E es un vector       El campo E existe independientemente
                     de la carga q y se encuentra a partir de:

                                             kQ
                 Campo eléctrico     E
                                             r2
Potencial eléctrico
El potencial eléctrico es otra propiedad
del espacio que permite predecir la E.P.                U
de cualquier carga q en un punto.
                                              P. V
                                                        q
                                               r
  Potencial            U                           +
                                                ++ +
                 V       ;     U    qV           Q
  eléctrico:           q                        ++ ++
                                              Potencial
 Las unidades son: joules por coulomb (J/C)
 Por ejemplo, si el potencial es 400 J/C en el punto P,
 una carga de –2 nC en dicho punto tendría E.P. :

   U = qV = (-2 x 10-9C)(400 J/C);       U = -800 nJ
Unidad SI de potencial (volt)
De la definición de potencial eléctrico como E.P. por
unidad de carga, se ve que las unidades deben ser
J/C. Esta unidad se redefine como volt (V).

           U                 1 joule
      V      ;    1 volt =
           q               1 coulomb

Un potencial de un volt en un punto dado significa que
una carga de un coulomb colocada en dicho punto
experimentará una energía potencial de un joule.
Cálculo de potencial eléctrico
Energía potencial eléctrica y potencial:             kQ
                                             P. V
             kQq             U                        r
        U        ; V                          r
              r              q                     +
                                                ++ +
                                                 Q
                                                ++ ++
                          kQq
Al sustituir, se                 r   kQ
                    V                         Potencial
encuentra V:                q         r

        kQ         El potencial debido a una carga positiva
 V                 es positivo; el potencial debido a una
         r         carga negativa es negativo. (Use el
                   signo de la carga.)
Ejemplo 4: Encuentre el potencial a una
 distancia de 6 cm de una carga de –5 nC.
                                      9 Nm2
                        kQ     9 x 10         C   2   ( 5 x 10-9C)
 P. q = –4 C      V
                         r              (0.06 m)
  r 6 cm
                      V negativo en
    - --
   - Q-                                   VP = -750 V
   --                  el punto P :
       -
  Q = -5 nC         ¿Cuál sería la E.P. de una carga de
                    –4 C colocada en este punto P?

U = qV = (-4 x 10-6 C)(-750 V);               U = 3.00 mJ

Como E.P. es positiva, E realizará trabajo + si q se libera.
Potencial para múltiples cargas
El potencial eléctrico V en la vecindad de algunas
cargas es igual a la suma algebraica de los
potenciales debidos a cada carga.

                                   kQ1     kQ2     kQ3
Q1 - r1          A
                            VA
                                    r1      r2      r3
                 r2
         r3
                  +                          kQ
   Q3 -           Q2               V
                                              r

 El potencial es + o – con base en el signo de las cargas Q.
Ejemplo 5: Dos cargas Q1= +3 nC y Q2 = -5
      nC están separadas 8 cm. Calcule el potencial
      eléctrico en el punto A.

                          kQ1         kQ2                  B
            VA                                                     2 cm
                           r1          r2
                 9 Nm 2                     -9
                                                          Q1 + +3 nC
kQ1     9 x 10            C2
                                  ( 3 x 10 C)
                                                 450 V
 r1                 (0.06 m)                                       6 cm
                 9 Nm 2
kQ2     9 x 10            C   2   ( 5 x 10-9C)            A
                                                 2250 V            2 cm
 r2                (0.02 m)
                                                               -
VA = 450 V – 2250 V;                     VA = -1800 V     Q2 = -5 nC
Ejemplo 5 (Cont.): Calcule el potencial eléctrico en
      el punto B para las mismas cargas.

                          kQ1         kQ2
            VB                                             B
                           r1          r2                          2 cm
       9 x 109 Nm
                     2
                                  ( 3 x 10-9C)            Q1 + +3 nC
kQ1                      C2
                                                 1350 V
 r1               (0.02 m)
                                                                   6 cm
                 9 Nm 2
kQ2     9 x 10            C   2   ( 5 x 10-9C)            A
                                                 450 V             2 cm
 r2                (0.10 m)
                                                               -
VB = 1350 V – 450 V;                     VB = +900 V      Q2 = -5 nC
Ejemplo 5 (Cont.): Discuta el significado de los
   potenciales recién encontrados para los puntos A y

Considere el punto A:   VA = -1800 V
                                             B
 Para cada coulomb de carga positiva                 2 cm
 colocado en el punto A, la energía         Q1 + +3 nC
 potencial será –1800 J. (E.P. negativa.)
                                                     6 cm
  El campo se sostiene a esta carga         A
  positiva. Una fuerza externa debe                  2 cm
  realizar +1800 J de trabajo para               -
  mover cada coulomb de carga + a           Q2 = -5 nC
  infinito.
Ejemplo 5 (Cont.): Discuta el significado de los
   potenciales recién encontrados para los puntos A y

Considere el punto B:   VB = +900 V        B
                                                   2 cm
 Para cada coulomb de carga positiva       Q1 + +3 nC
 colocada en el punto B, la energía
 potencial será +900 J. (E.P. positiva.)           6 cm
                                           A
 Para cada coulomb de carga positiva,              2 cm
 el campo E realizará 900 J de trabajo
                                               -
 positivo para moverlo al infinito.        Q2 = -5 nC
Diferencia de potencial
La diferencia de potencial entre dos puntos A y B es el
trabajo por unidad de carga positiva realizado por las
fuerzas eléctricas para mover una pequeña carga de prueba
desde el punto de mayor potencial al punto de menor
potencial.


         Diferencia de potencial: VAB = VA - VB

 TrabajoAB = q(VA – VB)      Trabajo POR el campo E

Se pueden usar matemáticamente los signos positivo y
 negativo de las cargas para dar los signos adecuados.
Ejemplo 6: ¿Cuál es la diferencia de potencial entre
 los puntos A y B? ¿Qué trabajo realiza el campo E s
 una carga de +2 C se mueve de A a B?
                                                 B 2 cm
  VA = -1800 V         VB = +900 V               Q1 + +3 nC
                                                     6 cm
 VAB= VA – VB = -1800 V – 900 V
                                                 A
                                                          2 cm
 VAB = -2700 V        Note que el punto B está
                        a mayor potencial.       Q2   -   -5 nC

  TrabajoAB = q(VA – VB) = (2 x 10-6 C )(-2700 V)

  Trabajo = -5.40 mJ         El campo E realiza trabajo
                                    negativo.
Por tanto, se requirió una fuerza externa para mover la carga.
Ejemplo 6 (Cont.): Ahora suponga que la carga de
+2 C se mueve de regreso de B a A?
                                    B 2 cm
 VA = -1800 V   VB = +900 V        Q1 + +3 nC
                                               6 cm
VBA= VB – VA = 900 V – (-1800 V)
                                          A
                  Esta trayectoria es de      2 cm
VBA = +2700 V
                  potencial alto a bajo. Q2 - -5 nC

TrabajoBA = q(VB – VA) = (2 x 10-6 C )(+2700 V)

Trabajo = +5.40 mJ        El campo E realiza trabajo
                                   positivo.
 ¡Esta vez el trabajo se realiza POR el campo E!
Placas paralelas
Considere dos placas paralelas de carga
igual y opuesta, separadas una distancia d. VA + + + +
                                            +q           E
    Campo E constante: F = qE
                                             F = qE
      Trabajo = Fd = (qE)d                VB - - - -

   Además, Trabajo = q(VA – VB)
 De modo que: qVAB = qEd       y         VAB = Ed

  La diferencia de potencial entre dos placas
  paralelas cargadas opuestamente es el producto
  de E y d.
Ejemplo 7: La diferencia de potencial entre
 dos placas paralelas es 800 V. Si su
 separación es de 3 mm, ¿cuál es el campo E?
 VA + + + +                                V
                       V    Ed ;     E
   +q         E                            d
     F = qE                 80 V
 VB - - - -          E                   26, 700 V/m
                           0.003 m

El campo E expresado en volts por metro (V/m) se
conoce como gradiente de potencial y es equivalente al
N/C. El volt por metro es la mejor unidad para corriente
de electricidad, el N/C es mejor para electrostática.
Resumen de fórmulas
   Energía potencial            kQq         U
                            U       ; V
  eléctrica y potencial          r          q

Potencial eléctrico cerca              kQ
                                V
  de múltiples cargas:                  r

  TrabajoAB = q(VA – VB)    Trabajo POR el campo E

    Placas paralelas                        V
                            V   Ed ;   E
cargadas opuestamente:                      d
CONCLUSIÓN:
Potencial eléctrico

Potencial electrico

  • 1.
    Potencial eléctrico Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University
  • 2.
    Objetivos: Después decompletar este módulo deberá: • Comprender y aplicar los conceptos de energía potencial eléctrica, potencial eléctrico y diferencia de potencial eléctrico. • Calcular el trabajo requerido para mover una carga conocida de un punto a otro en un campo eléctrico creado por cargas puntuales. • Escribir y aplicar relaciones entre campo eléctrico, diferencia de potencial y separación de placas para placas paralelas de carga igual y opuesta.
  • 3.
    Revisión: Trabajo yenergía El trabajo se define como el producto del desplazamiento d y una fuerza paralela aplicada F. Trabajo = Fd; unidades: 1 J = 1 N m La energía potencial U se define como la habilidad para realizar trabajo en virtud de la posición o condición. (Joules) La energía cinética K se define como la habilidad para realizar trabajo en virtud del movimiento (velocidad). (También en joules)
  • 4.
    Signos para trabajoy energía El trabajo (Fd) es positivo si una fuerza aplicada F está en la misma dirección que el desplazamiento d. La fuerza F realiza trabajo positivo. B F La fuerza mg realiza trabajo negativo. m d La E.P. en B relativa a A es positiva mg porque el campo puede realizar A trabajo positivo si m se libera. La E.P. en A relativa a B es negativa; se necesita fuerza externa para mover m.
  • 5.
    Trabajo y energíagravitacionales Considere el trabajo contra g para mover m de A a B, una altura vertical h. B F Trabajo = Fh = mgh m h mg g En el nivel B, la energía potencial U es: A U = mgh (gravitacional) La fuerza externa realiza trabajo positivo; la gravedad g realiza trabajo negativo. La fuerza externa F contra el campo g aumenta la energía potencial. Si se libera, el campo proporciona trabajo de vuelta.
  • 6.
    Trabajo y energíaeléctricos Una fuerza externa F mueve a +q de A a B contra la fuerza de campo qE. B ++++ Trabajo = Fd = (qE)d Fe En el nivel B, la energía potencial U es: +q + d qE E U = qEd (eléctrica) A - - - - El campo E realiza trabajo negativo; la fuerza externa realiza trabajo positivo. La fuerza externa F contra el campo E aumenta la energía potencial. Si se libera el campo proporciona trabajo de vuelta.
  • 7.
    Trabajo y cargasnegativas Suponga que una carga negativa –q se mueve contra E de A a B. B ++++ Trabajo por E = qEd qE -q d En A, la energía potencial U es: E U = qEd (eléctrica) A - - - - ¡No se requiere fuerza externa! El campo E realiza trabajo positivo –q y disminuye la energía potencial. Si se libera desde B no ocurre nada.
  • 8.
    Trabajo par moveruna carga Trabajo para mover +q de A a B. rb + ++ +Q + F kqQ ++ + En A: Fa qE ra2 ra kqQ En B: Fb rb2 kqQ Fuerza promedio: Favg Distancia: ra - rb ra rb kQq 1 1 Trabajo Fd ra rb Trabajo kQq ra rb rb ra
  • 9.
    Energía potencial absoluta La E.P. absoluta es relativa a rb Es trabajo para traer + ++ +Q + F ++ + +q de infinito a un qE ra punto cerca de Q; es decir, de a rb 0 1 1 1 1 kQq Trabajo kQq Trabajo kQq rb ra rb rb Energía potencial kQq absoluta: U r
  • 10.
    Ejemplo 1. ¿Cuáles la energía potencial si una carga de +2 nC se mueve de al punto A, a 8 cm de una carga de +6 C? La E.P. será positiva en el punto A A, porque el campo puede +2 nC realizar trabajo + si q se libera. 8 cm +Q Energía kQq potencial: U +6 C r 9 Nm2 -6 -9 (9 x 10 C2 )( 6 x 10 C)(+2 x 10 C) U (0.08 m) U = 1.35 mJ Energía potencial positiva
  • 11.
    Signos para energíapotencial Considere los puntos A, B y C. A B Para +2 nC en A: U = +1.35 mJ 8 cm 12 cm Preguntas: +Q C 4 cm Si +2 nC se mueve de A a B, ¿el +6 C campo E realiza trabajo + o –? ¿La q positiva en E.P. aumenta o disminuye? movimiento +2 nC El campo E realiza trabajo positivo, la E.P. disminuye. Si +2 nC se mueve de A a C (más cerca de +Q), el campo E realiza trabajo negativo y la E.P. aumenta.
  • 12.
    Ejemplo 2. ¿Cuáles el cambio en energía potencial si una carga +2 nC se mueve de a B? Energía kQq A B potencial: U r 8 cm 12 cm +Q Del Ej. 1: UA = + 1.35 mJ +6 C 9 Nm2 (9 x 19 C2 )( 6 x 10-6C)(+2 x 10-9C) UB 0.900 mJ (0.12 m) U = UB – UA = 0.9 mJ – 1.35 mJ U = -0.450 mJ Note que E.P. disminuye conforme E realiza trabajo.
  • 13.
    Movimiento de unacarga negativa Considere los puntos A, B y C. A B Suponga que se mueve una -q negativa. 12 cm 8 cm Preguntas: +Q C 4 cm Si -q se mueve de A a B, ¿el +6 C campo E realiza trabajo + o –? q negativa en ¿E.P. aumenta o disminuye? movimiento - El campo E realiza trabajo negativo, E.P. aumenta. ¿Qué ocurre si se mueve una carga de–2 nC de A a B, en lugar de una carga de +2 nC?. Continúa este ejemplo. . .
  • 14.
    Ejemplo 3. ¿Cuáles el cambio en energía potencial si una carga de -2 nC se mueve de a B? Energía kQq A B potencial: U r 8 cm 12 cm Del Ej. 1: UA = -1.35 mJ +Q (Negativo debido a carga –) +6 C 9 Nm2 (9 x 19 C2 )(6 x 10-6C)(-2 x 10-9C) UB 0.900 mJ (0.12 m) UB – UA = -0.9 mJ – (-1.35 mJ) U = +0.450 mJ Una carga – que se mueve alejándose de una carga + gana E.P.
  • 15.
    Propiedades del espacio Campoeléctrico Un campo eléctrico es una propiedad del espacio que permite predecir la . E fuerza sobre una carga en dicho punto. r F E ; F qE + q ++ + Q ++ ++ E es un vector El campo E existe independientemente de la carga q y se encuentra a partir de: kQ Campo eléctrico E r2
  • 16.
    Potencial eléctrico El potencialeléctrico es otra propiedad del espacio que permite predecir la E.P. U de cualquier carga q en un punto. P. V q r Potencial U + ++ + V ; U qV Q eléctrico: q ++ ++ Potencial Las unidades son: joules por coulomb (J/C) Por ejemplo, si el potencial es 400 J/C en el punto P, una carga de –2 nC en dicho punto tendría E.P. : U = qV = (-2 x 10-9C)(400 J/C); U = -800 nJ
  • 17.
    Unidad SI depotencial (volt) De la definición de potencial eléctrico como E.P. por unidad de carga, se ve que las unidades deben ser J/C. Esta unidad se redefine como volt (V). U 1 joule V ; 1 volt = q 1 coulomb Un potencial de un volt en un punto dado significa que una carga de un coulomb colocada en dicho punto experimentará una energía potencial de un joule.
  • 18.
    Cálculo de potencialeléctrico Energía potencial eléctrica y potencial: kQ P. V kQq U r U ; V r r q + ++ + Q ++ ++ kQq Al sustituir, se r kQ V Potencial encuentra V: q r kQ El potencial debido a una carga positiva V es positivo; el potencial debido a una r carga negativa es negativo. (Use el signo de la carga.)
  • 19.
    Ejemplo 4: Encuentreel potencial a una distancia de 6 cm de una carga de –5 nC. 9 Nm2 kQ 9 x 10 C 2 ( 5 x 10-9C) P. q = –4 C V r (0.06 m) r 6 cm V negativo en - -- - Q- VP = -750 V -- el punto P : - Q = -5 nC ¿Cuál sería la E.P. de una carga de –4 C colocada en este punto P? U = qV = (-4 x 10-6 C)(-750 V); U = 3.00 mJ Como E.P. es positiva, E realizará trabajo + si q se libera.
  • 20.
    Potencial para múltiplescargas El potencial eléctrico V en la vecindad de algunas cargas es igual a la suma algebraica de los potenciales debidos a cada carga. kQ1 kQ2 kQ3 Q1 - r1 A VA r1 r2 r3 r2 r3 + kQ Q3 - Q2 V r El potencial es + o – con base en el signo de las cargas Q.
  • 21.
    Ejemplo 5: Doscargas Q1= +3 nC y Q2 = -5 nC están separadas 8 cm. Calcule el potencial eléctrico en el punto A. kQ1 kQ2 B VA 2 cm r1 r2 9 Nm 2 -9 Q1 + +3 nC kQ1 9 x 10 C2 ( 3 x 10 C) 450 V r1 (0.06 m) 6 cm 9 Nm 2 kQ2 9 x 10 C 2 ( 5 x 10-9C) A 2250 V 2 cm r2 (0.02 m) - VA = 450 V – 2250 V; VA = -1800 V Q2 = -5 nC
  • 22.
    Ejemplo 5 (Cont.):Calcule el potencial eléctrico en el punto B para las mismas cargas. kQ1 kQ2 VB B r1 r2 2 cm 9 x 109 Nm 2 ( 3 x 10-9C) Q1 + +3 nC kQ1 C2 1350 V r1 (0.02 m) 6 cm 9 Nm 2 kQ2 9 x 10 C 2 ( 5 x 10-9C) A 450 V 2 cm r2 (0.10 m) - VB = 1350 V – 450 V; VB = +900 V Q2 = -5 nC
  • 23.
    Ejemplo 5 (Cont.):Discuta el significado de los potenciales recién encontrados para los puntos A y Considere el punto A: VA = -1800 V B Para cada coulomb de carga positiva 2 cm colocado en el punto A, la energía Q1 + +3 nC potencial será –1800 J. (E.P. negativa.) 6 cm El campo se sostiene a esta carga A positiva. Una fuerza externa debe 2 cm realizar +1800 J de trabajo para - mover cada coulomb de carga + a Q2 = -5 nC infinito.
  • 24.
    Ejemplo 5 (Cont.):Discuta el significado de los potenciales recién encontrados para los puntos A y Considere el punto B: VB = +900 V B 2 cm Para cada coulomb de carga positiva Q1 + +3 nC colocada en el punto B, la energía potencial será +900 J. (E.P. positiva.) 6 cm A Para cada coulomb de carga positiva, 2 cm el campo E realizará 900 J de trabajo - positivo para moverlo al infinito. Q2 = -5 nC
  • 25.
    Diferencia de potencial Ladiferencia de potencial entre dos puntos A y B es el trabajo por unidad de carga positiva realizado por las fuerzas eléctricas para mover una pequeña carga de prueba desde el punto de mayor potencial al punto de menor potencial. Diferencia de potencial: VAB = VA - VB TrabajoAB = q(VA – VB) Trabajo POR el campo E Se pueden usar matemáticamente los signos positivo y negativo de las cargas para dar los signos adecuados.
  • 26.
    Ejemplo 6: ¿Cuáles la diferencia de potencial entre los puntos A y B? ¿Qué trabajo realiza el campo E s una carga de +2 C se mueve de A a B? B 2 cm VA = -1800 V VB = +900 V Q1 + +3 nC 6 cm VAB= VA – VB = -1800 V – 900 V A 2 cm VAB = -2700 V Note que el punto B está a mayor potencial. Q2 - -5 nC TrabajoAB = q(VA – VB) = (2 x 10-6 C )(-2700 V) Trabajo = -5.40 mJ El campo E realiza trabajo negativo. Por tanto, se requirió una fuerza externa para mover la carga.
  • 27.
    Ejemplo 6 (Cont.):Ahora suponga que la carga de +2 C se mueve de regreso de B a A? B 2 cm VA = -1800 V VB = +900 V Q1 + +3 nC 6 cm VBA= VB – VA = 900 V – (-1800 V) A Esta trayectoria es de 2 cm VBA = +2700 V potencial alto a bajo. Q2 - -5 nC TrabajoBA = q(VB – VA) = (2 x 10-6 C )(+2700 V) Trabajo = +5.40 mJ El campo E realiza trabajo positivo. ¡Esta vez el trabajo se realiza POR el campo E!
  • 28.
    Placas paralelas Considere dosplacas paralelas de carga igual y opuesta, separadas una distancia d. VA + + + + +q E Campo E constante: F = qE F = qE Trabajo = Fd = (qE)d VB - - - - Además, Trabajo = q(VA – VB) De modo que: qVAB = qEd y VAB = Ed La diferencia de potencial entre dos placas paralelas cargadas opuestamente es el producto de E y d.
  • 29.
    Ejemplo 7: Ladiferencia de potencial entre dos placas paralelas es 800 V. Si su separación es de 3 mm, ¿cuál es el campo E? VA + + + + V V Ed ; E +q E d F = qE 80 V VB - - - - E 26, 700 V/m 0.003 m El campo E expresado en volts por metro (V/m) se conoce como gradiente de potencial y es equivalente al N/C. El volt por metro es la mejor unidad para corriente de electricidad, el N/C es mejor para electrostática.
  • 30.
    Resumen de fórmulas Energía potencial kQq U U ; V eléctrica y potencial r q Potencial eléctrico cerca kQ V de múltiples cargas: r TrabajoAB = q(VA – VB) Trabajo POR el campo E Placas paralelas V V Ed ; E cargadas opuestamente: d
  • 31.