MATEMÁTICAS


ÁREAS Y PERÍMETROS DE
   FIGURAS PLANAS
EJERCICIOS PRÁCTICOS



C.E.I.P. ”Martín Noguera”.
           Jaén              Edu Becerra 2009-10
CUADRADO

área                                  perímetro



  Lado por lado                                     Suma de los
    = lado al                                         lados
   cuadrado




             Pulsa aquí para ver el   Pulsa aquí para ver el
                desarrollo de la         desarrollo de la
               fórmula del área       fórmula del perímetro
E          5 cm
             l
                 J
                 E
                 M   5 cm

l
                 P
                 L
                 O




    Área =
EJEMPLO


    l
                                          3 cm



l                            3 cm


                                    4·3 = 12 cm




        Perímetro = l + l + l + l = 4·l
Dado el Perímetro
        Calcular
         el Área
                 ÁREA DEL CUADRADO =
                  A =LxL = L2
 




Calcula el área de un cuadrado de 32 m. de perímetro.
 
 
Dada el Área Calcular
        el Lado
Calcula cuánto tiene que medir el lado de un 
   cuadrado para que su área sea:
    a) 81 m²
  
    b) 3600 km²

  c)   144 mm²
RECTÁNGULO

área                                       perímetro



        Lado mayor                                       Suma de los
       por lado menor                                      lados




                  Pulsa aquí para ver el   Pulsa aquí para ver el
                     desarrollo de la         desarrollo de la
                    fórmula del área       fórmula del perímetro
E          3 cm
               b
                    J
                    E
                    M   5 cm
a                   P
                    L
                    O



    Área = a   ·b
EJEMPLO

                  b

                                                            3 cm
a

                                             5 cm

                                              2·(5+3) = 16 cm




    Perímetro = a + b + a + b = 2·a + 2·b = 2·(a+b)
ÁREA DEL
          RECTÁNGULO

   Arec = base · altura

 
       altur
       a

                            base

       Km2     hm2   dam2   m2     dm2   cm2   mm2


               ha     a     ca
PROBLEMAS TIPO

Calcula el área de los siguientes rectángulos:
     a) Base: 12 m  Altura: 20 m
 

     b)   Base: 2 km  Altura: 1425 m

    

  Queremos construir una nave, con forma rectangular,
  de 42 m². Si mide 7 m de largo ¿cuánto ha de ser
  el ancho?
PROBLEMAS TIPO II

Base     10 cm   2,1 hm              3,2 km


Altura   0,2 m              0,5 dm   25 hm


Área             1,68 hm2   67 cm2
ÁREA DEL
                    ROMBOIDE
             B


                 a=altura
C                                            a=altura
                      C
          B= base                  B= base




    ÁREA DEL ROMBOIDE=RECTÁNGULO=BXA

    PERÍMETRO = B+B+C+C= 2XB+2XC
ÁREA DE UN
                ROMBOIDE
El área de un romboide se calcula multiplicando la medida
                 de la base por la altura.




                  A = 2cm. · 3 cm = 6cm2.
ROMBO

área                                 perímetro




   Diagonal mayor por                              Suma de los
     diagonal menor                                  lados
     partido por dos




            Pulsa aquí para ver el   Pulsa aquí para ver el
               desarrollo de la         desarrollo de la
              fórmula del área       fórmula del perímetro
EJEMPLO
l

               3 cm



l

                3 cm



                              4·3 = 12 cm




    Perímetro = l + l + l + l = 4·l
EJEMPLO



D



                    8 cm




    d



             5 cm
    Área =
PROBLEMAS TIPO
AREA DEL ROMBO=


Las diagonales de un rombo miden 42 cm y 2 dm
  respectivamente. Calcula su área.




Queremos construir un rombo de 24,6 cm² de área. Si una de
  las diagonales mide 0,6 dm. ¿cuánto tienen que medir la
  otra?
TRIÁNGULO
      área                                      perímetro




                                        Suma de los
Base por altura                           tres lados
partido por dos




             Pulsa aquí para ver el   Pulsa aquí para ver el
                desarrollo de la         desarrollo de la
               fórmula del área       fórmula del perímetro
Triángulo
   Fijate en las siguientes figuras:




      Figura 1           Figura 2

Por lo que su formula será:

AREA DEL TRiÁNGULO =
altura




h                                                       h




     b                                                                b
                                           base




                                       E                    3 cm          3 cm

                                       J
    Área =   b1 +b2                  E
                                       M
                                                               4 cm                     2 cm

                         ⋅h
                2                      P
                                       L           53                   b 1 +b2 
                                       O                ⋅2=8 cm2                        ⋅h
                                                    2                            2
                                       S
EJEMPLO

                                    4 cm
        c
             3 cm
a


                           5 cm

    b

                    3 + 5 + 4 = 12 cm




            Perímetro = a + b + c
Teorema de
              Pitágoras
                                 hipotenusa= h
                    cateto=a
   La fórmula
    h² = a² + b²
                               cateto=b


       DEFINICIÓN

En todo triangulo rectángulo el
cuadrado de la hipotenusa es igual a la
suma de los cuadrados de los catetos.
PROBLEMAS TIPO
Base            12,3m            6m           7,25m         42 cm


Altura            6m                          2,4 m        210 mm


Área                        18dm2




 Una escalera esta apoyada en la pared. Sabiendo que la distancia del suelo
 a la parte más alta de la escaleta es de 5m y la de la pared a la parte baja es de
 3 m :¿Cuánto mide la escalera?
                                                  ¿?
                                      5m


                                              3m
TRAPECIO

área                                        perímetro



        Semisuma
       de las bases                                       Suma de los
       por la altura                                        lados




                   Pulsa aquí para ver el   Pulsa aquí para ver el
                      desarrollo de la         desarrollo de la
                     fórmula del área       fórmula del perímetro
3 cm
                           bases
altura
                  b2
                                          E             2 cm
                                          J
         h                                E                    5 cm
                                          M
         b1                               P              53 
                                          L                         ⋅2=8 cm2
                                                               2
                                          O

                                              Si las bases fuesen
              Área =    b 1 +b2             iguales tendríamos
                                     ⋅h           un rectángulo
                           2

                                                         b

                                                   a
                                                           a   ·b
                                                        a=
                                                  Áre
EJEMPL
     b2                         O
                             5 cm


a             4                             3 cm
          c
              cm
                º

    b1                         7 cm

                              7+3+5+4 = 19 cm




              Perímetro = b1 + c + b2 + a
PROBLEMAS TIPO
              12,23 cm    10,2m     4,2 dam




               5,2 cm      ?¿        22 m
  Base
Mayor(b1)

Base menor      ?¿       25,14 m2   21,3 m2
(b2)

   Área
              2,13 cm     4,5 m       ?¿

 Altura (h)
ÁREA DE UN
             TRAPEZOIDE.
Es la suma de las áreas de los triángulos que lo
conforman.
PRÁCTICA
Se quiere pintar una pared como la del dibujo.Calcula los botes de pintura
  que se necesitarán sabiendo que para cada 10 metros cuadrados se
  necesita 1 bote

               5,2m


                               10 m


                                                    35 m


        15 m



                              42m
ÁREA DE UN POLÍGONO
                 REGULAR
El Área de un polígono regular es igual al perímetro por la apotema
Partido por dos
Apotema Segmento que une el centro del poligono con la mitad del lado
Perímetro es el nº de lados por el valor del lado.

 Perímetro =Lado x Nº de lados.




                                                               A=P·a·
                                                                  2
PRÁCTICA

1.- Halla el área de un hexágono de 32,5 dm de perimetro y cuya
    apotema mide 28 cm




2.- Halla el área de un pentágono cuyo lado es 2,5 m y su
    apotema 1,25m
CIRCUNFERENCIA Y
        CÍRCULO

círculo                                 circunferencia



   π (pi) por el
     radio al
    cuadrado                                                      Diámetro por π
                                                                  π ≅ 3,14159...




               Pulsa aquí para ver el    Pulsa aquí para ver el
                  desarrollo de la          desarrollo de la
                 fórmula del área        fórmula del perímetro
EJEMPLO

r

                                  10 cm




                           2                  2
                       π⋅10 ≃ 314 , 159 cm

                   2
    Área =   π⋅r                 Siempre es un
                                 valor aproximado
EJEMPLO

 r


                             5 cm




                     2⋅π⋅5 ≃ 31 , 4159 cm


longitud =   2⋅π⋅r            Siempre es un
                              valor aproximado

Practica areas

  • 1.
    MATEMÁTICAS ÁREAS Y PERÍMETROSDE FIGURAS PLANAS EJERCICIOS PRÁCTICOS C.E.I.P. ”Martín Noguera”. Jaén Edu Becerra 2009-10
  • 2.
    CUADRADO área perímetro Lado por lado Suma de los = lado al lados cuadrado Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 3.
    E 5 cm l J E M 5 cm l P L O Área =
  • 4.
    EJEMPLO l 3 cm l 3 cm 4·3 = 12 cm Perímetro = l + l + l + l = 4·l
  • 5.
    Dado el Perímetro Calcular el Área ÁREA DEL CUADRADO = A =LxL = L2   Calcula el área de un cuadrado de 32 m. de perímetro.    
  • 6.
    Dada el ÁreaCalcular el Lado Calcula cuánto tiene que medir el lado de un  cuadrado para que su área sea: a) 81 m²    b) 3600 km² c) 144 mm²
  • 7.
    RECTÁNGULO área perímetro Lado mayor Suma de los por lado menor lados Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 8.
    E 3 cm b J E M 5 cm a P L O Área = a ·b
  • 9.
    EJEMPLO b 3 cm a 5 cm 2·(5+3) = 16 cm Perímetro = a + b + a + b = 2·a + 2·b = 2·(a+b)
  • 10.
    ÁREA DEL RECTÁNGULO  Arec = base · altura   altur a base Km2 hm2 dam2 m2 dm2 cm2 mm2 ha a ca
  • 11.
    PROBLEMAS TIPO Calcula el área de los siguientes rectángulos:      a)Base: 12 m  Altura: 20 m        b) Base: 2 km  Altura: 1425 m      Queremos construir una nave, con forma rectangular,   de 42 m². Si mide 7 m de largo ¿cuánto ha de ser   el ancho?
  • 12.
    PROBLEMAS TIPO II Base 10 cm 2,1 hm 3,2 km Altura 0,2 m 0,5 dm 25 hm Área 1,68 hm2 67 cm2
  • 13.
    ÁREA DEL ROMBOIDE B a=altura C a=altura C B= base B= base ÁREA DEL ROMBOIDE=RECTÁNGULO=BXA PERÍMETRO = B+B+C+C= 2XB+2XC
  • 14.
    ÁREA DE UN ROMBOIDE El área de un romboide se calcula multiplicando la medida de la base por la altura. A = 2cm. · 3 cm = 6cm2.
  • 15.
    ROMBO área perímetro Diagonal mayor por Suma de los diagonal menor lados partido por dos Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 16.
    EJEMPLO l 3 cm l 3 cm 4·3 = 12 cm Perímetro = l + l + l + l = 4·l
  • 17.
    EJEMPLO D 8 cm d 5 cm Área =
  • 18.
    PROBLEMAS TIPO AREA DELROMBO= Las diagonales de un rombo miden 42 cm y 2 dm respectivamente. Calcula su área. Queremos construir un rombo de 24,6 cm² de área. Si una de las diagonales mide 0,6 dm. ¿cuánto tienen que medir la otra?
  • 19.
    TRIÁNGULO área perímetro Suma de los Base por altura tres lados partido por dos Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 20.
    Triángulo  Fijate en las siguientes figuras: Figura 1 Figura 2 Por lo que su formula será: AREA DEL TRiÁNGULO =
  • 21.
    altura h h b b base E 3 cm 3 cm J Área = b1 +b2  E M 4 cm 2 cm ⋅h 2 P L  53   b 1 +b2  O ⋅2=8 cm2 ⋅h 2 2 S
  • 22.
    EJEMPLO 4 cm c 3 cm a 5 cm b 3 + 5 + 4 = 12 cm Perímetro = a + b + c
  • 23.
    Teorema de Pitágoras hipotenusa= h cateto=a  La fórmula h² = a² + b² cateto=b DEFINICIÓN En todo triangulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.
  • 24.
    PROBLEMAS TIPO Base 12,3m 6m 7,25m 42 cm Altura 6m 2,4 m 210 mm Área 18dm2 Una escalera esta apoyada en la pared. Sabiendo que la distancia del suelo a la parte más alta de la escaleta es de 5m y la de la pared a la parte baja es de 3 m :¿Cuánto mide la escalera? ¿? 5m 3m
  • 25.
    TRAPECIO área perímetro Semisuma de las bases Suma de los por la altura lados Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 26.
    3 cm bases altura b2 E 2 cm J h E 5 cm M b1 P  53  L ⋅2=8 cm2 2 O Si las bases fuesen Área =  b 1 +b2  iguales tendríamos ⋅h un rectángulo 2 b a a ·b a= Áre
  • 27.
    EJEMPL b2 O 5 cm a 4 3 cm c cm º b1 7 cm 7+3+5+4 = 19 cm Perímetro = b1 + c + b2 + a
  • 28.
    PROBLEMAS TIPO 12,23 cm 10,2m 4,2 dam 5,2 cm ?¿ 22 m Base Mayor(b1) Base menor ?¿ 25,14 m2 21,3 m2 (b2) Área 2,13 cm 4,5 m ?¿ Altura (h)
  • 29.
    ÁREA DE UN TRAPEZOIDE. Es la suma de las áreas de los triángulos que lo conforman.
  • 30.
    PRÁCTICA Se quiere pintaruna pared como la del dibujo.Calcula los botes de pintura que se necesitarán sabiendo que para cada 10 metros cuadrados se necesita 1 bote 5,2m 10 m 35 m 15 m 42m
  • 31.
    ÁREA DE UNPOLÍGONO REGULAR El Área de un polígono regular es igual al perímetro por la apotema Partido por dos Apotema Segmento que une el centro del poligono con la mitad del lado Perímetro es el nº de lados por el valor del lado. Perímetro =Lado x Nº de lados. A=P·a· 2
  • 32.
    PRÁCTICA 1.- Halla elárea de un hexágono de 32,5 dm de perimetro y cuya apotema mide 28 cm 2.- Halla el área de un pentágono cuyo lado es 2,5 m y su apotema 1,25m
  • 33.
    CIRCUNFERENCIA Y CÍRCULO círculo circunferencia π (pi) por el radio al cuadrado Diámetro por π π ≅ 3,14159... Pulsa aquí para ver el Pulsa aquí para ver el desarrollo de la desarrollo de la fórmula del área fórmula del perímetro
  • 34.
    EJEMPLO r 10 cm 2 2 π⋅10 ≃ 314 , 159 cm 2 Área = π⋅r Siempre es un valor aproximado
  • 35.
    EJEMPLO r 5 cm 2⋅π⋅5 ≃ 31 , 4159 cm longitud = 2⋅π⋅r Siempre es un valor aproximado