SlideShare una empresa de Scribd logo

Tema Trigonometría

Teorema de la altura y los catetos. Razones trigonométricas y resolución de problemas de trigonometria.

1 de 34
Descargar para leer sin conexión
Profesor: Juan Sanmartín
Matemáticas
Tema Trigonometría
Recursos subvencionados por el…
Teorema
Altura y Catetos
a
bc
mn
h nmh 2
mab 2
nac 2
222
cch 
Teorema de la altura
Teorema de los catetos
Teorema de Pitágoras
nmh 2
9122
 m 16
9
122
 m
nma  25916 a
mab 2
16252
 b 20cm1625b 
nac 2
9252
 c cm51925c 
60cm152025cbaperimetro 
Ejercicio: Halla el perímetro del siguiente triángulo
m
nmh 2
mab 2
23,04cm
25
24
a
b
m
22

n nmh 2
mab 2
nac 2
222
cch 
Teorema de la altura
Teorema de los catetos
Teorema de Pitágoras
222
cba  base25cm724a 22

nac 2
cm1,96
25
7
a
c
n
22

6,72cm1,9623,04nmh 
2
alturabase
Areatriángulo


2
t 84cm
2
6,7225
2
ha
A 




222
cch 
Ejercicio: Halla el área del siguiente triángulo
Razones
Trigonométicas
1cos22
 sen
2
1
sen 
 22
1cos sen  2
1cos sen
4
1
1
2
1
1cos
2







4
3
4
14
cos 


2
3
cos 
Ejercicio: Calcula el resto de las razones trigonométricas sabiendo que
en un ángulo del tercer cuadrante…
Ecuación fundamental
de trigonometría

Recomendados

Funciones trigonomrtricas..
Funciones trigonomrtricas..Funciones trigonomrtricas..
Funciones trigonomrtricas..Luis Elias
 
Equivalencias - Dibujo 2º Bach.
Equivalencias - Dibujo 2º Bach.Equivalencias - Dibujo 2º Bach.
Equivalencias - Dibujo 2º Bach.Lau Visual Arts
 
CONCEPTOS BÁSICOS DE GEOMETRIA DESCRIPTIVA
CONCEPTOS BÁSICOS DE GEOMETRIA DESCRIPTIVACONCEPTOS BÁSICOS DE GEOMETRIA DESCRIPTIVA
CONCEPTOS BÁSICOS DE GEOMETRIA DESCRIPTIVAdiegoalvarezatonaidan
 
Soluciones intersecciones
Soluciones interseccionesSoluciones intersecciones
Soluciones interseccionesCristina
 
Espacios vectoriales diapositivas
Espacios vectoriales diapositivasEspacios vectoriales diapositivas
Espacios vectoriales diapositivasStefany De la Torre
 
TRIÁNGULOS II. DIBUJO TÉCNICO 2º BACHILLERATO
TRIÁNGULOS II. DIBUJO TÉCNICO 2º BACHILLERATOTRIÁNGULOS II. DIBUJO TÉCNICO 2º BACHILLERATO
TRIÁNGULOS II. DIBUJO TÉCNICO 2º BACHILLERATOJUAN DIAZ ALMAGRO
 
Semejanza de polígonos y circunferencias
Semejanza de polígonos y circunferenciasSemejanza de polígonos y circunferencias
Semejanza de polígonos y circunferenciasKarla Armendariz
 

Más contenido relacionado

La actualidad más candente

Dibujo tecnico 2o_bach-_leccion_11
Dibujo tecnico 2o_bach-_leccion_11Dibujo tecnico 2o_bach-_leccion_11
Dibujo tecnico 2o_bach-_leccion_11mpazmv
 
Diagrama de tallos y hojas
Diagrama de tallos y hojasDiagrama de tallos y hojas
Diagrama de tallos y hojasMontserg93
 
Trabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioTrabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioJonathan Villarroel
 
transformaciones geométricas
 transformaciones geométricas transformaciones geométricas
transformaciones geométricasjmerca1
 
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATO
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATOS. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATO
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATOJUAN DIAZ ALMAGRO
 
Teorema de las tangentes en la circunferencia
Teorema de las tangentes en la circunferenciaTeorema de las tangentes en la circunferencia
Teorema de las tangentes en la circunferenciaCamila Moncada
 
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico I
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico ITANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico I
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico IJUAN DIAZ ALMAGRO
 
Tabla teorema de thales
Tabla teorema de thalesTabla teorema de thales
Tabla teorema de thalesLuis Subiabre
 
Taller valor numerico mat 8
Taller valor numerico  mat 8Taller valor numerico  mat 8
Taller valor numerico mat 8Ramiro Muñoz
 
División interior y exterior de un segmento iv electivo
División interior y exterior de un segmento iv electivoDivisión interior y exterior de un segmento iv electivo
División interior y exterior de un segmento iv electivoAriel d?z
 
parábola elementos y ecuación
parábola elementos y ecuación parábola elementos y ecuación
parábola elementos y ecuación Mg_Ivan_Mauricio
 
Ejercicios de relaciones métricas en el triáng. rect.
Ejercicios de relaciones métricas en el triáng. rect.Ejercicios de relaciones métricas en el triáng. rect.
Ejercicios de relaciones métricas en el triáng. rect.Lidu. Méndez
 
Aprendiendo acerca de los angulos cuadrantales
Aprendiendo acerca de los angulos cuadrantalesAprendiendo acerca de los angulos cuadrantales
Aprendiendo acerca de los angulos cuadrantalesAndinos de la Ciencia
 
Parábola y su uso
Parábola y su usoParábola y su uso
Parábola y su usoPaula M
 

La actualidad más candente (20)

Dibujo tecnico 2o_bach-_leccion_11
Dibujo tecnico 2o_bach-_leccion_11Dibujo tecnico 2o_bach-_leccion_11
Dibujo tecnico 2o_bach-_leccion_11
 
Diagrama de tallos y hojas
Diagrama de tallos y hojasDiagrama de tallos y hojas
Diagrama de tallos y hojas
 
Trabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioTrabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacio
 
transformaciones geométricas
 transformaciones geométricas transformaciones geométricas
transformaciones geométricas
 
El plano en Diédrico
El plano en DiédricoEl plano en Diédrico
El plano en Diédrico
 
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATO
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATOS. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATO
S. DIÉDRICO. INTERSECCIÓN DE PLANOS Y RECTAS CON PLANOS. 2º BACHILLERATO
 
Teorema de las tangentes en la circunferencia
Teorema de las tangentes en la circunferenciaTeorema de las tangentes en la circunferencia
Teorema de las tangentes en la circunferencia
 
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico I
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico ITANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico I
TANGENCIAS, ENLACES Y RECTIFICACIONES. Dibujo Técnico I
 
Tabla teorema de thales
Tabla teorema de thalesTabla teorema de thales
Tabla teorema de thales
 
Taller valor numerico mat 8
Taller valor numerico  mat 8Taller valor numerico  mat 8
Taller valor numerico mat 8
 
División interior y exterior de un segmento iv electivo
División interior y exterior de un segmento iv electivoDivisión interior y exterior de un segmento iv electivo
División interior y exterior de un segmento iv electivo
 
parábola elementos y ecuación
parábola elementos y ecuación parábola elementos y ecuación
parábola elementos y ecuación
 
Ejercicios de relaciones métricas en el triáng. rect.
Ejercicios de relaciones métricas en el triáng. rect.Ejercicios de relaciones métricas en el triáng. rect.
Ejercicios de relaciones métricas en el triáng. rect.
 
Aprendiendo acerca de los angulos cuadrantales
Aprendiendo acerca de los angulos cuadrantalesAprendiendo acerca de los angulos cuadrantales
Aprendiendo acerca de los angulos cuadrantales
 
Física I tiro parabólico
Física I tiro parabólicoFísica I tiro parabólico
Física I tiro parabólico
 
Geometria descriptiva
Geometria descriptivaGeometria descriptiva
Geometria descriptiva
 
Parábola y su uso
Parábola y su usoParábola y su uso
Parábola y su uso
 
Teoria basica de la geometria
Teoria basica de la geometriaTeoria basica de la geometria
Teoria basica de la geometria
 
R48458
R48458R48458
R48458
 
Diédrico: Tipos de Planos
Diédrico: Tipos de PlanosDiédrico: Tipos de Planos
Diédrico: Tipos de Planos
 

Destacado

Sistemas de Inecuaciones
Sistemas de InecuacionesSistemas de Inecuaciones
Sistemas de InecuacionesJuan Sanmartin
 
Tema Sucesiones - Limites de una Sucesión
Tema Sucesiones - Limites de una SucesiónTema Sucesiones - Limites de una Sucesión
Tema Sucesiones - Limites de una SucesiónJuan Sanmartin
 
Tema Radicales - Racionalización
Tema Radicales - RacionalizaciónTema Radicales - Racionalización
Tema Radicales - RacionalizaciónJuan Sanmartin
 
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2Tema Ecuaciones - Ecuaciones de Grado Mayor de 2
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2Juan Sanmartin
 
Tema Radicales - Operaciones con Radicales
Tema Radicales - Operaciones con RadicalesTema Radicales - Operaciones con Radicales
Tema Radicales - Operaciones con RadicalesJuan Sanmartin
 
Tema Geometrìa Analítica
Tema Geometrìa AnalíticaTema Geometrìa Analítica
Tema Geometrìa AnalíticaJuan Sanmartin
 
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...Juan Sanmartin
 
Tema Dominio de una Función
Tema Dominio de una FunciónTema Dominio de una Función
Tema Dominio de una FunciónJuan Sanmartin
 
Tema Sistemas de Ecuaciones - Sistemas Lineales
Tema Sistemas de Ecuaciones - Sistemas LinealesTema Sistemas de Ecuaciones - Sistemas Lineales
Tema Sistemas de Ecuaciones - Sistemas LinealesJuan Sanmartin
 
Tema Geometría - Áreas y Volumenes
Tema Geometría - Áreas y VolumenesTema Geometría - Áreas y Volumenes
Tema Geometría - Áreas y VolumenesJuan Sanmartin
 
Tema Ecuaciones - Ecuaciones de Primer Grado
Tema Ecuaciones - Ecuaciones de Primer GradoTema Ecuaciones - Ecuaciones de Primer Grado
Tema Ecuaciones - Ecuaciones de Primer GradoJuan Sanmartin
 
Tema Ecuaciones - Problemas de Algebra
Tema Ecuaciones - Problemas de AlgebraTema Ecuaciones - Problemas de Algebra
Tema Ecuaciones - Problemas de AlgebraJuan Sanmartin
 
Tema Ecuaciones - Ecuaciones de Segundo Grado
Tema Ecuaciones - Ecuaciones de Segundo GradoTema Ecuaciones - Ecuaciones de Segundo Grado
Tema Ecuaciones - Ecuaciones de Segundo GradoJuan Sanmartin
 

Destacado (18)

Sistemas de Inecuaciones
Sistemas de InecuacionesSistemas de Inecuaciones
Sistemas de Inecuaciones
 
Tema Sucesiones - Limites de una Sucesión
Tema Sucesiones - Limites de una SucesiónTema Sucesiones - Limites de una Sucesión
Tema Sucesiones - Limites de una Sucesión
 
Tema Radicales - Racionalización
Tema Radicales - RacionalizaciónTema Radicales - Racionalización
Tema Radicales - Racionalización
 
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2Tema Ecuaciones - Ecuaciones de Grado Mayor de 2
Tema Ecuaciones - Ecuaciones de Grado Mayor de 2
 
Tema Radicales - Operaciones con Radicales
Tema Radicales - Operaciones con RadicalesTema Radicales - Operaciones con Radicales
Tema Radicales - Operaciones con Radicales
 
Tema Logaritmos
Tema LogaritmosTema Logaritmos
Tema Logaritmos
 
Tema Geometrìa Analítica
Tema Geometrìa AnalíticaTema Geometrìa Analítica
Tema Geometrìa Analítica
 
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...
Tema Sistemas de Ecuaciones - Sistemas No Lineales y otros...
 
Tema Dominio de una Función
Tema Dominio de una FunciónTema Dominio de una Función
Tema Dominio de una Función
 
Tema Inecuaciones
Tema InecuacionesTema Inecuaciones
Tema Inecuaciones
 
Tema Intervalos
Tema  IntervalosTema  Intervalos
Tema Intervalos
 
Tema Sistemas de Ecuaciones - Sistemas Lineales
Tema Sistemas de Ecuaciones - Sistemas LinealesTema Sistemas de Ecuaciones - Sistemas Lineales
Tema Sistemas de Ecuaciones - Sistemas Lineales
 
Tema Polinomios
Tema PolinomiosTema Polinomios
Tema Polinomios
 
Tema Geometría - Áreas y Volumenes
Tema Geometría - Áreas y VolumenesTema Geometría - Áreas y Volumenes
Tema Geometría - Áreas y Volumenes
 
Tema Números Reales
Tema Números RealesTema Números Reales
Tema Números Reales
 
Tema Ecuaciones - Ecuaciones de Primer Grado
Tema Ecuaciones - Ecuaciones de Primer GradoTema Ecuaciones - Ecuaciones de Primer Grado
Tema Ecuaciones - Ecuaciones de Primer Grado
 
Tema Ecuaciones - Problemas de Algebra
Tema Ecuaciones - Problemas de AlgebraTema Ecuaciones - Problemas de Algebra
Tema Ecuaciones - Problemas de Algebra
 
Tema Ecuaciones - Ecuaciones de Segundo Grado
Tema Ecuaciones - Ecuaciones de Segundo GradoTema Ecuaciones - Ecuaciones de Segundo Grado
Tema Ecuaciones - Ecuaciones de Segundo Grado
 

Similar a Tema Trigonometría

Similar a Tema Trigonometría (20)

Ejercicios de trigonometria_iv
Ejercicios de trigonometria_ivEjercicios de trigonometria_iv
Ejercicios de trigonometria_iv
 
Ejercicios voluntarios
Ejercicios voluntariosEjercicios voluntarios
Ejercicios voluntarios
 
Problemas metricos1
Problemas metricos1Problemas metricos1
Problemas metricos1
 
Problemas metricos
Problemas metricosProblemas metricos
Problemas metricos
 
Ejercicios voluntarios
Ejercicios voluntariosEjercicios voluntarios
Ejercicios voluntarios
 
Solucion 3° formativo
Solucion 3° formativoSolucion 3° formativo
Solucion 3° formativo
 
Ejemplos
EjemplosEjemplos
Ejemplos
 
Pitagoras2 sol
Pitagoras2 solPitagoras2 sol
Pitagoras2 sol
 
Pitagoras resueltos
Pitagoras resueltosPitagoras resueltos
Pitagoras resueltos
 
Pitagoras2 sol
Pitagoras2 solPitagoras2 sol
Pitagoras2 sol
 
Pitagoras resueltos
Pitagoras resueltosPitagoras resueltos
Pitagoras resueltos
 
Problemas resueltos de pitagoras
Problemas resueltos de pitagorasProblemas resueltos de pitagoras
Problemas resueltos de pitagoras
 
Pitagoras resueltos
Pitagoras resueltosPitagoras resueltos
Pitagoras resueltos
 
trigonometria ejercicios.pdf
trigonometria ejercicios.pdftrigonometria ejercicios.pdf
trigonometria ejercicios.pdf
 
Trigonometría (parte 1).ppt
Trigonometría (parte 1).pptTrigonometría (parte 1).ppt
Trigonometría (parte 1).ppt
 
Guc3ada raices-conceptos-basicos
Guc3ada raices-conceptos-basicosGuc3ada raices-conceptos-basicos
Guc3ada raices-conceptos-basicos
 
Guc3ada raices-conceptos-basicos
Guc3ada raices-conceptos-basicosGuc3ada raices-conceptos-basicos
Guc3ada raices-conceptos-basicos
 
Extremos. Problemas de aplicación
Extremos. Problemas de aplicación Extremos. Problemas de aplicación
Extremos. Problemas de aplicación
 
Pagina 258
Pagina 258Pagina 258
Pagina 258
 
56949318 solucion-del-examen-del-teorema-de-pitagoras-y-semejanza-2ºc
56949318 solucion-del-examen-del-teorema-de-pitagoras-y-semejanza-2ºc56949318 solucion-del-examen-del-teorema-de-pitagoras-y-semejanza-2ºc
56949318 solucion-del-examen-del-teorema-de-pitagoras-y-semejanza-2ºc
 

Más de Juan Sanmartin

Producción H2 verde_ACC_espanol.pptx
Producción H2 verde_ACC_espanol.pptxProducción H2 verde_ACC_espanol.pptx
Producción H2 verde_ACC_espanol.pptxJuan Sanmartin
 
Tema logaritmos y Ecuaciones Exponenciales
Tema logaritmos y Ecuaciones ExponencialesTema logaritmos y Ecuaciones Exponenciales
Tema logaritmos y Ecuaciones ExponencialesJuan Sanmartin
 
Tema Reacción Química (sencilla)
Tema Reacción Química (sencilla)Tema Reacción Química (sencilla)
Tema Reacción Química (sencilla)Juan Sanmartin
 
Problemas de Ley de Masas y Proporciones Definidas.
Problemas de Ley de Masas y Proporciones Definidas.Problemas de Ley de Masas y Proporciones Definidas.
Problemas de Ley de Masas y Proporciones Definidas.Juan Sanmartin
 
Explicación sencilla de Ajuste de Reacciones Químicas.
Explicación sencilla de Ajuste de Reacciones Químicas.Explicación sencilla de Ajuste de Reacciones Químicas.
Explicación sencilla de Ajuste de Reacciones Químicas.Juan Sanmartin
 
Tema Gráficas y Funciones
Tema Gráficas y FuncionesTema Gráficas y Funciones
Tema Gráficas y FuncionesJuan Sanmartin
 
Movimiento Circular Uniforme (Radián)
Movimiento Circular Uniforme (Radián)Movimiento Circular Uniforme (Radián)
Movimiento Circular Uniforme (Radián)Juan Sanmartin
 
Sistema de Inecuaciones con 2 Incógnitas
Sistema de Inecuaciones con 2 IncógnitasSistema de Inecuaciones con 2 Incógnitas
Sistema de Inecuaciones con 2 IncógnitasJuan Sanmartin
 
Dominio de una Función. Ejemplos
Dominio de una Función. EjemplosDominio de una Función. Ejemplos
Dominio de una Función. EjemplosJuan Sanmartin
 
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...Juan Sanmartin
 
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y Éteres
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y ÉteresQuimica orgánica III - Halogenuros. Alcoholes, Fenoles y Éteres
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y ÉteresJuan Sanmartin
 
Quimica organica II - Ciclos y Bencenos
Quimica organica II - Ciclos y BencenosQuimica organica II - Ciclos y Bencenos
Quimica organica II - Ciclos y BencenosJuan Sanmartin
 
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.Juan Sanmartin
 

Más de Juan Sanmartin (20)

Producción H2 verde_ACC_espanol.pptx
Producción H2 verde_ACC_espanol.pptxProducción H2 verde_ACC_espanol.pptx
Producción H2 verde_ACC_espanol.pptx
 
Antonio Gaudi.pptx
Antonio Gaudi.pptxAntonio Gaudi.pptx
Antonio Gaudi.pptx
 
Tema logaritmos y Ecuaciones Exponenciales
Tema logaritmos y Ecuaciones ExponencialesTema logaritmos y Ecuaciones Exponenciales
Tema logaritmos y Ecuaciones Exponenciales
 
Tema Estadística
Tema EstadísticaTema Estadística
Tema Estadística
 
Tema Cosmologia
Tema CosmologiaTema Cosmologia
Tema Cosmologia
 
Tema Geometria
Tema GeometriaTema Geometria
Tema Geometria
 
Tema Reacción Química (sencilla)
Tema Reacción Química (sencilla)Tema Reacción Química (sencilla)
Tema Reacción Química (sencilla)
 
Tema Dinámica
Tema DinámicaTema Dinámica
Tema Dinámica
 
Problemas de Ley de Masas y Proporciones Definidas.
Problemas de Ley de Masas y Proporciones Definidas.Problemas de Ley de Masas y Proporciones Definidas.
Problemas de Ley de Masas y Proporciones Definidas.
 
Explicación sencilla de Ajuste de Reacciones Químicas.
Explicación sencilla de Ajuste de Reacciones Químicas.Explicación sencilla de Ajuste de Reacciones Químicas.
Explicación sencilla de Ajuste de Reacciones Químicas.
 
Tema Gráficas y Funciones
Tema Gráficas y FuncionesTema Gráficas y Funciones
Tema Gráficas y Funciones
 
Tema Probabilidad
Tema ProbabilidadTema Probabilidad
Tema Probabilidad
 
Movimiento Circular Uniforme (Radián)
Movimiento Circular Uniforme (Radián)Movimiento Circular Uniforme (Radián)
Movimiento Circular Uniforme (Radián)
 
Sistema de Inecuaciones con 2 Incógnitas
Sistema de Inecuaciones con 2 IncógnitasSistema de Inecuaciones con 2 Incógnitas
Sistema de Inecuaciones con 2 Incógnitas
 
Acidos y bases
Acidos y basesAcidos y bases
Acidos y bases
 
Dominio de una Función. Ejemplos
Dominio de una Función. EjemplosDominio de una Función. Ejemplos
Dominio de una Función. Ejemplos
 
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...
Quimica organica IV.- Aldehidos, Cetonas, Ac. carboxílicos, Haluros de ácido ...
 
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y Éteres
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y ÉteresQuimica orgánica III - Halogenuros. Alcoholes, Fenoles y Éteres
Quimica orgánica III - Halogenuros. Alcoholes, Fenoles y Éteres
 
Quimica organica II - Ciclos y Bencenos
Quimica organica II - Ciclos y BencenosQuimica organica II - Ciclos y Bencenos
Quimica organica II - Ciclos y Bencenos
 
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.
Quimica organica I - Conceptos Básicos, Alcanos, Alquenos, Alquinos.
 

Último

circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptx
circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptxcircuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptx
circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptxnelsontobontrujillo
 
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docx
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docxPlan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docx
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docxEverthRomanGuevara
 
marco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfmarco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfedugon08
 
OFERTA DE POSTOS ESCOLARES. de ceip docx
OFERTA DE POSTOS ESCOLARES. de ceip docxOFERTA DE POSTOS ESCOLARES. de ceip docx
OFERTA DE POSTOS ESCOLARES. de ceip docxvictorpenha
 
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...JAVIER SOLIS NOYOLA
 
OKUDA, arte para niños de educación infantil
OKUDA, arte  para niños de educación infantilOKUDA, arte  para niños de educación infantil
OKUDA, arte para niños de educación infantilM Victoria Azcona
 
Maikell Victor - Química 2024 - Volume 1
Maikell Victor - Química 2024 - Volume 1Maikell Victor - Química 2024 - Volume 1
Maikell Victor - Química 2024 - Volume 1DevinsideSolutions
 
Análisis del Recorrido del Cliente actividad 1.pptx
Análisis del Recorrido del Cliente  actividad 1.pptxAnálisis del Recorrido del Cliente  actividad 1.pptx
Análisis del Recorrido del Cliente actividad 1.pptxfranklinsinisterrari1
 
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Heyssen Cordero Maraví
 
Teorías del Aprendizaje y paradigmas.pptx
Teorías del Aprendizaje y paradigmas.pptxTeorías del Aprendizaje y paradigmas.pptx
Teorías del Aprendizaje y paradigmas.pptxJunkotantik
 
Plan de Busqueda.pdf...............................
Plan de Busqueda.pdf...............................Plan de Busqueda.pdf...............................
Plan de Busqueda.pdf...............................alexlasso65
 
PMD 🔰🚸🎴 PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION SEMANA 23 y 24 🔰🚸🎴 DEL...
PMD 🔰🚸🎴  PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION  SEMANA 23 y 24 🔰🚸🎴 DEL...PMD 🔰🚸🎴  PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION  SEMANA 23 y 24 🔰🚸🎴 DEL...
PMD 🔰🚸🎴 PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION SEMANA 23 y 24 🔰🚸🎴 DEL...jaimexooc
 
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQ
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQUNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQ
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQJAVIERMAURICIOCORREA1
 
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...EDUCCUniversidadCatl
 
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQUNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQJAVIERMAURICIOCORREA1
 
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...Heyssen Cordero Maraví
 
Presentación parasitaria: Tricocefalosis
Presentación parasitaria: TricocefalosisPresentación parasitaria: Tricocefalosis
Presentación parasitaria: TricocefalosisRebeca Robles
 
Preelaboración de alimentos. El arroz.pdf
Preelaboración de alimentos. El arroz.pdfPreelaboración de alimentos. El arroz.pdf
Preelaboración de alimentos. El arroz.pdfVictorSanz21
 

Último (20)

circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptx
circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptxcircuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptx
circuitoelectricoTECNOLOGIAPARAGRADOQUINTO.pptx
 
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docx
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docxPlan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docx
Plan Anual Trimestralizado 2024 LUCHITO TERCERO-1.docx
 
marco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfmarco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdf
 
OFERTA DE POSTOS ESCOLARES. de ceip docx
OFERTA DE POSTOS ESCOLARES. de ceip docxOFERTA DE POSTOS ESCOLARES. de ceip docx
OFERTA DE POSTOS ESCOLARES. de ceip docx
 
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...
LOS NÚMEROS Y EL ECLIPSE SEGURO. Cuento literario escrito y diseñado por JAVI...
 
OKUDA, arte para niños de educación infantil
OKUDA, arte  para niños de educación infantilOKUDA, arte  para niños de educación infantil
OKUDA, arte para niños de educación infantil
 
Sesión: Sabiduría para vivir con rectitud
Sesión: Sabiduría para vivir con rectitudSesión: Sabiduría para vivir con rectitud
Sesión: Sabiduría para vivir con rectitud
 
Maikell Victor - Química 2024 - Volume 1
Maikell Victor - Química 2024 - Volume 1Maikell Victor - Química 2024 - Volume 1
Maikell Victor - Química 2024 - Volume 1
 
Análisis del Recorrido del Cliente actividad 1.pptx
Análisis del Recorrido del Cliente  actividad 1.pptxAnálisis del Recorrido del Cliente  actividad 1.pptx
Análisis del Recorrido del Cliente actividad 1.pptx
 
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
 
Teorías del Aprendizaje y paradigmas.pptx
Teorías del Aprendizaje y paradigmas.pptxTeorías del Aprendizaje y paradigmas.pptx
Teorías del Aprendizaje y paradigmas.pptx
 
Plan de Busqueda.pdf...............................
Plan de Busqueda.pdf...............................Plan de Busqueda.pdf...............................
Plan de Busqueda.pdf...............................
 
PMD 🔰🚸🎴 PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION SEMANA 23 y 24 🔰🚸🎴 DEL...
PMD 🔰🚸🎴  PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION  SEMANA 23 y 24 🔰🚸🎴 DEL...PMD 🔰🚸🎴  PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION  SEMANA 23 y 24 🔰🚸🎴 DEL...
PMD 🔰🚸🎴 PROYECTO MULTIGRADO IV DE LA CMU. PLANEACION SEMANA 23 y 24 🔰🚸🎴 DEL...
 
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQ
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQUNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQ
UNIDAD 1 EA 2 TICS VIRTUAL 2 SEMESTRE UQ
 
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...
La carrera diplomática. Graduados y graduadas de la Universidad Católica de ...
 
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQUNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
 
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...
La ciencia de ganar almas. Vol. 2. Manual de evangelismo | By Pr. Heyssen Cor...
 
Presentación parasitaria: Tricocefalosis
Presentación parasitaria: TricocefalosisPresentación parasitaria: Tricocefalosis
Presentación parasitaria: Tricocefalosis
 
Preelaboración de alimentos. El arroz.pdf
Preelaboración de alimentos. El arroz.pdfPreelaboración de alimentos. El arroz.pdf
Preelaboración de alimentos. El arroz.pdf
 
DIANTE DE TI, BOA MÃE! _
DIANTE DE TI, BOA MÃE!                  _DIANTE DE TI, BOA MÃE!                  _
DIANTE DE TI, BOA MÃE! _
 

Tema Trigonometría

  • 1. Profesor: Juan Sanmartín Matemáticas Tema Trigonometría Recursos subvencionados por el…
  • 3. a bc mn h nmh 2 mab 2 nac 2 222 cch  Teorema de la altura Teorema de los catetos Teorema de Pitágoras nmh 2 9122  m 16 9 122  m nma  25916 a mab 2 16252  b 20cm1625b  nac 2 9252  c cm51925c  60cm152025cbaperimetro  Ejercicio: Halla el perímetro del siguiente triángulo
  • 4. m nmh 2 mab 2 23,04cm 25 24 a b m 22  n nmh 2 mab 2 nac 2 222 cch  Teorema de la altura Teorema de los catetos Teorema de Pitágoras 222 cba  base25cm724a 22  nac 2 cm1,96 25 7 a c n 22  6,72cm1,9623,04nmh  2 alturabase Areatriángulo   2 t 84cm 2 6,7225 2 ha A      222 cch  Ejercicio: Halla el área del siguiente triángulo
  • 6. 1cos22  sen 2 1 sen   22 1cos sen  2 1cos sen 4 1 1 2 1 1cos 2        4 3 4 14 cos    2 3 cos  Ejercicio: Calcula el resto de las razones trigonométricas sabiendo que en un ángulo del tercer cuadrante… Ecuación fundamental de trigonometría
  • 7. 2 3 cos  3 3 tag  3 1 2 3 2 1 cos tag        sen 3 3 3 3 3 1 tag  2 1 sen  2 1 cosec    sen 3 32 3 3 3 2 cos 1 sec    3 3 33 3 3 3 31 cotag    tag
  • 8. 1cos22  sen 1tag  1sec 2   tag   211sec 2  Ejercicio: Calcula el resto de las razones trigonométricas sabiendo que en un ángulo del primer cuadrante… Ecuación fundamental de trigonometría     22 2 2 2 cos 1 cos cos cos  sen  22 sec1tag  2sec  2 1 sec 1 cos    2 2 2 2 
  • 9. 1tag     cos tag sen  2 2 sen  2 21 cosec    sen 1 1 cotag    tag 2 2 2 2 1costagsen   2 2 22 2 2  2 2 c os 2 2 cos 1 sec    2 2 22 2 2 
  • 11. Problema: “O Castro Tecnolóxico” es el edificio vanguardista diseñado por los arquitectos Luís M. Mansilla y Emilio Tuñón, ganadores del concurso internacional que el Ayuntamiento de Lalín convocó para su construcción. Este edificio, que según los expertos es una referencia arquitectónica del siglo XXI a nivel mundial, se asemeja en su construcción a la de las antiguas edificaciones castreñas. Todo el edificio está compuesto de formas circulares tanto en el interior como en el exterior, al igual que los castro celtas. Fue inaugurado el 20 de septiembre de 2013, año en el que también resultó premiado por la XII Bienal de Arquitectura y Urbanismo de España, en la sección dedicada a símbolos cívicos. Con las medidas que aparecen en la imagen vamos a calcular la altura del módulo más alto del edificio. La altura del teodolíto es de 1,5 m
  • 12. Vamos a calcular la altura del edificio por razones trigonométricas. Tenemos que tener en cuenta que el teodolíto no está a nivel del suelo sino a 1,5 m de altura que tendremos que sumar al final.   x4,31 y 22,5ºtag     x y 27,5ºtag           xtagy xtagy º5,27 4,13)º5,22(        xy xy 52,0 4,1341,0
  • 13.      xy xy 52,0 41,05,5 xx 52,041,05,5  xx 41,052,05,5  5,511,0 xmx 50 11,0 5,5  .265052,052,0 mxy  Resolvemos por igualación. 27,5m.        xy xy 52,0 4,1341,0 A este dato hay que sumarle la altura del teodolíto, entonces… .1,5m26AlturaEdificio  ,5m.72
  • 14. Joaquín Loriga Taboada fue un aviador y militar lalinense. Llevó a cabo, junto con otros dos pilotos y tres mecánicos, el vuelo Madrid-Manila de la Escuadrilla Elcano. En el aeródromo de Cuatro Vientos Loriga pilotó el autogiro de Juan de la Cierva en su prueba inaugural hasta Getafe. El 23 de junio de 1927 aterrizó con su avión en el Monte do Toxo (Lalín), era el primer avión que tomaba tierra en Galicia. El monumento, obra del escultor Francisco Asorey fue inaugurado el 27 de agosto de 1933 en un céntrico parque de Lalín. La obra reproduce un avión clavado en la tierra, que simboliza una cruz, que preside el aviador. En la base, las palabras "España- Filipinas". A partir de los datos de la imagen la altura del Monumento. El teodolito esta a una altura de 1,5 m.   4,21 Y 24,7ºs en hipotenusa cateto senα opuesto    4,2124,7ºsalturaestatua  en Utilizamos la razón trigonométrica del seno que nos relaciona el cateto opuesto con la hipotenusa… 4,21418,0  8,9m. Para calcular la altura de la estatua tenemos que sumarle al cateto opuesto la altura del teodolito… 5,19,8alturaestatua  10,4m.
  • 15. Problema.- El sacerdote que miraba para las estrellas, D. Ramón María Aller Ulloa, sacerdote, matemático y astrónomo, es una de las figuras más relevantes de la capital dezana. Sus trabajo en el estudio de las estrellas dobles y el desarrollo de instrumental para la observación astronómica dieron fama mundial a este humilde lalinense. Nacido en Lalín en 1878 fue catedrático de astronomía en la Universidad de Santiago, cuyo observatorio lleva su nombre. Hoy, su casa y observatorio son el Museo de Lalín que lleva su nombre. Calcula la altura de la estatua de D. Ramón a partir de los datos de la imagen. Ten en cuenta que el teodolíto está a una altura de 1,5 m.   18,7 Y 34,7º tag contiguo opuesto cateto cateto tagα    18,734,7ºtagY  Utilizamos la razón trigonométrica de la tangente que nos relaciona el cateto opuesto con la hipotenusa… 18,769,0  m.97,4 Para calcular la altura de la estatua tenemos que sumarle al cateto opuesto la altura del teodolito. 5,15alturaestatua  m.5,6 5m.
  • 16. Problema.- Calcula los ángulos que forman tres de las cuatro Torres de Madrid sabiendo que entre la Torre Cepsa y la Torre de Cristal hay una distancia de 303 m, entre la Torre Cepsa y la Torre Espacio 418 m y entre la Torre de Cristal y la Torre Espacio 144 m. Aplica Teorema del coseno. cosαcb2cba 222  Aplicamos el Teorema del coseno 418 m. Siendo… a= 418 m.  cosα2413032241033184 222  222 184241033cosα2413032  2413032 184241033 cosα 222    90,0 (-0,90)cos0,90)arcoseno(-α 1  º154 Planteamos el problema
  • 17. a= 418 m. b cosba2bac 222  Y para finalizar a= 418 m.  cos3034182303418124 222  222 124303418cos3034182   3034182 124303418 cos 222    99,0 (0,99)cos,99)arcoseno(0 1  º5,7 bcosca2cab 222  Ahora… bcos2414182241418303 222  222 303241418cos2414182  b 2414182 303241418 cos 222   b 95,0 (0,95)cos,95)arcoseno(0 1 b º5,18 º180º5,7º5,18º154  b
  • 18. Problema.- La estructura de la Gran Torre Santiago, ubicada en Santiago de Chile, alcanzó en 2012 una altura de 300 m, convirtiéndose así en el edificio más alto construido en América Latina. Calcula la longitud de la sobra cuando los rayos del sol inciden sobre este edificio con un ángulo de 47º sobre la horizontal. contiguo opuesto cateto cateto tagα    X 300 47ºtag  300m. X  47ºtag 300 X  1,07 300  .m280,4 Planteamos el esquema Foto: Miguel Sanmartín
  • 19. Problema.- La Fragata Méndez Núñez después de navegar 45 millas rumbo al norte, vira y navega 23 millas a un rumbo que cae a 35º al Este del Sur. ¿A qué distancia se encontrará del punto de partida?. Aplica teorema. 45millas. X Planteamos el esquema Foto: Jesús Paz 35º cosαcb2cba 222  Aplicamos el Teorema del coseno  35ºcos324523245x 222  235910242025x2  690x  millas26,3
  • 20. Problema.- La pirámide de cristal del museo del Louvre (Paris) tiene una base cuadrada de 35 metros de lado. Y las aristas que forman la cúpula forman un ángulo de 51º con los lados de la base. Calcula la superficie acristalada de dicha pirámide. Planteamos el esquema Foto: Miguel Sanmartín 78º senC c senB b senA a  Aplicamos el Teorema del seno 51º 35 metros  º51º51º180 º78 Sabiendo que la suma de los tres ángulos de un triángulo es 180º… 51º a = bc B A C    º51sen b º78sen 35     78ºsen º51sen35 b   98,0 78,035   .m927, =27,9 m.
  • 21. Foto: Miguel Sanmartín 51º 35 metros Por trigonometría calculamos la altura… 51º a = bc B A C   27,9 h 51ºsen  =27,9 m. h=alturatriángulo  51ºsen27,9h  .m21,7 2 alturabase Áreacara   2 m379,75 2 7,2135   4379,75Total caras4  2 m1519
  • 22. Problema: Calcula la altura del árbol con los datos de la figura.   x25 y 23ºtag     x y 41ºtag           xtagy xtagy º41 25)º23(        xy xy 87,0 2542,0
  • 23.        xy xy 87,0 2542,0      xy xy 87,0 42,05,10 xx 87,042,05,10  xx 42,087,05,10  5,1045,0 xmx 3,23 45,0 5,10  .3,203,2387,087,0 mxy  Resolviendo por igualación. 20,3m. 23,3m.
  • 24. x x-40 y   x  40 y 30ºtag   x y 60ºtag           xtagy xtagy º60 40)º30(        xy xy 73,1 4058,0 Problema: La antena de radio situada en el ayuntamiento de Gondomar está sujeta al suelo mediante dos cables a ambos lados de la misma. La distancia entre los anclajes de dichos cables es 40 m., y si se observa la parte más alta de la antena desde cada uno de ellos, los ángulos de elevación son de 30º y 60º, respectivamente. Halla la altura de la antena.
  • 25.      xy xy 73,1 58,02,23 xx 73,158,02,23  xx 58,073,12,23  2,2331,2 xmx 10 31,2 2,23  .3,171073,173,1 mxy  Resolviendo por igualación. 17,3m.        xy xy 73,1 4058,0 10m. 30m.
  • 26. x x-82 82º   x  82 h 8ºtag   x h 12ºtag           xtagh xtagh º8 82)º12(        xh xh 14,0 8221,0 Problema: Un avión está volando entre dos ciudades Ourense y Santiago que distan 82km. Los ángulos de depresión desde el avión a cada una de las ciudades son de 12º y 8º respectivamente. Calcula la altura a la que está volando el avión y la distancia a ambas ciudades desde el punto sobre el que vuela. 78º 12º 8º
  • 27.      xh xh 14,0 21,02,17 xx 14,021,02,17  xx 14,021,02,17  2,1735,0 x.50 35,0 2,17 kmx  .75014,014,0 kmxh  Resolviendo por igualación. 7km. 50km. 32km.        xh xh 14,0 8221,0
  • 28. Problema: La Torre de control avista un Boing 747 con un ángulo de 25º. Sabiendo que el avión está a 3500 m. de altura, y que la torre mide 45 m. Calcula la distancia desde el pie de la torre al avión. 3500m. 25º 45 3455m.453500    x 3455 25ºtag    7351m. 0,47 3455 25ºtag 3455 x  x x 7351m. 7351m. 222 cch  8142m.73513500cch 2222  Aplicando Pitágoras…
  • 29. 125m.250)sen(30ºRQ 250 RQ )sen(30º  m.5,162250)(30ºcRS 250 RS )cos(30º  os 125m. 216,5m. Problema: Para calcular la altura del edificio, PQ, hemos medido los ángulos que indica la figura. Sabemos que hay un funicular para ir de S a Q, cuya longitud es 250m. Halla PQ.
  • 31. º90 º60 º90 º40 º40 º80 º60 Problema: Si QR es igual a 15 m. ¿Cuál es la altura de la torre PQ?. P R Q Aplicamos teorema del seno…      Csen c Bsen b Asen a     80ºsen PQ 40ºsen 15      23m. 40ºsen 80ºsen15 PQ   
  • 32. xx-50 y   x  50 y 42ºtag   x y 53ºtag           xtagy xtagy º53 50)º42(        xy xy 33,1 5090,0 Problema: Observa las medidas que ha tomado Javier para calcular la anchura del ría. ¿Cómo la hallará con esos datos?.
  • 33.      xy xy 33,1 90,045 xx 33,190,045  xx 90,033,145  4523,2 xmx 2,20 23,2 45  26,9m.20,21,331,33xy  Resolviendo por igualación. 29,8m. 26,9m. 20,2m.        xy xy 33,1 5090,0
  • 34. Fin Busca enlaces a otras páginas relacionadas con el tema en… www.juansanmartin.net