Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre ...
Próxima SlideShare
Cargando en…5
×

7.27

662 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
662
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

7.27

  1. 1. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?
  2. 2. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 vB ∑F radial =maradial ⇒ TB − mg = m R
  3. 3. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R
  4. 4. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R Hacemos lo mismo en la parte más alta del recorrido circular 2 vT ∑F radial =maradial ⇒ TT + mg = m R
  5. 5. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R Hacemos lo mismo en la parte más alta del recorrido circular 2 2 vT vB ∑F radial =maradial ⇒ TT + mg = m R ⇒ TT = −mg + m R
  6. 6. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R Hacemos lo mismo en la parte más alta del recorrido circular 2 2 vT vB ∑F radial =maradial ⇒ TT + mg = m R ⇒ TT = −mg + m R Al segundo resultado le restamos el primero para obtener vB  2 vT  2 2 vB 2 vT TB − TT = mg + m −  − mg + m  = m + m + 2mg R  R    R R a
  7. 7. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R Hacemos lo mismo en la parte más alta del recorrido circular 2 2 vT vB ∑F radial =maradial ⇒ TT + mg = m R ⇒ TT = −mg + m R Al segundo resultado le restamos el primero para obtener vB  2 vT  2 2 vB 2 vT TB − TT = mg + m −  − mg + m  = m + m + 2mg R  R    R R aMediante la conservación de la energía, relacionamos la energía mecánica abajo y arriba del todo, ydespejamos a.12 mvB = 1 mvT + mg (2 R ) ⇒ a = 4mg 2 2 2
  8. 8. Una pelota en el extremo de una cuerda se mueve en un círculo vertical con energía E constante. ¿Quérelación existe entre la tensión de la cuerda en la parte más baja y más alta del mismo?Aplicamos la segunda ley de Newton a la pelota en el punto más bajo del recorrido y despejamos latensión; 2 2 vB vB ∑F radial =maradial ⇒ TB − mg = m R ⇒ TB = mg + m R Hacemos lo mismo en la parte más alta del recorrido circular 2 2 vT vB ∑F radial =maradial ⇒ TT + mg = m R ⇒ TT = −mg + m R Al segundo resultado le restamos el primero para obtener vB  2 vT  2 2 vB 2 vT TB − TT = mg + m −  − mg + m  = m + m + 2mg R  R    R R aMediante la conservación de la energía, relacionamos la energía mecánica abajo y arriba del todo, ydespejamos a. mvB = 1 mvT + mg (2 R ) ⇒ a = 4mg Con lo cual, TB − TT = 6mg1 2 22 2

×