SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
FUNDAMENTOS DE ELECTROMAGNETISMO
                               ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                        27



                          MÉTODO DE LAS IMÁGENES

Ideado por Lord Kelvin en 1848. El método de imágenes, es de uso frecuente para deter-
minar  , E , D y  debidos a cargas en presencia de conductores. Este método
prescinde de la ecuación de Poisson o Laplace, pues se fundamenta en el supuesto de
una superficie conductora equipotencial. Aunque no es aplicable a cualquier problema
electrostático, puede simplificar problemas muy complejos.

La teoría de las imágenes establece que una configuración de carga dada sobre un plano
conductor perfecto e infinito conectado a tierra puede reemplazarse por la propia
configuración de carga, su imagen y una superficie equipotencial en sustitución del plano
conductor.

En la figura (a), se muestran ejemplos comunes de distribuciones de carga puntual, lineal y
volumétrica, mientras que en la figura (b), aparecen sus correspondientes configuraciones
de imagen.



         Q                                         Q                     




                                                     Q                       
                                                              

                   a                                                b

La aplicación del método de imágenes, exige invariablemente el cumplimiento de dos
condiciones:

1. La carga o cargas de imágenes deben situarse en la región conductora.
2. La carga o cargas de imágenes deben situarse de tal forma que en la superficie o
   superficies conductoras el potencial sea de cero o constante.

La primera condición es necesaria para satisfacer la ecuación de Poisson, en tanto que la
segunda garantiza la satisfacción de las condiciones en la frontera.

Apliquemos la teoría de las imágenes al caso de una carga puntual sobre un plano
conductor a tierra.

En la siguiente figura se esquematizan las líneas de campo para la carga original y para el
conjunto de carga original + carga imagen. Las líneas de campo son perpendiculares a la
superficie límite donde se induce una carga.
FUNDAMENTOS DE ELECTROMAGNETISMO
                                ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                          28



Carga Puntual sobre un plano conductor a tierra

Consideremos la existencia de una carga puntual Q colocada a una distancia h de un plano
conductor perfecto de extensión infinita, tal como se observa en la figura        a .   La
configuración de imágenes es mostrada en la figura  b  .



                                            Líneas de
                                      campo eléctrico


                   h                                                     h

                                                                         h



                   a                                                   b
Se requiere determinar el campo E y el potencial eléctrico  producido por dicha carga
puntual en un punto de estudio M  x, y, z  . Adicionalmente, se determinará la densidad de
carga superficial inducida por sobre el plano conductor.

                                  E  M   E  M   E  M 

                                             1 Q r1       1 Q r2
                               E M                   
                                            4 | r1 | 4 | r2 |3
                                                      3




                                                                  M x, y , z
                                                   r1

                            Q  0, 0, h 
                                                        r2


                          Q  0, 0, h 
FUNDAMENTOS DE ELECTROMAGNETISMO
                                   ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                                                    29


                          Donde los vectores r1 y r2 están dados por:

           r1   x, y, z    0, 0, h    x, y, z  h   x x  y  y   z  h   z

          r2   x, y, z    0, 0, h    x, y, z  h   x  x  y  y   z  h   z

                                                                                                  
                       Q  x x  y  y   z  h   z x x  y  y   z  h  z                
             E M                                                                              
                      4   x 2  y 2   z  h 2  3/ 2  x 2  y 2   z  h 2  3/ 2        
                                                                                              


Nótese el hecho de que cuando z  0 , E  M  solo cuenta con la componente z , lo que
confirma que el campo eléctrico es normal a la superficie conductora, tal como se aprecia en
la siguiente figura.




A continuación pasaremos a determinar el potencial aplicando nuevamente el principio de
superposición, es decir:

                                                                 Q          Q
                          M     M     M                    
                                                               4 | r1 | 4 | r2 |

                                                                            
            Q              1                             1                   , donde   x, y, z   0 si z  0
   M                                      
           4    x2  y 2   z  h 
                                          2
                                                  x2  y 2   z  h 
                                                                         2   
                                                                            



                                                  Para obtener la densidad de carga inducida en el
                                                  plano conductor infinito, dicha densidad puede ser
                                                  determinada por aplicación del Teorema de Gauss
                                                  a un cilindro recto de altura muy pequeña y bases
                                                  paralelas a la frontera, una a cada lado, tal como se
                                                  muestra en la siguiente figura. Alternativamente,
                                                  también puede ser determinada mediante la
                                                  segunda condición de frontera.
FUNDAMENTOS DE ELECTROMAGNETISMO
                                      ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                                       30




                                         | Dsale |  | Dhinca |  Libre

                                                                                                  
                                                                      Q            2h             
                  Libre   | Dhinca |z 0   | E |z 0  
                                                                     4   x 2  y 2  h 2 3/ 2 
                                                                                                  

                                                       Qh
                               Libre                                       C /m 2 
                                                                                     
                                            2  x  y  h
                                                   2     2
                                                                     
                                                                    2 3/ 2




Nótese que la densidad de carga inducida es negativa, porque el campo y la normal a la
superficie gaussiana tienen sentidos opuestos. La siguiente figura esquematiza la ecuación
de la densidad superficial de carga inducida sobre el plano conductor infinito,




A continuación, vamos a comprobar que la carga inducida en el plano conductor infinito es
idéntica a la carga inductora pero con signo opuesto.


                                                 y  x 
                                                                         Qh dx dy
                        Qind    Libre dS                 
                                                                   2  x 2  y 2  h 2 
                                                                                            3/ 2
                                A                y  x 



Haremos el siguiente cambio de variable para facilitar la obtención de la integral:


                      r 2  x 2  y 2 , z  0, dx dy  r dr d , resultando
FUNDAMENTOS DE ELECTROMAGNETISMO
                                               ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                                                                                         31

                    y  2 r                                                   r                                    r 
               Qh                   r dr d                  Qh                                    r dr                                    r dr
     Qind                                                  2                                             Qh    
               2                  r             
                                                 2 3/ 2      2                           r              
                                                                                                        2 3/ 2
                                                                                                                                  r        h2 
                                                                                                                                                  3/ 2
                     0   r 0
                                        2
                                            h                                     r 0
                                                                                               2
                                                                                                   h                     r 0
                                                                                                                                       2




                                                              Qh           r 
                                            Qind                      |   r 0
                                                                                   Q          l.q.q.d .
                                                          r 2  h2



2.4 Una carga puntual Q se localiza en el punto  a, 0, b  entre dos planos conductores
semiinfinitos que intersecan en ángulo recto, tal como se muestra en la figura. Determine el
potencial eléctrico producido en el punto M  x, y, z  y la fuerza que actúa sobre Q .

                                             z


                                                          a            Q



                                                                   b


                                                                                                              x


Los diagramas correspondientes para la determinación del potencial eléctrico y la fuerza
eléctrica, se aprecian en los esquemas  a  y  b  siguientes.
FUNDAMENTOS DE ELECTROMAGNETISMO
                                       ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                                             32

                 z                                                                    z
                                                  M  x, y , z                                         F3
                          r2
                                r1                                                        F2
Q                                                             Q                                  Q
                           Q
                                                                                                   F1
             b       r3                                                         b
                                     r4
                                                        x                                                    x
                     a                                                                         a




Q                              Q                                 Q                              Q
              a                                                                 b
La configuración de imágenes se muestra en el esquema  a  , donde se aprecian que tres
cargas imagen son necesarias para satisfacer las condiciones enunciadas en el presente
capítulo. El potencial eléctrico en el punto de observación M  x, y, z  es la superposición
de los potenciales producidos por las cuatro cargas puntuales, es decir:


                                           Q       1        1      1      1 
                            M                                            , donde:
                                          4 o    | r1 | | r2 | | r3 | | r4 | 

                                                                             1/ 2
                                     | r1 |  x  a   y 2   z  b  
                                                       2                 2
                                                                          
                                                                               1/ 2
                                     | r2 |  x  a   y 2   z  b  
                                                       2                 2
                                                                          
                                                                               1/ 2
                                     | r3 |  x  a   y 2   z  b  
                                                       2                 2
                                                                          
                                                                               1/ 2
                                     | r4 |  x  a   y 2   z  b  
                                                       2                 2
                                                                          


Para la determinación de la fuerza que actúa sobre Q , se tomará como referencia la figura
mostrada en el esquema  b  , de donde:

                                                  FR  F1  F2  F3
FUNDAMENTOS DE ELECTROMAGNETISMO
                                           ING. ALBERTO TAMA FRANCO - ESPOL
                                                                                                                                 33



              Q2                              Q2                                      Q2
   FR                        z                          x                                            2ax  2bz 
          4 o  2b                    4 o  2a 
                         2                              2                                               3/ 2
                                                                         4 o  2a    2b  
                                                                                      2        2
                                                                                                

                   Q2                          Q2                                 Q2
          FR                     z                     x                                     2ax  2bz 
                 16 ob 2                   16 o a 2                  32 o  a 2  b 2 
                                                                                                3/ 2
                                                                                           

                                                                                                
                              Q2  1           1             a                      b
                  FR                  2 z  2 x                    x                   z 
                             16 o  b                a 2  b2             a 2  b2  
                                                                   3/ 2                  3/ 2
                                              a
                                                                                                

                                                                                  
                       Q2             a             1             b           1   
                 FR                                2 x                      2 z 
                      16 o    a 2  b 2  3/ 2
                                                     a        a 2  b2 3/ 2
                                                                                 b    
                                                                                  


Se deja como ejercicio para el lector, la obtención de la intensidad de campo eléctrico
producido en el punto de observación M  x, y, z  , así como también la determinación de la
carga inducida en los planos conductores.


En general, cuando la metodología de las imágenes se aplica a un sistema consistente en
una carga puntual entre dos planos conductores semiinfinitos inclinados en un ángulo  ,
medido en grados, el número de imágenes N está dado por:


                     Q
                                                                                               360o 
                                                                                           N       1
Q                                               Q                                                  

                                    60o
                                                                   En la gráfica anexa, se muestra una carga
                                                                   puntual Q contenida entre dos paredes
                                                                   conductoras semiinfinitas e inclinadas entre
                                                                   sí en un ángulo   60o . Se aprecia que el
Q                                               Q                número de cargas imagen son cinco.



                    Q

Más contenido relacionado

La actualidad más candente

Aplicacion de la integral
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integral
RAFA Ortega
 
CARGA, MATERIA Y LEY DE COULOMB
CARGA, MATERIA Y LEY DE COULOMBCARGA, MATERIA Y LEY DE COULOMB
CARGA, MATERIA Y LEY DE COULOMB
Torimat Cordova
 
Ejercicos capacitancia
Ejercicos capacitanciaEjercicos capacitancia
Ejercicos capacitancia
ERICK CONDE
 
Tippens fisica 7e_diapositivas_26a
Tippens fisica 7e_diapositivas_26aTippens fisica 7e_diapositivas_26a
Tippens fisica 7e_diapositivas_26a
Robert
 
Cargamateriayleydecoulomb
CargamateriayleydecoulombCargamateriayleydecoulomb
Cargamateriayleydecoulomb
juan5vasquez
 

La actualidad más candente (20)

Topicos em con_problemas
Topicos em con_problemasTopicos em con_problemas
Topicos em con_problemas
 
Grupo6 monografía
Grupo6 monografíaGrupo6 monografía
Grupo6 monografía
 
Ejercicios física 2
Ejercicios física 2Ejercicios física 2
Ejercicios física 2
 
Clase 2015 i electromagnetismo ii
Clase 2015 i electromagnetismo iiClase 2015 i electromagnetismo ii
Clase 2015 i electromagnetismo ii
 
POTENCIAL ELECTRICO
POTENCIAL ELECTRICOPOTENCIAL ELECTRICO
POTENCIAL ELECTRICO
 
Aplicacion de la integral
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integral
 
52983063 series-de-fourier
52983063 series-de-fourier52983063 series-de-fourier
52983063 series-de-fourier
 
CARGA, MATERIA Y LEY DE COULOMB
CARGA, MATERIA Y LEY DE COULOMBCARGA, MATERIA Y LEY DE COULOMB
CARGA, MATERIA Y LEY DE COULOMB
 
Campos Electromagneticos - Tema 9
Campos Electromagneticos - Tema 9Campos Electromagneticos - Tema 9
Campos Electromagneticos - Tema 9
 
Capacitores
CapacitoresCapacitores
Capacitores
 
Ejercicos capacitancia
Ejercicos capacitanciaEjercicos capacitancia
Ejercicos capacitancia
 
electrotecnia basica tarea academica
electrotecnia basica tarea academica electrotecnia basica tarea academica
electrotecnia basica tarea academica
 
Campos Electromagneticos - Tema 4
Campos Electromagneticos - Tema 4Campos Electromagneticos - Tema 4
Campos Electromagneticos - Tema 4
 
Tippens fisica 7e_diapositivas_26a
Tippens fisica 7e_diapositivas_26aTippens fisica 7e_diapositivas_26a
Tippens fisica 7e_diapositivas_26a
 
Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)Teoria Electromagnetica - Electrostática (27 nov)
Teoria Electromagnetica - Electrostática (27 nov)
 
Tema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en fronteraTema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en frontera
 
joseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaumjoseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaum
 
Cargamateriayleydecoulomb
CargamateriayleydecoulombCargamateriayleydecoulomb
Cargamateriayleydecoulomb
 
4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera
 
Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2
 

Similar a Metodo de imagenes

Similar a Metodo de imagenes (20)

Piezo rate gyro
Piezo rate gyroPiezo rate gyro
Piezo rate gyro
 
2 s312 pvcf 75-80
2 s312 pvcf 75-802 s312 pvcf 75-80
2 s312 pvcf 75-80
 
2 s312 pvcf 75-80
2 s312 pvcf 75-802 s312 pvcf 75-80
2 s312 pvcf 75-80
 
2 s312 pvcf 75-80
2 s312 pvcf 75-802 s312 pvcf 75-80
2 s312 pvcf 75-80
 
Seminario de la semana 2: Campo electrico
Seminario de la semana 2: Campo electricoSeminario de la semana 2: Campo electrico
Seminario de la semana 2: Campo electrico
 
Resumen electromagnetismo
Resumen  electromagnetismoResumen  electromagnetismo
Resumen electromagnetismo
 
Lagrange
LagrangeLagrange
Lagrange
 
Semana3 capacitancia
Semana3 capacitanciaSemana3 capacitancia
Semana3 capacitancia
 
1b 07 electrostática1
1b 07 electrostática11b 07 electrostática1
1b 07 electrostática1
 
Ley de Gauss.ppt
Ley de Gauss.pptLey de Gauss.ppt
Ley de Gauss.ppt
 
Presentación1
Presentación1Presentación1
Presentación1
 
Cap 3 ley de gauss
Cap 3 ley de gaussCap 3 ley de gauss
Cap 3 ley de gauss
 
Fundamentos_radiacion (Ecuaciones Diferenciales de Maxwell)
Fundamentos_radiacion (Ecuaciones Diferenciales de Maxwell)Fundamentos_radiacion (Ecuaciones Diferenciales de Maxwell)
Fundamentos_radiacion (Ecuaciones Diferenciales de Maxwell)
 
Ensayo polanco euan_elias
Ensayo polanco euan_eliasEnsayo polanco euan_elias
Ensayo polanco euan_elias
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
Tema 4: Campo eléctrico
Tema 4: Campo eléctricoTema 4: Campo eléctrico
Tema 4: Campo eléctrico
 
Ecuación de Schrodinger
Ecuación de SchrodingerEcuación de Schrodinger
Ecuación de Schrodinger
 
Tema6.2ºbachillerato.física.ejercicios selectividad resueltos
Tema6.2ºbachillerato.física.ejercicios selectividad resueltosTema6.2ºbachillerato.física.ejercicios selectividad resueltos
Tema6.2ºbachillerato.física.ejercicios selectividad resueltos
 
ley de gauss
ley de gaussley de gauss
ley de gauss
 
Campos Electricos Estaticos
Campos Electricos EstaticosCampos Electricos Estaticos
Campos Electricos Estaticos
 

Último

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 

Último (20)

Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 

Metodo de imagenes

  • 1. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 27 MÉTODO DE LAS IMÁGENES Ideado por Lord Kelvin en 1848. El método de imágenes, es de uso frecuente para deter- minar  , E , D y  debidos a cargas en presencia de conductores. Este método prescinde de la ecuación de Poisson o Laplace, pues se fundamenta en el supuesto de una superficie conductora equipotencial. Aunque no es aplicable a cualquier problema electrostático, puede simplificar problemas muy complejos. La teoría de las imágenes establece que una configuración de carga dada sobre un plano conductor perfecto e infinito conectado a tierra puede reemplazarse por la propia configuración de carga, su imagen y una superficie equipotencial en sustitución del plano conductor. En la figura (a), se muestran ejemplos comunes de distribuciones de carga puntual, lineal y volumétrica, mientras que en la figura (b), aparecen sus correspondientes configuraciones de imagen. Q   Q   Q   a b La aplicación del método de imágenes, exige invariablemente el cumplimiento de dos condiciones: 1. La carga o cargas de imágenes deben situarse en la región conductora. 2. La carga o cargas de imágenes deben situarse de tal forma que en la superficie o superficies conductoras el potencial sea de cero o constante. La primera condición es necesaria para satisfacer la ecuación de Poisson, en tanto que la segunda garantiza la satisfacción de las condiciones en la frontera. Apliquemos la teoría de las imágenes al caso de una carga puntual sobre un plano conductor a tierra. En la siguiente figura se esquematizan las líneas de campo para la carga original y para el conjunto de carga original + carga imagen. Las líneas de campo son perpendiculares a la superficie límite donde se induce una carga.
  • 2. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 28 Carga Puntual sobre un plano conductor a tierra Consideremos la existencia de una carga puntual Q colocada a una distancia h de un plano conductor perfecto de extensión infinita, tal como se observa en la figura a . La configuración de imágenes es mostrada en la figura  b  . Líneas de campo eléctrico h h h a b Se requiere determinar el campo E y el potencial eléctrico  producido por dicha carga puntual en un punto de estudio M  x, y, z  . Adicionalmente, se determinará la densidad de carga superficial inducida por sobre el plano conductor. E  M   E  M   E  M  1 Q r1 1 Q r2 E M    4 | r1 | 4 | r2 |3 3 M x, y , z r1 Q  0, 0, h  r2 Q  0, 0, h 
  • 3. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 29 Donde los vectores r1 y r2 están dados por: r1   x, y, z    0, 0, h    x, y, z  h   x x  y  y   z  h   z r2   x, y, z    0, 0, h    x, y, z  h   x  x  y  y   z  h   z   Q  x x  y  y   z  h   z x x  y  y   z  h  z  E M      4   x 2  y 2   z  h 2  3/ 2  x 2  y 2   z  h 2  3/ 2        Nótese el hecho de que cuando z  0 , E  M  solo cuenta con la componente z , lo que confirma que el campo eléctrico es normal a la superficie conductora, tal como se aprecia en la siguiente figura. A continuación pasaremos a determinar el potencial aplicando nuevamente el principio de superposición, es decir: Q Q   M     M     M    4 | r1 | 4 | r2 |   Q  1 1  , donde   x, y, z   0 si z  0  M    4  x2  y 2   z  h  2 x2  y 2   z  h  2    Para obtener la densidad de carga inducida en el plano conductor infinito, dicha densidad puede ser determinada por aplicación del Teorema de Gauss a un cilindro recto de altura muy pequeña y bases paralelas a la frontera, una a cada lado, tal como se muestra en la siguiente figura. Alternativamente, también puede ser determinada mediante la segunda condición de frontera.
  • 4. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 30 | Dsale |  | Dhinca |  Libre   Q  2h   Libre   | Dhinca |z 0   | E |z 0   4   x 2  y 2  h 2 3/ 2    Qh  Libre    C /m 2    2  x  y  h 2 2  2 3/ 2 Nótese que la densidad de carga inducida es negativa, porque el campo y la normal a la superficie gaussiana tienen sentidos opuestos. La siguiente figura esquematiza la ecuación de la densidad superficial de carga inducida sobre el plano conductor infinito, A continuación, vamos a comprobar que la carga inducida en el plano conductor infinito es idéntica a la carga inductora pero con signo opuesto. y  x  Qh dx dy Qind    Libre dS     2  x 2  y 2  h 2  3/ 2 A y  x  Haremos el siguiente cambio de variable para facilitar la obtención de la integral: r 2  x 2  y 2 , z  0, dx dy  r dr d , resultando
  • 5. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 31 y  2 r  r  r  Qh r dr d Qh r dr r dr Qind      2    Qh  2 r  2 3/ 2 2 r  2 3/ 2 r  h2  3/ 2  0 r 0 2 h r 0 2 h r 0 2 Qh r  Qind  | r 0  Q  l.q.q.d . r 2  h2 2.4 Una carga puntual Q se localiza en el punto  a, 0, b  entre dos planos conductores semiinfinitos que intersecan en ángulo recto, tal como se muestra en la figura. Determine el potencial eléctrico producido en el punto M  x, y, z  y la fuerza que actúa sobre Q . z a Q b x Los diagramas correspondientes para la determinación del potencial eléctrico y la fuerza eléctrica, se aprecian en los esquemas  a  y  b  siguientes.
  • 6. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 32 z z M  x, y , z  F3 r2 r1 F2 Q Q Q Q F1 b r3 b r4 x x a a Q Q Q Q a b La configuración de imágenes se muestra en el esquema  a  , donde se aprecian que tres cargas imagen son necesarias para satisfacer las condiciones enunciadas en el presente capítulo. El potencial eléctrico en el punto de observación M  x, y, z  es la superposición de los potenciales producidos por las cuatro cargas puntuales, es decir: Q  1 1 1 1   M        , donde: 4 o  | r1 | | r2 | | r3 | | r4 |  1/ 2 | r1 |  x  a   y 2   z  b   2 2   1/ 2 | r2 |  x  a   y 2   z  b   2 2   1/ 2 | r3 |  x  a   y 2   z  b   2 2   1/ 2 | r4 |  x  a   y 2   z  b   2 2   Para la determinación de la fuerza que actúa sobre Q , se tomará como referencia la figura mostrada en el esquema  b  , de donde: FR  F1  F2  F3
  • 7. FUNDAMENTOS DE ELECTROMAGNETISMO ING. ALBERTO TAMA FRANCO - ESPOL 33 Q2 Q2 Q2 FR   z     x    2ax  2bz  4 o  2b  4 o  2a  2 2 3/ 2 4 o  2a    2b   2 2   Q2 Q2 Q2 FR   z    x    2ax  2bz  16 ob 2 16 o a 2 32 o  a 2  b 2  3/ 2     Q2  1 1 a b FR   2 z  2 x  x  z  16 o  b  a 2  b2   a 2  b2   3/ 2 3/ 2 a         Q2   a 1  b 1  FR    2 x   2 z  16 o    a 2  b 2  3/ 2 a    a 2  b2 3/ 2 b         Se deja como ejercicio para el lector, la obtención de la intensidad de campo eléctrico producido en el punto de observación M  x, y, z  , así como también la determinación de la carga inducida en los planos conductores. En general, cuando la metodología de las imágenes se aplica a un sistema consistente en una carga puntual entre dos planos conductores semiinfinitos inclinados en un ángulo  , medido en grados, el número de imágenes N está dado por: Q  360o  N   1 Q Q      60o En la gráfica anexa, se muestra una carga puntual Q contenida entre dos paredes conductoras semiinfinitas e inclinadas entre sí en un ángulo   60o . Se aprecia que el Q Q número de cargas imagen son cinco. Q