SlideShare una empresa de Scribd logo
1 de 24
Trabajo
Autor:
Juan Carlos Silva Urciuoli
C.I: 24577564
Ing. Mecanica
Introduccion
El uso de los materiales en las obras de ingeniería hace
necesario el conocimiento de las propiedades físicas de
aquellos, y para conocer estas propiedades es necesario
llevar a cabo pruebas que permitan determinarlas.
Organismos como la ASTM (American Society for Testing
and Materials) en Estados Unidos, o el ICONTEC
en Colombia, se encargan de estandarizar las pruebas; es
decir, ponerles límites dentro de los cuales es significativo
realizarlas, ya que los resultados dependen de la forma y el
tamaño de las muestras, la velocidad de aplicación de las
cargas, la temperatura y de otras variables
Características de esfuerzo-
deformación del acero
• Deformaciones elásticas
• se pueden obtener
directamente de sus curvas
de esfuerzo deformación.
Tales características
importantes como el límite
elástico proporcional, el
punto de fluencia, la
resistencia, la ductilidad y
las propiedades de
endurecimiento por
deformación son evidentes
de inmediato.
• Deformación por relajación
• Cuando al acero de
presfuerzo se le esfuerza
hasta los niveles que son
usuales durante el tensado
inicial y al actuar las cargas
de servicio, se presenta una
propiedad llamada
relajamiento y se define
como la pérdida de esfuerzo
en un material esforzado
mantenido con longitud
constante.
La curva usual Esfuerzo –
Deformación:
expresa tanto el esfuerzo como la
deformación en términos de las
dimensiones originales de la probeta,
un procedimiento muy útil cuando se
está interesado en determinar
los datos de resistencia y ductilidad
para propósito de diseño en
ingeniería.
La curva Esfuerzo real - Deformación
real :
muestra realmente lo que sucede en
el material. Por ejemplo en el caso de
un material dúctil sometido a tensión
este se hace inestable y sufre
estricción localizada durante la última
fase del ensayo y la carga requerida
para la deformación disminuye
debido a la disminución del área
transversal, además la tensión media
basada en la sección inicial disminuye
también produciéndose como
consecuencia un descenso de la
curva Esfuerzo
Diagrama esfuerzo-deformación obtenido a partir del ensayo normal a la tensión de una
manera dúctil. El punto P indica el límite de proporcionalidad; E, el límite elástico Y, la
resistencia de fluencia convencional determinada por corrimiento paralelo (offset) según la
deformación seleccionada OA; U; la resistencia última o máxima, y F, el esfuerzo de fractura o
ruptura.
El punto P recibe el nombre de límite de proporcionalidad (o límite elástico proporcional).
Éste es el punto en que la curva comienza primero a desviarse de una línea recta. El punto E
se denomina límite de elasticidad (o límite elástico verdadero). No se presentará ninguna
deformación permanente en la probeta si la carga se suprime en este punto. Entre P y E el
diagrama no tiene la forma de una recta perfecta aunque el material sea elástico. Por lo
tanto, la ley de Hooke, que expresa que el esfuerzo es directamente proporcional a la
deformación, se aplica sólo hasta el límite elástico de proporcionalidad.
Muchos materiales alcanzan un estado en el cual la deformación comienza a crecer
rápidamente sin que haya un incremento correspondiente en el esfuerzo. Tal punto recibe el
nombre de punto de cedencia o punto de fluencia.
Se define la resistencia de cedencia o fluencia Sy mediante el método de corrimiento
paralelo.
El ensayo de tracción consiste en someter a una probeta normalizada realizada con dicho
material a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la
probeta. Para ello se coloca la probeta en una máquina de ensayo consistente de dos
mordazas, una fija y otra móvil. Se procede a medir la carga mientras se aplica el
desplazamiento de la mordaza móvil.
Se utiliza para determinar el comportamiento de los materiales bajo cargas cuasi-estáticas de
tensión y compresión, obteniendo sus gráficos de esfuerzo-deformación y su módulo
de elasticidad (módulo de Young). Con esta información podemos determinar que tan elástico
o plástico será el comportamiento de un material bajo la acción de una fuerza axial actuando
sobre él.
una probeta al inicio del ensayo indicando las medidas iniciales necesarias.
Analizando las probetas después de rotas, es posible medir dos parámetros: El alargamiento
final Lf y el diámetro final Df, que nos dará el área final Af.
Estos parámetros se expresan como porcentaje de reducción de área %RA y porcentaje de
alargamiento entre marcas %? L:
% RA= x 100 % ? L = x 100.
Ambos parámetros son las medidas normalizadas que definen la ductilidad del material, que
es la capacidad para fluir, es decir, la capacidad para alcanzar grandes deformaciones sin
romperse. La fragilidad se define como la negación de la ductilidad. Un material poco dúctil
es frágil.
El área bajo la curva fuerza - desplazamiento (F versus ? L) representa la energía disipada
durante el ensayo, es decir la cantidad de energía que la probeta alcanzó a resistir. A mayor
energía, el material es más tenaz.
A partir de los valores obtenidos en el gráfico Fuerza-Desplazamiento, se puede obtener la
curva Esfuerzo-Deformación ? - ? . El esfuerzo ?, que tiene unidades de fuerza partido por
área, ha sido definido anteriormente, la deformación unidimensional:
Donde el módulo de elasticidad E es positivo (?l y ?l son negativos) y presenta las mismas
dimensiones que el esfuerzo ya que ?l es adimensional. El valor del módulo de Young es
característico para distintos materiales, por lo que puede utilizarse para comparar las
características mecánicas de los mismos.
Zona elástica
La zona elástica es la parte donde
al retirar la carga el material
regresa a su forma y tamaño inicial,
en casi toda la zona se presenta
una relación lineal entre la tensión
y la deformación y tiene aplicación
la ley de Hooke.
Endurecimiento por deformación
Zona en donde el material retoma tensión para seguir deformándose; va hasta el punto de
tensión máxima, llamado por algunos tensión ó resistencia última por ser el último punto útil
del gráfico.
Meseta de fluencia
Región en donde el material se
comporta plásticamente; es decir,
en la que continúa deformándose
bajo una tensión "constante" o, en
la que fluctúa un poco alrededor
de un valor promedio llamado
límite de cedencia o fluencia.
Zona de tensión post-máxima
En éste último tramo el material se va poniendo menos tenso hasta el momento de la
fractura. La tensión de fractura es llamada también tensión última por ser la última tensión
que soportó el material.
Aquí no se presenta una relajación de la tensión, pues sigue aumentando hasta la rotura.
Después del punto de carga máxima en el gráfico de ingeniería, comienza a formarse un
"cuello" en la probeta; este fenómeno se conoce como estricción.
Esta disminución en el área transversal ocurre por deslizamiento debido a tensión cortante en
superficies que forman 45° con el eje de la barra.
Sea una barra de acero al bajo carbono (A-36) sujeta a tensión con sección circular.
Propiedades mecánicas del acero
• Resistencia al desgaste. Es la resistencia que ofrece un
material a dejarse erosionar cuando esta en contacto de
fricción con otro material.
• Tenacidad. Es la capacidad que tiene un material de
absorber energía sin producir Fisuras (resistencia al
impacto).
• Maquinabilidad. Es la facilidad que posee un material de
permitir el proceso de mecanizado por arranque de viruta.
• Dureza. Es la resistencia que ofrece un acero para dejarse
penetrar. Se mide en unidades BRINELL (HB) ó unidades
ROCKWEL C (HRC), mediante test del mismo nombre.
Se dice que la fuerza es una fuerza cortante pura. La deformación producida viene
caracterizada por el ángulo a, tal y como se esquematiza en la figura. La tensión se simboliza
por la letra t, y vale:
En la que la constante de proporcionalidad (G) entre deformaciones angulares y tensiones se
denomina módulo de elasticidad transversal o módulo de tensión cortante. Esta constante o
módulo no es independiente del de Young, sino que está relacionado con él según la relación:
De la definición del módulo de Poisson (µ) se deduce: e1 = µ•e0, es decir:

Más contenido relacionado

La actualidad más candente

Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionEsther Moya
 
Estatica de fluidos fic 2013 i
Estatica de fluidos  fic 2013 iEstatica de fluidos  fic 2013 i
Estatica de fluidos fic 2013 iJoe Arroyo Suárez
 
248918615 teoria-de-fallas
248918615 teoria-de-fallas248918615 teoria-de-fallas
248918615 teoria-de-fallasSergio Daniel
 
Esfuerzos en Flexion
Esfuerzos en FlexionEsfuerzos en Flexion
Esfuerzos en FlexionJlm Udal
 
Módulo 8 (inestabilidad elástica)
Módulo 8 (inestabilidad elástica)Módulo 8 (inestabilidad elástica)
Módulo 8 (inestabilidad elástica)javi davi
 
Tabla de Centroide y Momento de Inercia de Figuras Comunes
Tabla de Centroide y Momento de Inercia de Figuras ComunesTabla de Centroide y Momento de Inercia de Figuras Comunes
Tabla de Centroide y Momento de Inercia de Figuras ComunesAlva_Ruiz
 
Esfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionEsfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionMigueZR
 
PRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGASPRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGASAndres Flores
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídosEbnezr Decena
 
Presentación de esfuerzo y deformación
Presentación de esfuerzo y deformación Presentación de esfuerzo y deformación
Presentación de esfuerzo y deformación JesiColCall
 
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...Waldo Esteban Aquino
 

La actualidad más candente (20)

001 resistenciamaterialesi (1)
001 resistenciamaterialesi (1)001 resistenciamaterialesi (1)
001 resistenciamaterialesi (1)
 
Elasticidad 2016
Elasticidad 2016Elasticidad 2016
Elasticidad 2016
 
Estabilidad de cuerpos sumergidos y flotantes
Estabilidad de cuerpos sumergidos y flotantesEstabilidad de cuerpos sumergidos y flotantes
Estabilidad de cuerpos sumergidos y flotantes
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Estatica de fluidos fic 2013 i
Estatica de fluidos  fic 2013 iEstatica de fluidos  fic 2013 i
Estatica de fluidos fic 2013 i
 
248918615 teoria-de-fallas
248918615 teoria-de-fallas248918615 teoria-de-fallas
248918615 teoria-de-fallas
 
Esfuerzos en Flexion
Esfuerzos en FlexionEsfuerzos en Flexion
Esfuerzos en Flexion
 
Mecanica de fluidos hidrocinematica
Mecanica de fluidos  hidrocinematicaMecanica de fluidos  hidrocinematica
Mecanica de fluidos hidrocinematica
 
Teorema de transporte de reynolds
Teorema de transporte de reynoldsTeorema de transporte de reynolds
Teorema de transporte de reynolds
 
Solucionario ranal giles
Solucionario ranal gilesSolucionario ranal giles
Solucionario ranal giles
 
Módulo 8 (inestabilidad elástica)
Módulo 8 (inestabilidad elástica)Módulo 8 (inestabilidad elástica)
Módulo 8 (inestabilidad elástica)
 
Deformación
DeformaciónDeformación
Deformación
 
Tabla de Centroide y Momento de Inercia de Figuras Comunes
Tabla de Centroide y Momento de Inercia de Figuras ComunesTabla de Centroide y Momento de Inercia de Figuras Comunes
Tabla de Centroide y Momento de Inercia de Figuras Comunes
 
ejercicio de deformacion axial
ejercicio de deformacion axialejercicio de deformacion axial
ejercicio de deformacion axial
 
Esfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionEsfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsion
 
PRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGASPRACTICA DE FLEXIÓN VIGAS
PRACTICA DE FLEXIÓN VIGAS
 
Estatica de fluidos opta 2011
Estatica de fluidos opta 2011Estatica de fluidos opta 2011
Estatica de fluidos opta 2011
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídos
 
Presentación de esfuerzo y deformación
Presentación de esfuerzo y deformación Presentación de esfuerzo y deformación
Presentación de esfuerzo y deformación
 
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...
Separata problemas de concentración de esfuerzos y fatiga; RESISTENCIA DE MAT...
 

Destacado

Análisis y diseño de estructuras de acero en edificios -Arq. Milton Andrade
Análisis y diseño de estructuras de acero en edificios -Arq. Milton AndradeAnálisis y diseño de estructuras de acero en edificios -Arq. Milton Andrade
Análisis y diseño de estructuras de acero en edificios -Arq. Milton AndradeSalomon Alcoba Trujillo
 
metodos energeticos
metodos energeticosmetodos energeticos
metodos energeticosJimmi Cari
 
RESISTENCIA DE MATERIALES: Métodos de energía
RESISTENCIA DE MATERIALES: Métodos de energía RESISTENCIA DE MATERIALES: Métodos de energía
RESISTENCIA DE MATERIALES: Métodos de energía Juan Miguel
 
Mecánica de materiales beer, johnston - 5ed solucionario
Mecánica de materiales   beer, johnston - 5ed solucionarioMecánica de materiales   beer, johnston - 5ed solucionario
Mecánica de materiales beer, johnston - 5ed solucionarioYoshua Portugal Altamirano
 

Destacado (9)

Análisis y diseño de estructuras de acero en edificios -Arq. Milton Andrade
Análisis y diseño de estructuras de acero en edificios -Arq. Milton AndradeAnálisis y diseño de estructuras de acero en edificios -Arq. Milton Andrade
Análisis y diseño de estructuras de acero en edificios -Arq. Milton Andrade
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castigliano
 
metodos energeticos
metodos energeticosmetodos energeticos
metodos energeticos
 
Analisi de armadura por el metodo virtual
Analisi de armadura por el metodo virtualAnalisi de armadura por el metodo virtual
Analisi de armadura por el metodo virtual
 
RESISTENCIA DE MATERIALES: Métodos de energía
RESISTENCIA DE MATERIALES: Métodos de energía RESISTENCIA DE MATERIALES: Métodos de energía
RESISTENCIA DE MATERIALES: Métodos de energía
 
Deformación.trabajo virtual
Deformación.trabajo virtualDeformación.trabajo virtual
Deformación.trabajo virtual
 
Ing Civil Estructural
Ing Civil EstructuralIng Civil Estructural
Ing Civil Estructural
 
Problemas resueltos - RESISTENCIA DE MATERIALES
Problemas resueltos - RESISTENCIA DE MATERIALESProblemas resueltos - RESISTENCIA DE MATERIALES
Problemas resueltos - RESISTENCIA DE MATERIALES
 
Mecánica de materiales beer, johnston - 5ed solucionario
Mecánica de materiales   beer, johnston - 5ed solucionarioMecánica de materiales   beer, johnston - 5ed solucionario
Mecánica de materiales beer, johnston - 5ed solucionario
 

Similar a Presentación778800

Desarrollo de esfuerzo y deformacion
Desarrollo de esfuerzo y deformacionDesarrollo de esfuerzo y deformacion
Desarrollo de esfuerzo y deformacionelvis rojas
 
elemento de maquina
elemento de maquina elemento de maquina
elemento de maquina annydavid92
 
elemento de maquina
elemento de maquina elemento de maquina
elemento de maquina annydavid92
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionenmanuel2131
 
Esfuerzo y deformacion2131
Esfuerzo y deformacion2131Esfuerzo y deformacion2131
Esfuerzo y deformacion2131enmanuel2131
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación wilmen Ramos
 
Clasificación de las aleaciones
Clasificación de las aleacionesClasificación de las aleaciones
Clasificación de las aleacionesLuAngBG
 
Esfuerzo y de formacion g. amaya
Esfuerzo y de formacion g. amayaEsfuerzo y de formacion g. amaya
Esfuerzo y de formacion g. amayagilberto_amaya
 
Esfuerzos promedio
Esfuerzos promedioEsfuerzos promedio
Esfuerzos promedioitcha
 
Fenomenos de deformacion elastica en mecanismos
Fenomenos de deformacion elastica en mecanismosFenomenos de deformacion elastica en mecanismos
Fenomenos de deformacion elastica en mecanismosJesus Chavez
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1victor21326372
 
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdfErikaDelMar
 

Similar a Presentación778800 (20)

Desarrollo de esfuerzo y deformacion
Desarrollo de esfuerzo y deformacionDesarrollo de esfuerzo y deformacion
Desarrollo de esfuerzo y deformacion
 
elemento de maquina
elemento de maquina elemento de maquina
elemento de maquina
 
elemento de maquina
elemento de maquina elemento de maquina
elemento de maquina
 
Slideshare esfuerzo y defor
Slideshare esfuerzo y deforSlideshare esfuerzo y defor
Slideshare esfuerzo y defor
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Esfuerzo y deformacion2131
Esfuerzo y deformacion2131Esfuerzo y deformacion2131
Esfuerzo y deformacion2131
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación
 
Clasificación de las aleaciones
Clasificación de las aleacionesClasificación de las aleaciones
Clasificación de las aleaciones
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
Esfuerzo y de formacion g. amaya
Esfuerzo y de formacion g. amayaEsfuerzo y de formacion g. amaya
Esfuerzo y de formacion g. amaya
 
Esfuerzos promedio
Esfuerzos promedioEsfuerzos promedio
Esfuerzos promedio
 
Deformación simple 2021
Deformación simple 2021Deformación simple 2021
Deformación simple 2021
 
Presentación1
Presentación1Presentación1
Presentación1
 
Fenomenos de deformacion elastica en mecanismos
Fenomenos de deformacion elastica en mecanismosFenomenos de deformacion elastica en mecanismos
Fenomenos de deformacion elastica en mecanismos
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1
 
63987901 modulo-de-elasticidad
63987901 modulo-de-elasticidad63987901 modulo-de-elasticidad
63987901 modulo-de-elasticidad
 
96164892 ensayo-traccion
96164892 ensayo-traccion96164892 ensayo-traccion
96164892 ensayo-traccion
 
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf
1. ESFUERZO NORMAL Y DEFORMACIÓN UNITARIA NORMAL PDF - B -.pdf
 
Presentación10 jelis DEFORMACION
Presentación10 jelis DEFORMACIONPresentación10 jelis DEFORMACION
Presentación10 jelis DEFORMACION
 

Más de jcu41

Elemento de Maquina II
Elemento de Maquina IIElemento de Maquina II
Elemento de Maquina IIjcu41
 
Elemento de Maquina II
Elemento de Maquina IIElemento de Maquina II
Elemento de Maquina IIjcu41
 
Im elemento de maquinas 2
Im elemento de maquinas 2Im elemento de maquinas 2
Im elemento de maquinas 2jcu41
 
elemento de maquina II
elemento de maquina IIelemento de maquina II
elemento de maquina IIjcu41
 
Elemento de maquina Esfuerzo y Deformacion
Elemento de maquina Esfuerzo y DeformacionElemento de maquina Esfuerzo y Deformacion
Elemento de maquina Esfuerzo y Deformacionjcu41
 
Corrosion
CorrosionCorrosion
Corrosionjcu41
 
Presentación778800
Presentación778800Presentación778800
Presentación778800jcu41
 
Ingenieria Economica
Ingenieria Economica Ingenieria Economica
Ingenieria Economica jcu41
 

Más de jcu41 (8)

Elemento de Maquina II
Elemento de Maquina IIElemento de Maquina II
Elemento de Maquina II
 
Elemento de Maquina II
Elemento de Maquina IIElemento de Maquina II
Elemento de Maquina II
 
Im elemento de maquinas 2
Im elemento de maquinas 2Im elemento de maquinas 2
Im elemento de maquinas 2
 
elemento de maquina II
elemento de maquina IIelemento de maquina II
elemento de maquina II
 
Elemento de maquina Esfuerzo y Deformacion
Elemento de maquina Esfuerzo y DeformacionElemento de maquina Esfuerzo y Deformacion
Elemento de maquina Esfuerzo y Deformacion
 
Corrosion
CorrosionCorrosion
Corrosion
 
Presentación778800
Presentación778800Presentación778800
Presentación778800
 
Ingenieria Economica
Ingenieria Economica Ingenieria Economica
Ingenieria Economica
 

Último

CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfReneBellido1
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7luisanthonycarrascos
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdfFernandaGarca788912
 
Normas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISINormas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISIfimumsnhoficial
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfpaola110264
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 

Último (20)

CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdf
 
Normas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISINormas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISI
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 

Presentación778800

  • 1. Trabajo Autor: Juan Carlos Silva Urciuoli C.I: 24577564 Ing. Mecanica
  • 2. Introduccion El uso de los materiales en las obras de ingeniería hace necesario el conocimiento de las propiedades físicas de aquellos, y para conocer estas propiedades es necesario llevar a cabo pruebas que permitan determinarlas. Organismos como la ASTM (American Society for Testing and Materials) en Estados Unidos, o el ICONTEC en Colombia, se encargan de estandarizar las pruebas; es decir, ponerles límites dentro de los cuales es significativo realizarlas, ya que los resultados dependen de la forma y el tamaño de las muestras, la velocidad de aplicación de las cargas, la temperatura y de otras variables
  • 3. Características de esfuerzo- deformación del acero • Deformaciones elásticas • se pueden obtener directamente de sus curvas de esfuerzo deformación. Tales características importantes como el límite elástico proporcional, el punto de fluencia, la resistencia, la ductilidad y las propiedades de endurecimiento por deformación son evidentes de inmediato. • Deformación por relajación • Cuando al acero de presfuerzo se le esfuerza hasta los niveles que son usuales durante el tensado inicial y al actuar las cargas de servicio, se presenta una propiedad llamada relajamiento y se define como la pérdida de esfuerzo en un material esforzado mantenido con longitud constante.
  • 4. La curva usual Esfuerzo – Deformación: expresa tanto el esfuerzo como la deformación en términos de las dimensiones originales de la probeta, un procedimiento muy útil cuando se está interesado en determinar los datos de resistencia y ductilidad para propósito de diseño en ingeniería. La curva Esfuerzo real - Deformación real : muestra realmente lo que sucede en el material. Por ejemplo en el caso de un material dúctil sometido a tensión este se hace inestable y sufre estricción localizada durante la última fase del ensayo y la carga requerida para la deformación disminuye debido a la disminución del área transversal, además la tensión media basada en la sección inicial disminuye también produciéndose como consecuencia un descenso de la curva Esfuerzo
  • 5. Diagrama esfuerzo-deformación obtenido a partir del ensayo normal a la tensión de una manera dúctil. El punto P indica el límite de proporcionalidad; E, el límite elástico Y, la resistencia de fluencia convencional determinada por corrimiento paralelo (offset) según la deformación seleccionada OA; U; la resistencia última o máxima, y F, el esfuerzo de fractura o ruptura.
  • 6. El punto P recibe el nombre de límite de proporcionalidad (o límite elástico proporcional). Éste es el punto en que la curva comienza primero a desviarse de una línea recta. El punto E se denomina límite de elasticidad (o límite elástico verdadero). No se presentará ninguna deformación permanente en la probeta si la carga se suprime en este punto. Entre P y E el diagrama no tiene la forma de una recta perfecta aunque el material sea elástico. Por lo tanto, la ley de Hooke, que expresa que el esfuerzo es directamente proporcional a la deformación, se aplica sólo hasta el límite elástico de proporcionalidad.
  • 7. Muchos materiales alcanzan un estado en el cual la deformación comienza a crecer rápidamente sin que haya un incremento correspondiente en el esfuerzo. Tal punto recibe el nombre de punto de cedencia o punto de fluencia. Se define la resistencia de cedencia o fluencia Sy mediante el método de corrimiento paralelo.
  • 8. El ensayo de tracción consiste en someter a una probeta normalizada realizada con dicho material a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la probeta. Para ello se coloca la probeta en una máquina de ensayo consistente de dos mordazas, una fija y otra móvil. Se procede a medir la carga mientras se aplica el desplazamiento de la mordaza móvil.
  • 9. Se utiliza para determinar el comportamiento de los materiales bajo cargas cuasi-estáticas de tensión y compresión, obteniendo sus gráficos de esfuerzo-deformación y su módulo de elasticidad (módulo de Young). Con esta información podemos determinar que tan elástico o plástico será el comportamiento de un material bajo la acción de una fuerza axial actuando sobre él.
  • 10. una probeta al inicio del ensayo indicando las medidas iniciales necesarias. Analizando las probetas después de rotas, es posible medir dos parámetros: El alargamiento final Lf y el diámetro final Df, que nos dará el área final Af.
  • 11. Estos parámetros se expresan como porcentaje de reducción de área %RA y porcentaje de alargamiento entre marcas %? L: % RA= x 100 % ? L = x 100.
  • 12. Ambos parámetros son las medidas normalizadas que definen la ductilidad del material, que es la capacidad para fluir, es decir, la capacidad para alcanzar grandes deformaciones sin romperse. La fragilidad se define como la negación de la ductilidad. Un material poco dúctil es frágil.
  • 13. El área bajo la curva fuerza - desplazamiento (F versus ? L) representa la energía disipada durante el ensayo, es decir la cantidad de energía que la probeta alcanzó a resistir. A mayor energía, el material es más tenaz. A partir de los valores obtenidos en el gráfico Fuerza-Desplazamiento, se puede obtener la curva Esfuerzo-Deformación ? - ? . El esfuerzo ?, que tiene unidades de fuerza partido por área, ha sido definido anteriormente, la deformación unidimensional:
  • 14. Donde el módulo de elasticidad E es positivo (?l y ?l son negativos) y presenta las mismas dimensiones que el esfuerzo ya que ?l es adimensional. El valor del módulo de Young es característico para distintos materiales, por lo que puede utilizarse para comparar las características mecánicas de los mismos.
  • 15. Zona elástica La zona elástica es la parte donde al retirar la carga el material regresa a su forma y tamaño inicial, en casi toda la zona se presenta una relación lineal entre la tensión y la deformación y tiene aplicación la ley de Hooke. Endurecimiento por deformación Zona en donde el material retoma tensión para seguir deformándose; va hasta el punto de tensión máxima, llamado por algunos tensión ó resistencia última por ser el último punto útil del gráfico. Meseta de fluencia Región en donde el material se comporta plásticamente; es decir, en la que continúa deformándose bajo una tensión "constante" o, en la que fluctúa un poco alrededor de un valor promedio llamado límite de cedencia o fluencia.
  • 16. Zona de tensión post-máxima En éste último tramo el material se va poniendo menos tenso hasta el momento de la fractura. La tensión de fractura es llamada también tensión última por ser la última tensión que soportó el material.
  • 17. Aquí no se presenta una relajación de la tensión, pues sigue aumentando hasta la rotura. Después del punto de carga máxima en el gráfico de ingeniería, comienza a formarse un "cuello" en la probeta; este fenómeno se conoce como estricción. Esta disminución en el área transversal ocurre por deslizamiento debido a tensión cortante en superficies que forman 45° con el eje de la barra.
  • 18.
  • 19. Sea una barra de acero al bajo carbono (A-36) sujeta a tensión con sección circular.
  • 20.
  • 21. Propiedades mecánicas del acero • Resistencia al desgaste. Es la resistencia que ofrece un material a dejarse erosionar cuando esta en contacto de fricción con otro material. • Tenacidad. Es la capacidad que tiene un material de absorber energía sin producir Fisuras (resistencia al impacto). • Maquinabilidad. Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta. • Dureza. Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) ó unidades ROCKWEL C (HRC), mediante test del mismo nombre.
  • 22. Se dice que la fuerza es una fuerza cortante pura. La deformación producida viene caracterizada por el ángulo a, tal y como se esquematiza en la figura. La tensión se simboliza por la letra t, y vale:
  • 23. En la que la constante de proporcionalidad (G) entre deformaciones angulares y tensiones se denomina módulo de elasticidad transversal o módulo de tensión cortante. Esta constante o módulo no es independiente del de Young, sino que está relacionado con él según la relación:
  • 24. De la definición del módulo de Poisson (µ) se deduce: e1 = µ•e0, es decir: