Asíntota de la gráfica de una función El estudio de las funciones representa un argumento muy importante en los fenómenos físicos aplicados a la ingeniería.  Un reto para el estudiante  universitario, consiste en adquirir conocimientos a través del gráfico de una función, y si a este gráfico se le conocen sus asíntotas, todo su estudio se facilita. En este trabajo presentaremos de forma clara y pedagógica la obtención de asíntotas  para una curva.
Asíntota   (del idioma  griego : ἀσύμπτωτος — asýmptōtos— “aquello que no cae” palabra formada a partir del verbo συμπίπτειν sympiptein (“caer-con”). Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.
Una definición más formal es:  Si un punto (x,y) se desplaza continuamente por una función y=f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota de la función.  Las asíntotas se clasifican en :
Asíntotas verticales de la gráfica de una función Diremos que la recta  es una asíntota vertical de la gráfica de una función  si al meno uno de los enunciados siguientes es verdadero
.  Asíntotas horizontales de la gráfica de una función Diremos que la recta y = b es una asíntota horizontal de la gráfica de una función  si al menos uno de estos enunciados son verdaderos
Ejemplo:  Dada la función  encontrar las asíntotas horizontales y verticales  (si existen) Nótese que la función f es discontinua en x = -3,por tanto x = -3 es una posible asíntota vertical de la gráfica de f Estudiemos los límites siguientes:
Revisemos los teoremas que vas aplicar para resolver los límites del ejemplo Teoremas Por lo tanto como se cumple al menos uno de los enunciados  mencionados para asíntotas verticales  diremos que la recta x = -3 es la asíntota vertical de la gráfica de f
Estudiemos los límites siguientes: Recuerda los teoremas que vas aplicar para resolver los límites Teoremas Por lo tanto como se cumple al menos uno de los enunciados  mencionados para asíntotas verticales  diremos que la recta y = 1 es la asíntota horizontal de la gráfica de f
Esbozo de la gráfica de la función
Asíntotas oblicuas de la gráfica de una función Diremos que la recta y = mx+b es una asíntota oblicua de la gráfica de una función  si existen los límites siguientes y Observación: Las asíntotas horizontales y oblicuas son excluyentes, es decir la existencia de unas, implica la no existencia de las otras.
Ejemplo:  Dada la función  encontrar las asíntotas oblicuas si existen Determinemos los valores de m y b Teoremas Revisemos los teoremas que vas aplicar para resolver los límites del ejemplo.
Revisemos los teoremas que vas aplicar para resolver los límites Teoremas Como m = 2 y n = -6,entonces la recta y = 2x-6 es la asíntota oblicua de  la gráfica de f(x)
Esbozo de la gráfica de la función
De los teoremas de límites tenemos para aplicar los siguientes : En nuestro ejemplo K=-4 y x+3 tiende a cero a través de valores positivos ( ya que al escoger  x = -2.9,entonces x+3 es positivo, luego y K=-4 y x+3 tiende a cero a través de valores negativos ( ya que al escoger  x = -3.1, entonces x+3 es negativo, luego Volver al ejemplo
De los teoremas de límites tenemos para aplicar los siguientes : y En nuestro ejemplo: Dividimos entre la mayor potencia de x en este caso es x De igual forma resolvemos el otro límite Volver al ejemplo
De los teoremas de límites tenemos para aplicar los siguientes : y En nuestro ejemplo: Volver al ejemplo Dividiendo entre la mayor potencia de x que en este caso es
Volver al ejemplo De los teoremas de límites tenemos para aplicar los siguientes : En nuestro ejemplo y Dividimos entre la mayor potencia de x en este caso es x Simplificamos Separamos en límites Aplicamos los teoremas

AsíNtotas

  • 1.
    Asíntota de lagráfica de una función El estudio de las funciones representa un argumento muy importante en los fenómenos físicos aplicados a la ingeniería. Un reto para el estudiante universitario, consiste en adquirir conocimientos a través del gráfico de una función, y si a este gráfico se le conocen sus asíntotas, todo su estudio se facilita. En este trabajo presentaremos de forma clara y pedagógica la obtención de asíntotas para una curva.
  • 2.
    Asíntota (del idioma griego : ἀσύμπτωτος — asýmptōtos— “aquello que no cae” palabra formada a partir del verbo συμπίπτειν sympiptein (“caer-con”). Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.
  • 3.
    Una definición másformal es: Si un punto (x,y) se desplaza continuamente por una función y=f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota de la función. Las asíntotas se clasifican en :
  • 4.
    Asíntotas verticales dela gráfica de una función Diremos que la recta es una asíntota vertical de la gráfica de una función si al meno uno de los enunciados siguientes es verdadero
  • 5.
    . Asíntotashorizontales de la gráfica de una función Diremos que la recta y = b es una asíntota horizontal de la gráfica de una función si al menos uno de estos enunciados son verdaderos
  • 6.
    Ejemplo: Dadala función encontrar las asíntotas horizontales y verticales (si existen) Nótese que la función f es discontinua en x = -3,por tanto x = -3 es una posible asíntota vertical de la gráfica de f Estudiemos los límites siguientes:
  • 7.
    Revisemos los teoremasque vas aplicar para resolver los límites del ejemplo Teoremas Por lo tanto como se cumple al menos uno de los enunciados mencionados para asíntotas verticales diremos que la recta x = -3 es la asíntota vertical de la gráfica de f
  • 8.
    Estudiemos los límitessiguientes: Recuerda los teoremas que vas aplicar para resolver los límites Teoremas Por lo tanto como se cumple al menos uno de los enunciados mencionados para asíntotas verticales diremos que la recta y = 1 es la asíntota horizontal de la gráfica de f
  • 9.
    Esbozo de lagráfica de la función
  • 10.
    Asíntotas oblicuas dela gráfica de una función Diremos que la recta y = mx+b es una asíntota oblicua de la gráfica de una función si existen los límites siguientes y Observación: Las asíntotas horizontales y oblicuas son excluyentes, es decir la existencia de unas, implica la no existencia de las otras.
  • 11.
    Ejemplo: Dadala función encontrar las asíntotas oblicuas si existen Determinemos los valores de m y b Teoremas Revisemos los teoremas que vas aplicar para resolver los límites del ejemplo.
  • 12.
    Revisemos los teoremasque vas aplicar para resolver los límites Teoremas Como m = 2 y n = -6,entonces la recta y = 2x-6 es la asíntota oblicua de la gráfica de f(x)
  • 13.
    Esbozo de lagráfica de la función
  • 14.
    De los teoremasde límites tenemos para aplicar los siguientes : En nuestro ejemplo K=-4 y x+3 tiende a cero a través de valores positivos ( ya que al escoger x = -2.9,entonces x+3 es positivo, luego y K=-4 y x+3 tiende a cero a través de valores negativos ( ya que al escoger x = -3.1, entonces x+3 es negativo, luego Volver al ejemplo
  • 15.
    De los teoremasde límites tenemos para aplicar los siguientes : y En nuestro ejemplo: Dividimos entre la mayor potencia de x en este caso es x De igual forma resolvemos el otro límite Volver al ejemplo
  • 16.
    De los teoremasde límites tenemos para aplicar los siguientes : y En nuestro ejemplo: Volver al ejemplo Dividiendo entre la mayor potencia de x que en este caso es
  • 17.
    Volver al ejemploDe los teoremas de límites tenemos para aplicar los siguientes : En nuestro ejemplo y Dividimos entre la mayor potencia de x en este caso es x Simplificamos Separamos en límites Aplicamos los teoremas