- 250 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRIA
- 251 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Es un procedimiento rápido para medir distancias y diferencias de elevación de manera
indirecta. En Estados Unidos se le conoce con el nombre de ESTADIA y en Europa
como TAQUIMETRÍA.
En terrenos muy accidentados es difícil trabajar con un nivel, en este caso se utiliza un
teodolito, el cual permite medir adicionalmente los ángulos verticales.
En el caso de estaciones totales estos valores pueden obtenerse directamente a través
de programas incorporados en dichos aparatos.
- 252 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
La precisión alcanzable con la taquimetría es adecuada para nivelaciones trigonométri-
cas de bajo orden, localización de detalles para la elaboración de mapas y para efectuar
comprobaciones rápidas de mediciones hechas con métodos de orden superior.
Una de las aplicaciones más frecuentes de la taquimetría es la elaboración de curvas de
nivel
A
D
B
NM
(1000,1000,100)

C



Se realiza un trabajo plani (x,y)
altimétrico (z) al mismo tiempo.
El trabajo altimétrico tiene sus
propias fórmulas que difieren
del proceso de nivelación
diferencial
- 253 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Principio:
Dh =kI
Cuando el telescopio está en posición horizontal, la distancia horizontal desde el
centro el instrumento al centro de la mira (Dh) es igual a:
k =100
Note que en este caso la línea de visual es perpendicular a la mira. Cuando se
trabaja en terrenos accidentados la visual no siempre es perpendicular a la mira,
para tales situaciones es necesario leer ángulos verticales e interceptos de mira
y con estos valores calcular diferencias de altura y componentes horizontales de
distancia.
Dh
A B
Dh
a
b
I (intercepto)NIVEL
MIRA
- 254 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Medición Taquimétrica:
D = K . I’  D = K.I.cos()
H = D cos()  H = K.I.cos2()
V = D sen()  V = K.I.cos().sen()
I'/2
I'/2
I/2
Mira ficticia


)cos(
2
I
2
I'
α
)Icos(I' α
i = altura del teodolito
A
B
I'

V
H
D


i
TEODOLITO
MIRA
- 255 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
Como el teodolito mide ángulos zenitales ()   = 90 - 
H = K.I.sen2()
V = K.I.sen().cos()
cotaB = cotaA + i – m + K.I.sen().cos()
Desnivel entre A y B:
AB = i + V – m
 cotaB – cotaA = i – m + V
 cotaB = cotaA + i – m + V
A
B
I'

V
H
D


i
TAQUIMETRÍA
i = altura del teodolito
m = lectura del hilo medio en la mira
- 256 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
Datos a tomar en campo:
A) Con equipo mecánico
 Centrar el equipo sobre un punto de control y medir la altura
del instrumento (i)
 Medir el azimut de uno de los lados.
 Para cada una de las visuales anotar los ángulos
horizontales y verticales.
 Anotar las lecturas en la mira.
Estación Punto Ang. Hz. Ang. V. Lect. Sup. Lect. Inf. Observac.
I = Lect. Sup. – Lect. Inf.
K = 100
m = (Lect. Sup. + Lect. Inf.)/2
TAQUIMETRÍA
- 257 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
XP = XO + H. Sen(AzOP)
YP = YO + H. Cos(AzOP)
ZP = ZO + i – m + V
De esta manera se obtiene (XP,YP,ZP)
Para ahorrar tiempo y trabajo al hacer anotaciones en campo conviene ajustar con el
fino vertical las lecturas inferiores de modo que coincidan con la marca de 1m. y de
esta manera solo habrá que realizar la lectura superior y restarle 1m.
TAQUIMETRÍA
continuación:
(xo,yo,zo)
- 258 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Datos a tomar en campo:
B) Con equipo electrónico:
Los equipos de estación total, con sus capacidades de medir y exhibir
instantáneamente las coordenadas de puntos en función de la medición de
ángulos y distancias, tienden a hacer obsoleto el método de taquimetría; sin
embargo los principios y métodos de estadía son aún útiles en muchas
aplicaciones.
- 259 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
A
B
V
H
D

hi
hp
i
p
V
Datos a tomar en campo:
B) Con equipo electrónico (continuación):
Conviene tener i=p para facilitar los
cálculos.
AB = i + V – p
AB = i – p + V
 cotaB = cotaA + i – p + V
i = altura de la estación total
p = altura del prisma
- 260 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
 Centrar el equipo sobre un punto de control y medir la altura del instrumento (i).
 Medir el azimut de uno de los lados.
 Para cada una de las visuales anotar los ángulos horizontales.
 Anotar la altura del prisma (p) y el desnivel relativo (V).
Datos a tomar en campo:
B) Con equipo electrónico (continuación):
Estación Punto Ang. Hz. H V i p Observac.
A 2
3
4
…
X2 = XA + H. Sen(Az)
Y2 = YA + H. Cos(Az)
Z2 = ZA + i – p + V
TAQUIMETRÍA
H = distancia horizontal
V = desnivel relativo
i = altura instrumento
p = altura del prisma
- 261 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
PRISMA
TRIPODE
ESTACION
TOTAL
BASTON
- 262 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Método de Radiación o de Estación Única:
Se utiliza cuando desde una sola estación se pueden observar todos los detalles que
se necesitan para el trabajo. Es típico de terrenos limpios de maleza y de forma plana
o relativamente ondulada.
N
(xo,yo,zo)
azimut
PQ
R
- 263 -
Pontificia Universidad Católica del Perú
TOPOGRAFÍA Profesor: José L. Reyes
TAQUIMETRÍA
Método de Radiación:
N
Az
P1

C14 Taquimetria

  • 1.
    - 250 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRIA
  • 2.
    - 251 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Es un procedimiento rápido para medir distancias y diferencias de elevación de manera indirecta. En Estados Unidos se le conoce con el nombre de ESTADIA y en Europa como TAQUIMETRÍA. En terrenos muy accidentados es difícil trabajar con un nivel, en este caso se utiliza un teodolito, el cual permite medir adicionalmente los ángulos verticales. En el caso de estaciones totales estos valores pueden obtenerse directamente a través de programas incorporados en dichos aparatos.
  • 3.
    - 252 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA La precisión alcanzable con la taquimetría es adecuada para nivelaciones trigonométri- cas de bajo orden, localización de detalles para la elaboración de mapas y para efectuar comprobaciones rápidas de mediciones hechas con métodos de orden superior. Una de las aplicaciones más frecuentes de la taquimetría es la elaboración de curvas de nivel A D B NM (1000,1000,100)  C    Se realiza un trabajo plani (x,y) altimétrico (z) al mismo tiempo. El trabajo altimétrico tiene sus propias fórmulas que difieren del proceso de nivelación diferencial
  • 4.
    - 253 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Principio: Dh =kI Cuando el telescopio está en posición horizontal, la distancia horizontal desde el centro el instrumento al centro de la mira (Dh) es igual a: k =100 Note que en este caso la línea de visual es perpendicular a la mira. Cuando se trabaja en terrenos accidentados la visual no siempre es perpendicular a la mira, para tales situaciones es necesario leer ángulos verticales e interceptos de mira y con estos valores calcular diferencias de altura y componentes horizontales de distancia. Dh A B Dh a b I (intercepto)NIVEL MIRA
  • 5.
    - 254 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Medición Taquimétrica: D = K . I’  D = K.I.cos() H = D cos()  H = K.I.cos2() V = D sen()  V = K.I.cos().sen() I'/2 I'/2 I/2 Mira ficticia   )cos( 2 I 2 I' α )Icos(I' α i = altura del teodolito A B I'  V H D   i TEODOLITO MIRA
  • 6.
    - 255 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes Como el teodolito mide ángulos zenitales ()   = 90 -  H = K.I.sen2() V = K.I.sen().cos() cotaB = cotaA + i – m + K.I.sen().cos() Desnivel entre A y B: AB = i + V – m  cotaB – cotaA = i – m + V  cotaB = cotaA + i – m + V A B I'  V H D   i TAQUIMETRÍA i = altura del teodolito m = lectura del hilo medio en la mira
  • 7.
    - 256 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes Datos a tomar en campo: A) Con equipo mecánico  Centrar el equipo sobre un punto de control y medir la altura del instrumento (i)  Medir el azimut de uno de los lados.  Para cada una de las visuales anotar los ángulos horizontales y verticales.  Anotar las lecturas en la mira. Estación Punto Ang. Hz. Ang. V. Lect. Sup. Lect. Inf. Observac. I = Lect. Sup. – Lect. Inf. K = 100 m = (Lect. Sup. + Lect. Inf.)/2 TAQUIMETRÍA
  • 8.
    - 257 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes XP = XO + H. Sen(AzOP) YP = YO + H. Cos(AzOP) ZP = ZO + i – m + V De esta manera se obtiene (XP,YP,ZP) Para ahorrar tiempo y trabajo al hacer anotaciones en campo conviene ajustar con el fino vertical las lecturas inferiores de modo que coincidan con la marca de 1m. y de esta manera solo habrá que realizar la lectura superior y restarle 1m. TAQUIMETRÍA continuación: (xo,yo,zo)
  • 9.
    - 258 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Datos a tomar en campo: B) Con equipo electrónico: Los equipos de estación total, con sus capacidades de medir y exhibir instantáneamente las coordenadas de puntos en función de la medición de ángulos y distancias, tienden a hacer obsoleto el método de taquimetría; sin embargo los principios y métodos de estadía son aún útiles en muchas aplicaciones.
  • 10.
    - 259 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA A B V H D  hi hp i p V Datos a tomar en campo: B) Con equipo electrónico (continuación): Conviene tener i=p para facilitar los cálculos. AB = i + V – p AB = i – p + V  cotaB = cotaA + i – p + V i = altura de la estación total p = altura del prisma
  • 11.
    - 260 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes  Centrar el equipo sobre un punto de control y medir la altura del instrumento (i).  Medir el azimut de uno de los lados.  Para cada una de las visuales anotar los ángulos horizontales.  Anotar la altura del prisma (p) y el desnivel relativo (V). Datos a tomar en campo: B) Con equipo electrónico (continuación): Estación Punto Ang. Hz. H V i p Observac. A 2 3 4 … X2 = XA + H. Sen(Az) Y2 = YA + H. Cos(Az) Z2 = ZA + i – p + V TAQUIMETRÍA H = distancia horizontal V = desnivel relativo i = altura instrumento p = altura del prisma
  • 12.
    - 261 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA PRISMA TRIPODE ESTACION TOTAL BASTON
  • 13.
    - 262 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Método de Radiación o de Estación Única: Se utiliza cuando desde una sola estación se pueden observar todos los detalles que se necesitan para el trabajo. Es típico de terrenos limpios de maleza y de forma plana o relativamente ondulada. N (xo,yo,zo) azimut PQ R
  • 14.
    - 263 - PontificiaUniversidad Católica del Perú TOPOGRAFÍA Profesor: José L. Reyes TAQUIMETRÍA Método de Radiación: N Az P1