SlideShare una empresa de Scribd logo
1 de 28
ESTRUCTURAS ,[object Object],[object Object],[object Object],[object Object]
ARMADURAS ,[object Object],[object Object],Cuando las cargas sobre una armadura están aplicadas en los nudos de la armadura y si todas las barras están bien centradas en las uniones (nudos), entonces en las barras se presentaran únicamente fuerzas axiales, o sea todas las barras serán elementos con dos fuerzas que pueden estar tensadas o comprimidas.
TÉRMINOS QUE SE USAN EN ARMADURAS ARMADURAS
Ejemplo de una estructura espacial a base de armaduras – un puente
Algunos tipos de armaduras Armaduras típicas para techo Armaduras típicas para puentes Otros tipos de armaduras
SISTEMAS VARIANTES E INVARIANTES Sistema variante es un conjunto de diversos cuerpos unidos entre si de tal manera que se pueden mover uno con respecto al otro sin que los cuerpos sufran deformaciones. Estos sistemas forman mecanismos. Un ejemplo del sistema variante es cuatro barras unidas con cuatro articulaciones. Este sistema no se puede usar para sostener cualquier tipo de carga. El sistema cambia la forma sin que los elementos sufran deformaciones. Cuando diversos cuerpos están unidos de tal forma que no se pueden mover uno con respecto al otro sin que los cuerpos sufran deformaciones forman un  sistema invariante .
SISTEMAS INVARIANTES Se usan para formar estructuras: conjunto de elementos para sostener y transmitir alguna carga como son armaduras y armazones. El ejemplo más simple de un sistema invariante se tiene cuando tres cuerpos se unen por medio de tres articulaciones que no están en la misma línea. Esto es la base de una armadura. Si a esto se le agregan dos barras y un nodo que no están en una misma línea, se estará formando una armadura simple.
Una armadura simple es un sistema estáticamente determinado – se pueden determinar fuerzas axiales en todas las barras usando las ecuaciones del equilibrio estático. En una armadura estáticamente determinada existe la relación entre el numero de las barras (b) y el numero de los nodos (n):  b=2n-3 Si  b <2n-3 , el sistema no tiene suficientes barras para ser invariante y no se debe usar para sostener cargas (no será una estructura – será un mecanismo). Si  b > 2n-3 , el sistema será estáticamente indeterminado si es invariante – depende de la disposición de las barras.
b=17, n=10,  17=2x10-3 Armadura invariante y estáticamente determinada. b=21, n=10,  2x10-3=17,  21-17=4 Armadura tiene 4 barras más de lo mínimo necesario para ser un sistema invariante – será 4 veces estáticamente indeterminada. B=19, n=10,  19-17=2 Armadura tiene 2 barras más de lo mínimo necesario para ser un sistema invariante – pero las barras no están dispuestas para formar un sistema invariante. En el caso de la carga mostrada, el sistema se desplomará. EJEMPLOS
ANALISIS DE LAS ARMADURAS El propósito del análisis es determinar las fuerzas en todas las barras de una armadura con tal de poder diseñarla (proporcionar las dimensiones de las secciones de las barras) para que aguanten las cargas impuestas sin romperse o deformarse demasiado. MÉTODOS DEL ANÁLISIS: -el método de nudos -el método de secciones -el método gráfico de Maxwell (en desuso)
MÉTODO DE NUDOS Las fuerzas en las barras que llegan a un nudo deben estar en el equilibrio, o sea para cada nudo se pueden establecer dos ecuaciones de equilibrio:   F x =0 y   F y =0. En total habrá 2n ecuaciones (n=número de los nudos) y si la armadura es una estructura estáticamente determinada tendrá máximo (2n-3) barras, suficiente para determinar las fuerzas en todas las barras e inclusive se podrán determinar también las tres reacciones en los apoyos.  Para que el método sea práctico, hay que seguir cierto orden: 1.- Analizar armadura entera como si fuera un cuerpo rígido y determinar las reacciones. Chequear el cálculo de las reacciones. 2-empezar el análisis de los nudos con un nudo donde habrá máximo dos fuerzas incógnitas y después seguir siempre con el nudo que tiene máximo dos incógnitas. Así se pasa por todos los nudos. Cuando se llega al último nudo ya se conocerán todas las fuerzas, sin embargo se analiza también el último nudo para chequear el cálculo. Si se hubiera cometido algún error en los cálculos, se manifestará analizando el último nudo (no habrá el equilibrio).
EJEMPLO DCL Cálculo de las reacciones CHEQUEO: OK
En la armadura dada, hay dos nudos con solamente dos barras (dos incógnitas). Son los nudos A y B. Se puede empezar con cualquiera de los dos. Se escoge nudo A y se dibuja partícula A aislada para en seguida analizar su equilibrio y calcular fuerzas en las barras. NUDO A Con   Conocido N A1  se puede pasar a analizar nudo 1. NUDO 1 Conocidos N A3  y N 13  se pasa al nudo 3.
NUDO 3 NUDO 2 Solamente queda una incógnita en este nudo y sería suficiente una sola ecuación de equilibrio, sin embargo se usarán las dos ecuaciones – para  chequear los valores obtenidos. Ya se conocen las fuerzas en todas las barras aunque aún falta analizar el nudo B. Se analiza el equilibrio del último nudo solamente para verificar los resultados. OK
NUDO B OK OK Finalmente se presentan los resultados en un esquema de la armadura. Los números sobre cada barra son valores de las fuerzas axiales en la barra. Las flechas indican como actúa la barra sobre el nudo y con esto se puede saber si la barra estará tensada o comprimida. Si la flecha indica hacia el nudo significa que lo comprime y por lo tanto la misma estará en compresión, pero si jala desde el nudo, estará tensando y la misma estará tensada.
Nudos en condiciones especiales 1.- Nudo con solamente dos barras y sin carga: puede estar en el equilibrio solamente si las fuerzas en ambas barras son cero.  Nudos B y F en la armadura mostrada abajo están en esta condición. Ejemplo
2.- Nudo con tres barras donde dos barras tienen la misma línea de acción y nudo sin carga. En estos nudos el equilibrio se dará solamente si las barras que tienen la misma línea de acción tienen las fuerzas iguales, mientras la tercera barra tendrá fuerza 0. Nudos J y H en la armadura mostrada abajo.
3.-Nudo con cuatro barras de las cuales dos y dos tienen la misma línea de acción y en el nudo no hay ninguna carga. Este nudo puede estar en el equilibrio únicamente cuando las barras que tienen la misma línea de acción tienen fuerzas iguales. N 1  = N 2 N 3  = N 4 Se puede comprobar que el equilibrio se dará cuando: Reconociendo los nudos en condiciones especiales, el cálculo de una armadura puede ser más simple.
METODO DE SECCIONES Es muy útil cuando se quiere determinar fuerza en una sola barra. En tal caso se hace una sección cortando la barra que nos interesa y como máximo dos barras más (pueden cortarse más de tres barras en total, pero en tal caso hay que saber algo respecto a las fuerzas en las barras). Las barras cortadas n o deben ser concurrentes ni paralelas. Entonces se analiza el equilibrio de la armadura seccionada. Las fuerzas en las barras cortadas deben tener el valor justo necesario para mantenerlo (equilibrio).
Ejemplo: Se considera la armadura mostrada y para la carga mostrada se determinará la fuerza en la barra EG usando el método de secciones. Previamente se determinaron las reacciones en los apoyos de la armadura. Se hace una sección (n-n) de tal manera que la barra en cuestión resulte cortada y algunas otras. Ahora se analizará el equilibrio de una de las dos partes cortadas (cualquiera). Fuerzas en las barras cortadas son incógnitas y deben tener valores justo necesarios para mantener en el equilibrio la parte cortada. La magnitud de la fuerza en la barra EG se obtendrá de la ecuación:  El mismo corte se puede aprovechar para obtener valores de N FG  y N FH
ARMADURAS COMPUESTAS Cuando varias armaduras simples se unen forman una armadura compuesta. Para que una armadura compuesta pueda transmitir cualquier tipo de carga sin cambiar la forma debe formar un sistema invariante. Esto depende de las uniones entre las armaduras simples y de los vínculos con la superficie firme. Una unión rígida (invariante) entre dos armaduras simples se obtiene por medio de mínimo tres barras que no deben ser concurrentes ni paralelas (caso A) o por medio de una articulación y una barra cuya línea no debe pasar por la articulación mencionada (caso B). caso A caso B Cuando la unión se forma por medio del número mínimo de vínculos necesarios (tres) y si la unión con la superficie firme tiene también el número mínimo de vínculos (tres, ni concurrentes ni paralelos) se tiene un sistema invariante, completamente restringido y estáticamente determinado.
Si hay más vínculos que el mínimo necesario, el sistema será estáticamente indeterminado o hiperestático y las ecuaciones de equilibrio no serán suficientes para determinar las fuerzas en todas las barras. Existen relaciones (formulas) entre el número de las barras (b), el número de nudos (n) y el número de las posibles reacciones (r) que nos indican si una armadura es un sistema invariante, estáticamente determinado o indeterminado. Pero en estas formulas no se puede confiar porque la invariabilidad del sistema depende también de la disposición de los elementos. Por esto, para asegurarse, además de comprobar las formulas, hay que inspeccionar el sistema por otros medios. FORMULAS sistema  VARIANTE sistema estáticamente indeterminado,  ¿SERÁ INVARIANTE? Posiblemente estáticamente determinado e invariante.  REVISAR.
EJEMPLOS b=30, n=16, r=3,  30 >2x16-3=29 Armadura hiperestática de grado 1 (30-29=1) (una barra más de lo mínimo necesario en la unión entre las dos armaduras simples = una incógnita más que el número de las ecuaciones del equilibrio). b=10, n=7, r=3,  10 <2x7-3=11 Sistema variante, la unión entre dos armaduras simples, por medio de una articulación (equivale a dos barras) únicamente, no es suficiente. Para convertir este sistema en uno invariante se le puede agregar una barra más que une las dos armaduras simples (E-G o A-B) o se puede cambiar el apoyo en B por uno inmóvil.
ARMAZONES O MARCOS Armazones son estructuras que tienen elementos sometidos a tres o más fuerzas. Los elementos pueden estar unidos por articulaciones, por barras o por soldadura. Son sistemas invariantes y estacionarios y generalmente se usan para soportar y transmitir cargas. Para poder diseñar estos sistemas (definir dimensiones de sus elementos para que aguanten los esfuerzos que se presentarán durante la transmisión de la carga) es necesario conocer las fuerzas que se transmiten a través de las conexiones entre los elementos. Estas fuerzas se determinarán analizando cada elemento por separado. Por ejemplo: El armazón mostrado está armado uniendo tres cuerpos. Uno de estos cuerpos está sometido a solamente dos fuerzas (CF) y en vez del cuerpo se podría considerar como un elemento de unión.
DCL del sistema completo Cuerpos por separado:
Analizando el equilibrio del armazón completo y otros dos cuerpos se tiene suficientes ecuaciones para determinar todas las incógnitas. Resolviendo se tiene: Se determinaron todas las incógnitas aunque no se necesitó analizar todos los cuerpos. Sin embargo el último cuerpo (EFG) también debe estar en el equilibrio y para chequear los valores obtenidos se analiza el equilibrio del último cuerpo:
Máquinas ,[object Object],[object Object],[object Object],[object Object],[object Object]
En la figura se muestra una plataforma hidráulica para automotores, ésta se compone de dos bastidores semejantes al representado. El cilindro hidráulico EF está en la mitad de los dos bastidores. Un automóvil de 20 kN, con el centro de gravedad en el punto G, se sustenta en la posición mostrada (cada bastidor soporta 10 kN). Calcule  a) La fuerza que el vástago del cilindro EF ejerce sobre cada uno de los miembros AB. b) Las reacciones del apoyo A. Problema de un examen

Más contenido relacionado

La actualidad más candente

Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1Julian Fernandez
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3JuliaDiaz_14
 
Diagrama de corte y momento
Diagrama de corte y momentoDiagrama de corte y momento
Diagrama de corte y momentoYohan Tovar
 
70 problemas de ha
70 problemas de ha70 problemas de ha
70 problemas de haoscar torres
 
Uniones y conexiones en estructuras de acero
Uniones y conexiones en estructuras de aceroUniones y conexiones en estructuras de acero
Uniones y conexiones en estructuras de aceroWillow González
 
Irregularidad de estructura en planta y elevación
Irregularidad de estructura en planta y elevaciónIrregularidad de estructura en planta y elevación
Irregularidad de estructura en planta y elevaciónrolylegolas
 
Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Jimmy De La Cruz
 
Diseño de conexiones viga-columna en estructuras metalicas
Diseño de conexiones viga-columna en estructuras metalicasDiseño de conexiones viga-columna en estructuras metalicas
Diseño de conexiones viga-columna en estructuras metalicasAlexandra Benítez
 
Losas aligeradas-en-dos-direcciones
Losas aligeradas-en-dos-direccionesLosas aligeradas-en-dos-direcciones
Losas aligeradas-en-dos-direccioneswilberramosdiazyo
 
Fuerzas Normal, Cortante Y Momento Flexionante
Fuerzas Normal, Cortante Y Momento FlexionanteFuerzas Normal, Cortante Y Momento Flexionante
Fuerzas Normal, Cortante Y Momento FlexionantePaolo Castillo
 
Resumen diseño por capacidad
Resumen diseño por capacidadResumen diseño por capacidad
Resumen diseño por capacidadnelsonrsalas
 
Columnas esbeltas euler parte 1
Columnas esbeltas euler parte 1Columnas esbeltas euler parte 1
Columnas esbeltas euler parte 1Josue Echenagucia
 
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHR
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHRESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHR
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHRLauraContreras115
 

La actualidad más candente (20)

Armaduras
ArmadurasArmaduras
Armaduras
 
Columnas y características
Columnas y característicasColumnas y características
Columnas y características
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3
 
Diagrama de corte y momento
Diagrama de corte y momentoDiagrama de corte y momento
Diagrama de corte y momento
 
Diseño de columnas
Diseño de columnasDiseño de columnas
Diseño de columnas
 
70 problemas de ha
70 problemas de ha70 problemas de ha
70 problemas de ha
 
Flexión en Vigas
Flexión en VigasFlexión en Vigas
Flexión en Vigas
 
Uniones y conexiones en estructuras de acero
Uniones y conexiones en estructuras de aceroUniones y conexiones en estructuras de acero
Uniones y conexiones en estructuras de acero
 
Estructuras en celosía
Estructuras en celosíaEstructuras en celosía
Estructuras en celosía
 
Columna3
Columna3Columna3
Columna3
 
Irregularidad de estructura en planta y elevación
Irregularidad de estructura en planta y elevaciónIrregularidad de estructura en planta y elevación
Irregularidad de estructura en planta y elevación
 
Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014Diseño de Viga ACI 318-2014
Diseño de Viga ACI 318-2014
 
Diseño de conexiones viga-columna en estructuras metalicas
Diseño de conexiones viga-columna en estructuras metalicasDiseño de conexiones viga-columna en estructuras metalicas
Diseño de conexiones viga-columna en estructuras metalicas
 
Losas
LosasLosas
Losas
 
Losas aligeradas-en-dos-direcciones
Losas aligeradas-en-dos-direccionesLosas aligeradas-en-dos-direcciones
Losas aligeradas-en-dos-direcciones
 
Fuerzas Normal, Cortante Y Momento Flexionante
Fuerzas Normal, Cortante Y Momento FlexionanteFuerzas Normal, Cortante Y Momento Flexionante
Fuerzas Normal, Cortante Y Momento Flexionante
 
Resumen diseño por capacidad
Resumen diseño por capacidadResumen diseño por capacidad
Resumen diseño por capacidad
 
Columnas esbeltas euler parte 1
Columnas esbeltas euler parte 1Columnas esbeltas euler parte 1
Columnas esbeltas euler parte 1
 
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHR
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHRESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHR
ESTUDIO DE ESFUERZOS Y DEFORMACIONES MEDIANTE EL CIRCULO DE MOHR
 

Similar a Cap6r

Jesus gonzalez . 25453063 sec. f mañana asignacion 2
Jesus gonzalez . 25453063 sec. f mañana  asignacion 2 Jesus gonzalez . 25453063 sec. f mañana  asignacion 2
Jesus gonzalez . 25453063 sec. f mañana asignacion 2 chuche1230
 
Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Yamelys Butto
 
Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Yamelys Butto
 
Métodos de armaduras rafael
Métodos de armaduras rafaelMétodos de armaduras rafael
Métodos de armaduras rafaelRafael Bermudez
 
Estática_Tema5_SlideShare_SebastianDugarte.pptx
Estática_Tema5_SlideShare_SebastianDugarte.pptxEstática_Tema5_SlideShare_SebastianDugarte.pptx
Estática_Tema5_SlideShare_SebastianDugarte.pptxSebastinDugarte
 
Analisis estructural . Roynert gomez
Analisis estructural  . Roynert gomezAnalisis estructural  . Roynert gomez
Analisis estructural . Roynert gomezRoynert Gomez
 
Estatica. analisis estructural. katherin coppola
Estatica. analisis estructural. katherin coppolaEstatica. analisis estructural. katherin coppola
Estatica. analisis estructural. katherin coppolaKatherinCoppola
 
Sistemas reticuladosplanos (1)
Sistemas reticuladosplanos (1)Sistemas reticuladosplanos (1)
Sistemas reticuladosplanos (1)Nico Pecora
 
Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)Anthony Martinez
 
4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructuraljulio sanchez
 
Estructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.pptEstructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.pptEdisonAyma1
 
análisis estructural.pdf
análisis estructural.pdfanálisis estructural.pdf
análisis estructural.pdfReynisParra1
 
Ingenieria mecanica armaduras
Ingenieria mecanica armadurasIngenieria mecanica armaduras
Ingenieria mecanica armadurasPAJOCAZA12
 
Cordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza CeroCordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza CeroDARWINALEXISCORDOVAV
 

Similar a Cap6r (20)

Jesus gonzalez . 25453063 sec. f mañana asignacion 2
Jesus gonzalez . 25453063 sec. f mañana  asignacion 2 Jesus gonzalez . 25453063 sec. f mañana  asignacion 2
Jesus gonzalez . 25453063 sec. f mañana asignacion 2
 
Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.
 
Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.Métodos de resolución de armaduras yamelys.
Métodos de resolución de armaduras yamelys.
 
Métodos de armaduras rafael
Métodos de armaduras rafaelMétodos de armaduras rafael
Métodos de armaduras rafael
 
Estática_Tema5_SlideShare_SebastianDugarte.pptx
Estática_Tema5_SlideShare_SebastianDugarte.pptxEstática_Tema5_SlideShare_SebastianDugarte.pptx
Estática_Tema5_SlideShare_SebastianDugarte.pptx
 
Cerchas y Porticos Isostaticos
Cerchas y Porticos IsostaticosCerchas y Porticos Isostaticos
Cerchas y Porticos Isostaticos
 
Diseño de una armadura de puente
Diseño de una armadura de puenteDiseño de una armadura de puente
Diseño de una armadura de puente
 
Analisis estructural . Roynert gomez
Analisis estructural  . Roynert gomezAnalisis estructural  . Roynert gomez
Analisis estructural . Roynert gomez
 
Estatica. analisis estructural. katherin coppola
Estatica. analisis estructural. katherin coppolaEstatica. analisis estructural. katherin coppola
Estatica. analisis estructural. katherin coppola
 
Diapositivas de estatica
Diapositivas de estaticaDiapositivas de estatica
Diapositivas de estatica
 
Sistemas reticuladosplanos (1)
Sistemas reticuladosplanos (1)Sistemas reticuladosplanos (1)
Sistemas reticuladosplanos (1)
 
Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)
 
Metodo nodos y secciones
Metodo nodos y seccionesMetodo nodos y secciones
Metodo nodos y secciones
 
Analisis estructural
Analisis estructuralAnalisis estructural
Analisis estructural
 
4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural
 
16.4 armaduras
16.4 armaduras16.4 armaduras
16.4 armaduras
 
Estructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.pptEstructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.ppt
 
análisis estructural.pdf
análisis estructural.pdfanálisis estructural.pdf
análisis estructural.pdf
 
Ingenieria mecanica armaduras
Ingenieria mecanica armadurasIngenieria mecanica armaduras
Ingenieria mecanica armaduras
 
Cordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza CeroCordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza Cero
 

Más de guest1f9b03a (11)

Solcap7
Solcap7Solcap7
Solcap7
 
Solcap6
Solcap6Solcap6
Solcap6
 
Capitulo 8
Capitulo 8Capitulo 8
Capitulo 8
 
Capitulo 7
Capitulo 7Capitulo 7
Capitulo 7
 
Solcap4
Solcap4Solcap4
Solcap4
 
Capitulo 6
Capitulo 6Capitulo 6
Capitulo 6
 
Capitulo 6
Capitulo 6Capitulo 6
Capitulo 6
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 

Último

Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...JaquelineJuarez15
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfSergioMendoza354770
 
Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxpabonheidy28
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdfIsabellaMontaomurill
 
SalmorejoTech 2024 - Spring Boot <3 Testcontainers
SalmorejoTech 2024 - Spring Boot <3 TestcontainersSalmorejoTech 2024 - Spring Boot <3 Testcontainers
SalmorejoTech 2024 - Spring Boot <3 TestcontainersIván López Martín
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesFundación YOD YOD
 
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...FacuMeza2
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxJOSEMANUELHERNANDEZH11
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadMiguelAngelVillanuev48
 
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...AlanCedillo9
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024GiovanniJavierHidalg
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
ejercicios pseint para aprogramacion sof
ejercicios pseint para aprogramacion sofejercicios pseint para aprogramacion sof
ejercicios pseint para aprogramacion sofJuancarlosHuertasNio1
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 

Último (20)

Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...
El gusano informático Morris (1988) - Julio Ardita (1995) - Citizenfour (2014...
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
 
Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docx
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdf
 
SalmorejoTech 2024 - Spring Boot <3 Testcontainers
SalmorejoTech 2024 - Spring Boot <3 TestcontainersSalmorejoTech 2024 - Spring Boot <3 Testcontainers
SalmorejoTech 2024 - Spring Boot <3 Testcontainers
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento Protégeles
 
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...
ATAJOS DE WINDOWS. Los diferentes atajos para utilizar en windows y ser más e...
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptx
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidad
 
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...
Instrumentación Hoy_ INTERPRETAR EL DIAGRAMA UNIFILAR GENERAL DE UNA PLANTA I...
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
ejercicios pseint para aprogramacion sof
ejercicios pseint para aprogramacion sofejercicios pseint para aprogramacion sof
ejercicios pseint para aprogramacion sof
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 

Cap6r

  • 1.
  • 2.
  • 3. TÉRMINOS QUE SE USAN EN ARMADURAS ARMADURAS
  • 4. Ejemplo de una estructura espacial a base de armaduras – un puente
  • 5. Algunos tipos de armaduras Armaduras típicas para techo Armaduras típicas para puentes Otros tipos de armaduras
  • 6. SISTEMAS VARIANTES E INVARIANTES Sistema variante es un conjunto de diversos cuerpos unidos entre si de tal manera que se pueden mover uno con respecto al otro sin que los cuerpos sufran deformaciones. Estos sistemas forman mecanismos. Un ejemplo del sistema variante es cuatro barras unidas con cuatro articulaciones. Este sistema no se puede usar para sostener cualquier tipo de carga. El sistema cambia la forma sin que los elementos sufran deformaciones. Cuando diversos cuerpos están unidos de tal forma que no se pueden mover uno con respecto al otro sin que los cuerpos sufran deformaciones forman un sistema invariante .
  • 7. SISTEMAS INVARIANTES Se usan para formar estructuras: conjunto de elementos para sostener y transmitir alguna carga como son armaduras y armazones. El ejemplo más simple de un sistema invariante se tiene cuando tres cuerpos se unen por medio de tres articulaciones que no están en la misma línea. Esto es la base de una armadura. Si a esto se le agregan dos barras y un nodo que no están en una misma línea, se estará formando una armadura simple.
  • 8. Una armadura simple es un sistema estáticamente determinado – se pueden determinar fuerzas axiales en todas las barras usando las ecuaciones del equilibrio estático. En una armadura estáticamente determinada existe la relación entre el numero de las barras (b) y el numero de los nodos (n): b=2n-3 Si b <2n-3 , el sistema no tiene suficientes barras para ser invariante y no se debe usar para sostener cargas (no será una estructura – será un mecanismo). Si b > 2n-3 , el sistema será estáticamente indeterminado si es invariante – depende de la disposición de las barras.
  • 9. b=17, n=10, 17=2x10-3 Armadura invariante y estáticamente determinada. b=21, n=10, 2x10-3=17, 21-17=4 Armadura tiene 4 barras más de lo mínimo necesario para ser un sistema invariante – será 4 veces estáticamente indeterminada. B=19, n=10, 19-17=2 Armadura tiene 2 barras más de lo mínimo necesario para ser un sistema invariante – pero las barras no están dispuestas para formar un sistema invariante. En el caso de la carga mostrada, el sistema se desplomará. EJEMPLOS
  • 10. ANALISIS DE LAS ARMADURAS El propósito del análisis es determinar las fuerzas en todas las barras de una armadura con tal de poder diseñarla (proporcionar las dimensiones de las secciones de las barras) para que aguanten las cargas impuestas sin romperse o deformarse demasiado. MÉTODOS DEL ANÁLISIS: -el método de nudos -el método de secciones -el método gráfico de Maxwell (en desuso)
  • 11. MÉTODO DE NUDOS Las fuerzas en las barras que llegan a un nudo deben estar en el equilibrio, o sea para cada nudo se pueden establecer dos ecuaciones de equilibrio:  F x =0 y  F y =0. En total habrá 2n ecuaciones (n=número de los nudos) y si la armadura es una estructura estáticamente determinada tendrá máximo (2n-3) barras, suficiente para determinar las fuerzas en todas las barras e inclusive se podrán determinar también las tres reacciones en los apoyos. Para que el método sea práctico, hay que seguir cierto orden: 1.- Analizar armadura entera como si fuera un cuerpo rígido y determinar las reacciones. Chequear el cálculo de las reacciones. 2-empezar el análisis de los nudos con un nudo donde habrá máximo dos fuerzas incógnitas y después seguir siempre con el nudo que tiene máximo dos incógnitas. Así se pasa por todos los nudos. Cuando se llega al último nudo ya se conocerán todas las fuerzas, sin embargo se analiza también el último nudo para chequear el cálculo. Si se hubiera cometido algún error en los cálculos, se manifestará analizando el último nudo (no habrá el equilibrio).
  • 12. EJEMPLO DCL Cálculo de las reacciones CHEQUEO: OK
  • 13. En la armadura dada, hay dos nudos con solamente dos barras (dos incógnitas). Son los nudos A y B. Se puede empezar con cualquiera de los dos. Se escoge nudo A y se dibuja partícula A aislada para en seguida analizar su equilibrio y calcular fuerzas en las barras. NUDO A Con  Conocido N A1 se puede pasar a analizar nudo 1. NUDO 1 Conocidos N A3 y N 13 se pasa al nudo 3.
  • 14. NUDO 3 NUDO 2 Solamente queda una incógnita en este nudo y sería suficiente una sola ecuación de equilibrio, sin embargo se usarán las dos ecuaciones – para chequear los valores obtenidos. Ya se conocen las fuerzas en todas las barras aunque aún falta analizar el nudo B. Se analiza el equilibrio del último nudo solamente para verificar los resultados. OK
  • 15. NUDO B OK OK Finalmente se presentan los resultados en un esquema de la armadura. Los números sobre cada barra son valores de las fuerzas axiales en la barra. Las flechas indican como actúa la barra sobre el nudo y con esto se puede saber si la barra estará tensada o comprimida. Si la flecha indica hacia el nudo significa que lo comprime y por lo tanto la misma estará en compresión, pero si jala desde el nudo, estará tensando y la misma estará tensada.
  • 16. Nudos en condiciones especiales 1.- Nudo con solamente dos barras y sin carga: puede estar en el equilibrio solamente si las fuerzas en ambas barras son cero. Nudos B y F en la armadura mostrada abajo están en esta condición. Ejemplo
  • 17. 2.- Nudo con tres barras donde dos barras tienen la misma línea de acción y nudo sin carga. En estos nudos el equilibrio se dará solamente si las barras que tienen la misma línea de acción tienen las fuerzas iguales, mientras la tercera barra tendrá fuerza 0. Nudos J y H en la armadura mostrada abajo.
  • 18. 3.-Nudo con cuatro barras de las cuales dos y dos tienen la misma línea de acción y en el nudo no hay ninguna carga. Este nudo puede estar en el equilibrio únicamente cuando las barras que tienen la misma línea de acción tienen fuerzas iguales. N 1 = N 2 N 3 = N 4 Se puede comprobar que el equilibrio se dará cuando: Reconociendo los nudos en condiciones especiales, el cálculo de una armadura puede ser más simple.
  • 19. METODO DE SECCIONES Es muy útil cuando se quiere determinar fuerza en una sola barra. En tal caso se hace una sección cortando la barra que nos interesa y como máximo dos barras más (pueden cortarse más de tres barras en total, pero en tal caso hay que saber algo respecto a las fuerzas en las barras). Las barras cortadas n o deben ser concurrentes ni paralelas. Entonces se analiza el equilibrio de la armadura seccionada. Las fuerzas en las barras cortadas deben tener el valor justo necesario para mantenerlo (equilibrio).
  • 20. Ejemplo: Se considera la armadura mostrada y para la carga mostrada se determinará la fuerza en la barra EG usando el método de secciones. Previamente se determinaron las reacciones en los apoyos de la armadura. Se hace una sección (n-n) de tal manera que la barra en cuestión resulte cortada y algunas otras. Ahora se analizará el equilibrio de una de las dos partes cortadas (cualquiera). Fuerzas en las barras cortadas son incógnitas y deben tener valores justo necesarios para mantener en el equilibrio la parte cortada. La magnitud de la fuerza en la barra EG se obtendrá de la ecuación: El mismo corte se puede aprovechar para obtener valores de N FG y N FH
  • 21. ARMADURAS COMPUESTAS Cuando varias armaduras simples se unen forman una armadura compuesta. Para que una armadura compuesta pueda transmitir cualquier tipo de carga sin cambiar la forma debe formar un sistema invariante. Esto depende de las uniones entre las armaduras simples y de los vínculos con la superficie firme. Una unión rígida (invariante) entre dos armaduras simples se obtiene por medio de mínimo tres barras que no deben ser concurrentes ni paralelas (caso A) o por medio de una articulación y una barra cuya línea no debe pasar por la articulación mencionada (caso B). caso A caso B Cuando la unión se forma por medio del número mínimo de vínculos necesarios (tres) y si la unión con la superficie firme tiene también el número mínimo de vínculos (tres, ni concurrentes ni paralelos) se tiene un sistema invariante, completamente restringido y estáticamente determinado.
  • 22. Si hay más vínculos que el mínimo necesario, el sistema será estáticamente indeterminado o hiperestático y las ecuaciones de equilibrio no serán suficientes para determinar las fuerzas en todas las barras. Existen relaciones (formulas) entre el número de las barras (b), el número de nudos (n) y el número de las posibles reacciones (r) que nos indican si una armadura es un sistema invariante, estáticamente determinado o indeterminado. Pero en estas formulas no se puede confiar porque la invariabilidad del sistema depende también de la disposición de los elementos. Por esto, para asegurarse, además de comprobar las formulas, hay que inspeccionar el sistema por otros medios. FORMULAS sistema VARIANTE sistema estáticamente indeterminado, ¿SERÁ INVARIANTE? Posiblemente estáticamente determinado e invariante. REVISAR.
  • 23. EJEMPLOS b=30, n=16, r=3, 30 >2x16-3=29 Armadura hiperestática de grado 1 (30-29=1) (una barra más de lo mínimo necesario en la unión entre las dos armaduras simples = una incógnita más que el número de las ecuaciones del equilibrio). b=10, n=7, r=3, 10 <2x7-3=11 Sistema variante, la unión entre dos armaduras simples, por medio de una articulación (equivale a dos barras) únicamente, no es suficiente. Para convertir este sistema en uno invariante se le puede agregar una barra más que une las dos armaduras simples (E-G o A-B) o se puede cambiar el apoyo en B por uno inmóvil.
  • 24. ARMAZONES O MARCOS Armazones son estructuras que tienen elementos sometidos a tres o más fuerzas. Los elementos pueden estar unidos por articulaciones, por barras o por soldadura. Son sistemas invariantes y estacionarios y generalmente se usan para soportar y transmitir cargas. Para poder diseñar estos sistemas (definir dimensiones de sus elementos para que aguanten los esfuerzos que se presentarán durante la transmisión de la carga) es necesario conocer las fuerzas que se transmiten a través de las conexiones entre los elementos. Estas fuerzas se determinarán analizando cada elemento por separado. Por ejemplo: El armazón mostrado está armado uniendo tres cuerpos. Uno de estos cuerpos está sometido a solamente dos fuerzas (CF) y en vez del cuerpo se podría considerar como un elemento de unión.
  • 25. DCL del sistema completo Cuerpos por separado:
  • 26. Analizando el equilibrio del armazón completo y otros dos cuerpos se tiene suficientes ecuaciones para determinar todas las incógnitas. Resolviendo se tiene: Se determinaron todas las incógnitas aunque no se necesitó analizar todos los cuerpos. Sin embargo el último cuerpo (EFG) también debe estar en el equilibrio y para chequear los valores obtenidos se analiza el equilibrio del último cuerpo:
  • 27.
  • 28. En la figura se muestra una plataforma hidráulica para automotores, ésta se compone de dos bastidores semejantes al representado. El cilindro hidráulico EF está en la mitad de los dos bastidores. Un automóvil de 20 kN, con el centro de gravedad en el punto G, se sustenta en la posición mostrada (cada bastidor soporta 10 kN). Calcule a) La fuerza que el vástago del cilindro EF ejerce sobre cada uno de los miembros AB. b) Las reacciones del apoyo A. Problema de un examen