SlideShare una empresa de Scribd logo
Comunicaciones Inalámbricas
Capítulo 2: Canales Inalámbricos,
Small-Scale Fading and Multipath
Francisco Sandoval1
1Departamento de Ciencias de la Computación y Electrónica
Universidad Técnica Particular de Loja
Loja, Ecuador
fasandoval@utpl.edu.ec
2019.1
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Modelo del Sistema de Comunicaciones
Balance del enlace
Balance del enlace: Relación que expresa la potencia
disponible en el receptor en función de la potencia
entregada por el Tx y las diferentes pérdidas y ganancias
que aparecen en el trayecto del Tx al Rx.
Pdr = Pst − Ltt + Gt − Lb + Gr − Ltr
donde las pérdidas/ganancias están en dB y las potencias
en unidades logarítmicas similares (dBm).
5Comunicaciones Móviles: 3
AtenuaciAtenuacióónn
)dB(btrttrttr LLLGGPP −−−++=
)dB(btrrr LLGPIREP −−+=
)dB(exbfb LLL +=
Parte determinista
Parte aleatoria:
desvanecimiento
Modelos
Caracterización
estadística
bL
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 3 / 61
Atenuación
Modelos:
Determinísticos o analíticos
Semi-empíricos
Empíricos
Caracterízación estadística:
Desvanecimiento por sombra
Desvanecimiento multi-trayecto
7Comunicaciones Móviles: 3
DesvanecimientoDesvanecimiento
obstáculo
dispersores
Desvanecimiento por sombra
Desvanecimiento multitrayecto
Referencia: [Tomás, 2012]
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 4 / 61
Desvanecimiento
El devanecimiento por sombra es lento: varía despacio con
la posición del móvil (≈ m).
El efecto de multi-trayecto es rápido: varía deprisa (≈
fracción de λ: varios cm) con la posición del móvil.
La atenuación por sombra de un obstáculo puede ser
determinista o desvanecimiento (o parte de cada), según
que el modelo tenga en cuenta o no el efecto de ese
obstáculo.
Las variaciones de atenuación por multi-trayecto son
siempre desvanecimiento, ya que no pueden calcularse de
forma determinista, debido a su carácter rápido.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 5 / 61
Distorsión
La propagación multitrayecto, además de producir
desvanecimiento, puede introducir distorsión lineal en la
señal:
Dispersión temporal
Dispersión en frecuencia
La importancia de estos efectos depende del tipo de canal
de propagación y de las características de la señal.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 6 / 61
Desvanecimiento a pequeña escala y multi-trayectoria
El desvanecimiento a pequeña escala, o simplemente
desvanecimiento, es usado para describir la rápida fluctuación
de la amplitud de una señal de radio sobre un corto periodo de
tiempo o distancia de viaje, por lo tanto, los efectos de las
pérdidas por trayecto a larga escala pueden ser ignoradas.
0
K (dB)
Pr
P
(dB)
t
log (d)
Path Loss Alone
Shadowing and Path Loss
Multipath, Shadowing, and Path Loss
Figure 2.1: Path Loss, Shadowing and Multipath versus Distance.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 7 / 61
Desvanecimiento a pequeña escala y multi-trayectoria
El desvanecimiento es causado por la interferencia entre dos o más
versiones (ondas multi-trayectoria) de la señal transmitida, la cual
arriba al receptor en un tiempo ligeramente diferente.
Las ondas multi-trayectoria son combinadas en la antena receptora
para dar como resultado una señal, la cual puede variar ampliamente
en amplitud y fase, dependiendo de la distribución de la intensidad, el
tiempo de propagación relativo de las ondas, y el ancho de banda de la
señal transmitida.
Reflection
Scattering
Diffraction
Direct LOS Path
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 8 / 61
Desvanecimiento a pequeña y gran escala
Modelos de gran escala
Explican el
comportamiento de las
potencias a distancias
mucho mayores que la
longitud de onda
(∼Km).
Espacio libre,
Okumura-Hata
Bloqueo:
Log-distancia,
Log-normal (modelo
gaussiano en dB)
Modelos de pequeña
escala
Explican el
comportamiento de las
potencias en distancias
comparables a la
longitud de onda (∼m).
Multitrayecto y Doppler
Modelo estadístico
Amplitud →
Rayleigh
Relación Eb/N0 →
Exponencial
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 9 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Propagación por multi-trayecto a pequeña escala
El multi-trayecto en un canal de radio produce
desvanecimiento a pequeña escala.
Los 3 efectos más importantes son:
Cambios rápidos en la intensidad de la señal sobre un
intervalo de tiempo pequeño.
Modulación en frecuencia aleatoria al considerar señales
multi-trayectoria diferentes debido a la variación por el
efecto Doppler.
Dispersión en tiempo (ecos) causados por los retardos en
la propagación por multi-trayecto.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 11 / 61
Propagación por multi-trayecto a pequeña escala
En áreas urbanas edificadas, el desvanecimiento ocurre porque la altura
de las antenas de los móviles, están muy por debajo de la altura de las
estructuras circundantes.
No existe línea de vista respecto a la estación base.
Aún si existiera línea de vista, los multi-trayectos pueden ocurrir
debido a la reflexión en la tierra y las estructuras cercanas.
La onda de radio entrante arriba de diferentes direcciones con
diferentes retados de propagación.
La señal recibida por el móvil en cualquier punto del espacio puede
consistir de un número grande de ondas planas que tienen
distribuciones aleatorias de amplitud, fase y ángulo de arribo.
Aún cuando el receptor no se mueva, la señal recibida puede cambiar
debido al movimiento de los objetos cercanos.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 12 / 61
Propagación por multi-trayecto a pequeña escala
Si los objetos en el radio canal se encuentran estáticos, y el movimiento
se debe únicamente al móvil, el desvanecimiento es un fenómeno
puramente espacial.
Las variaciones espaciales de la señal resultante son vistas como
variaciones temporales por el Rx.
Debido a los efectos constructivos y destructivos de la suma de ondas
multi-trayectoria en varios puntos del espacio, un receptor que se
mueve a altas velocidades puede pasar a través de varios
desvanecimientos en un periodo pequeño de tiempo.
Un Rx puede parar en una ubicación particular en la cual la señal
recibida se encuentra en un desvanecimiento profundo.
Mantener buenas comunicaciones puede ser muy difícil.
Los vehículos que pasan o las personas que caminan en la
vecindad del móvil pueden ofrecer interferencia, produciendo un
nulo profundo por un periodo largo de tiempo.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 13 / 61
Factores influyentes en el desvanecimiento a pequeña
escala
La propagación multi-trayecto.
La velocidad del móvil.
La velocidad de los objetos circundantes.
El ancho de banda de transmisión de la señal.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 14 / 61
Factores influyentes en el desvanecimiento a pequeña
escala
Propagación multi-trayecto
La presencia de objetos que reflejan y dispersan la señal en el
canal crea un constante cambio en el medio que altera la energía
de la señal en amplitud, fase o tiempo.
Como resultado, se tiene multiples versiones de la señal
transmitida que arriba a la antena Rx.
La fase y amplitud aleatoria en los diferentes componentes de la
señal generados por las multi-trayectorias, causan fluctuaciones
en la intensidad de la señal, que induce desvanecimiento a
pequeña escala, distorsión de la señal, o ambas.
La velocidad del móvil
El movimiento relativo entre la EB y el móvil resulta en
modulación de frecuencia aleatoria debido al efecto Doppler en
cada componente multi-trayectoria.
El efecto Doppler puede ser positivo o negativo dependiendo de
si el móvil se está moviendo hacia o lejos de la EB.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 15 / 61
Factores influyentes en el desvanecimiento a pequeña
escala
Velocidad de los objetos circundantes
Si los objetos en el radio canal se encuentran en
movimiento, ellos inducen una variación en tiempo por
efecto Doppler en las componentes multi-trayectoria.
Si los objetos circundantes se mueven a gran tasa respecto
al móvil, entonces este efecto domina el desvanecimiento a
pequeña escala.
Caso contrario, el movimiento de los objetos circundantes
puede ser ignorado, y únicamente se considera la velocidad
del móvil.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 16 / 61
Factores influyentes en el desvanecimiento a pequeña
escala
Ancho de banda de transmisión de la señal
Si el ancho de banda del transmisor es más grande que el
ancho de banda del canal multi-trayecto, la señal recibida
puede ser distorsionada, pero el desvanecimiento de la
señal recibida sobre una área local podría no ser mayor.
El ancho de banda del canal puede ser cuantificado por el
ancho de banda coherente el cual se relaciona con la estructura
específica del canal multi-trayecto.
El ancho de banda coherente es la medida de la máxima
diferencia en frecuencia para la cual las señales son todavía
fuertemente correlatadas en amplitud.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 17 / 61
Modelo de respuesta al impulso de un canal
multi-trayecto
Considere el caso donde la variación en tiempo depende estrictamente
del movimiento del receptor en el espacio.
posición espacial
El Rx se mueve a lo largo de la tierra a velocidad constante v.
Para una posición fija d, el canal entre Tx–Rx puede ser modelado como
un sistema lineal invariante en el tiempo.
Sin embargo, debido a las diferentes ondas multi-trayectos las cuales
tienen retardos de propagación y varían con la posición espacial del Rx,
la respuesta al impulso de un canal lineal invariante en el tiempo
debería ser una función de la posición del Rx.
La respuesta del canal al impulso puede ser expresada como h(d, t).
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 18 / 61
Modelo de respuesta al impulso de un canal
multi-trayecto
Ya que la señal recibida en un canal multi-trayecto consiste en una serie
de atenuaciones, retardos en tiempo, y replicas desplazadas en fase de
la señal transmitida, la respuesta al impulso en banda-base de un canal
multi-trayecto puede expresarse como [Rappaport et al., 1996]
hb(t, τ) =
L−1
i=0
ai(t, τ) exp[j(2πfcτi(t) + φi(t, τ))]δ(τ − τi(t))
donde ai(t, τ) y τi(t) son las amplitudes reales y los retardos,
respectivamente de i−ésimo componente multi-trayectoria en el tiempo
t.
146 Ch. 4 • Mobile Radio Propagation: Small-Scale Fading and Multipath
of the first arriving multipath component, and neglects the propagation delay
between the transmitter and receiver Excess delay is the relative delay of the
i th multipath component as compared to the first arriving component and is
given by t1. The maximum excess delay of the channel is given by NAt.
Since the received signal in a multipath channel consists of a series of
attenuated, time-delayed, phase shifted replicas of the transmitted signal, the
baseband impulse response of a multipath channel can be expressed as
N-I
h6(t, 'c) = a1(t, + $1(t, r))j8(t — (4.12)
where a1(t, t) and are the real amplitudes and excess delays, respectively,
of i th multipath component at time t [Tur721. The phase term
+ t)in (4.12) represents the phase shift due to free space propaga-
tion of the i th multipath component, plus any additional phase shifts which are
encountered in the channel. In general, the phase term is simply represented by
a single variable t) which lumps together all the mechanisms for phase
shifts of a single multipath component within the ith excess delay bin. Note that
some excess delay bins may have no multipath at some time t and delay t1,
since t) may be zero. In equation (4.12), N is the total possible number of
multipath components (bins), and S(.) is the unit impulse function which deter-
mines the specific multipath bins that have components at time t and excess
delays t1. Figure 4.4 illustrates an example of different snapshots of
h5(t, t), where t varies into the page, and the time delay bins are quantized to
widths of At.
to
1(13)
Figure 4.4
An example of the time varying discrete-time impulse response model for a multipath radio channel.
4
to t1 t2 t3 t4 TNI
1(h)
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 19 / 61
Modelo de respuesta al impulso de un canal
multi-trayecto
hb(t, τ) =
L−1
i=0
ai(t, τ) exp[j(2πfcτi(t) + φi(t, τ))]δ(τ − τi(t))
El término de fase 2πfcτi(t) + φi(t, τ) representa el
desplazamiento de fase debido a la propagación en espacio
libre de la i−ésima componente multi-trayectoria, más
cualquier desplazamiento en fase adicional encontrado en
el canal.
L es el número total de posibles multi-trayectorias.
δ(·) es la función impulso unitario que determina un
multi-trayecto específico que tiene una componente en el
tiempo t y un retardo τi.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 20 / 61
Modelo de respuesta al impulso de un canal
multi-trayecto
56Comunicaciones Móviles: 3
MultitrayectoMultitrayecto
h(τ)
τ
Respuesta al impulso
en un instante dado
Parámetros de las componentes:
• Amplitud
• Retardo
• Desplazamiento Doppler
• Desfase
Referencia: [Tomás, 2012]
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 21 / 61
Modelo de respuesta al impulso de un canal
multi-trayecto
57Comunicaciones Móviles: 3
CaracterizaciCaracterizacióón del canaln del canal
τ
τ
τ
Sistema lineal variante:
h(t,τ)
Respuesta del canal en el
instante t a un impulso
transmitido τ segundos antes
t
Referencia: [Tomás, 2012]
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 22 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Modelo simplificado del canal multi-trayecto
Para el análisis se considera un modelo simplificado del
canal que incluye la atenuación (ai) y el retardo (τi) en cada
trayecto (i) para los L trayectos, i.e.
h(τ) =
L−1
i=0
aiδ(τ − τi)
h(τ)
τ
Respuesta al impulso
en un instante dado
mponentes:
ppler
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 24 / 61
Power profile
φ(τ) = |h(τ)|2
=
L−1
i=0
|ai|2
δ(τ − τi)
=
L−1
i=0
giδ(τ − τi)
donde |ai|2
es la potencia que llega. gi es la ganancia de el
i−ésimo trayecto.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 25 / 61
Ejemplo: Power profile
Considerar un canal multi-trayectoria con L = 4, establezca el power profile para el
sistema de comunicaciones inalámbrico.
Gain Delay
|a0|2
τ0
|a1|2
τ1
|a2|2
τ2
|a3|2
τ3
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 26 / 61
Delay spread
Múltiples copias de la
señal llegan sobre un
intervalo de tiempo al Rx.
Este tiempo de dispersión
(time spread) es conocido
como delay spread
representado por στ .
En un canal inalámbrico,
¿cómo se calcula el delay
spread?
Máximo delay spread
RMS delay spread
time spread
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 27 / 61
Delay spread SMALL-SCALE FADING 195
0 0.01 0.02 0.03 0.04 0.05
2
0
2
Direct Signal
1st Reflection
2nd Reflection
0 0.01 0.02 0.03 0.04 0.05
2
1
0
1
2
Direct Signal
Total Signal
Figure 8.22 Illustration of the effect of multipath delay spread on received symbols.
It is desirable to have the maximum delay spread to be small relative to the
symbol interval of a digital communication signal. An analogous requirement
SMALL-SCALE FADING 195
0 0.01 0.02 0.03 0.04 0.05
2
0
2
Direct Signal
1st Reflection
2nd Reflection
0 0.01 0.02 0.03 0.04 0.05
2
1
0
1
2
Direct Signal
Total Signal
Figure 8.22 Illustration of the effect of multipath delay spread on received symbols.Effect of multipath delay spread on received symbols.
Referencia: [Seybold, 2005]
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 28 / 61
Máximo delay spread
La primera componente
llega en el instante τ0.
La última componente
llega en el tiempo τL−1 .
σmax = τL−1 − τ0
Ej.: un canal de 4 trayectos,
donde τ0 = 0µs, y τ3 = 5µs.
Luego, el max delay spread
es σmax = 5µs − 0µs = 5µs
Primero
Último
spread or maximum spread
Una medida más apropiada del
retardo es el RMS delay spread.
spread or maximum spread
low power!
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 29 / 61
RMS delay spread
Si la ganancia del i−ésimo trayecto gi = |ai|2
tiene
asociado un retardo τi. El RMS delay spread del canal
inalámbrico es dado por:
στ =
L−1
i=0 gi(τi − ¯τ)2
L−1
i=0 gi
donde ¯τ representa el retardo medio dado por:
¯τ =
L−1
i=0 giτi
L−1
j=0 gj
y L−1
i=0 gi representa la potencia total.
Considerando gi = |ai|2
,
στ =
L−1
i=0 |ai|2
(τi − ¯τ)2
L−1
i=0 |ai|2
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 30 / 61
Ejemplo: RMS delay spread
Dado el ejemplo de la figura, calcule el max delay spread y el RMS delay spread.
-20 dB
-10 dB
0 dB
0.01
0.1
1
0.1
0 1 3 5
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 31 / 61
Ejemplo: RMS delay spread
τ (µs) Ganancia (dB) Ganancia g (lineal) a =
√
g
0 -20 0.01 0.1
1 -10 0.1 0.3162
3 0 1 1
5 -10 0.1 0.3162
τmax = 5µs.
Primero calcular el average waighted delay ¯τ:
¯τ =
L−1
i=0 giτi
L−1
i=0 gi
=
0.01 × 0 + 01 × 1 + 1 × 3 + 0.1 × 5
0.01 + 0.1 + 1 + 0.1
= 2.9752µs
Por lo tanto:
στ =
0.01 × (0 − 2.9752)2
+ 0.1 × (1 − 2.9752)2
+ 1 × (3 − 2.9752)2
+ 0.1 × (5 − 2.9752)2
0.01 + 0.1 + 1 + 0.1
2
= 0.8573µs
Opción más pesimista: σ2 = 5µs.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 32 / 61
Average delay spread in outdoor channels
Considere una celda típica
con la estación base en el
centro y el móvil en una
posición cualquiera cerca
al límite de la celda.
Recordar, que el radio
típico de una celda es
alrededor de 3 a 4 Km (a
veces podría llegar a estar
entre 5 a 10 Km).
La diferencia en distancia
entre el trayecto disperso y
el trayecto directo será un
valor en término de los ≈
Km.
2 Km
2 Km
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 33 / 61
Average delay spread in outdoor channels
El rayo directo llega con retardo τ0 ≈ 2 Km
c .
El rayo dispersado llega con retardo τ1 ≈ 3 Km
c .
El delay spread o diferencia entre en tiempo entre el trayecto
directo y el disperso, es entonces
≈
1Km
c
=
1000m
3 × 108
= 3.33µs
El outdoor delay spread en sistemas de comunicaciones
inalámbricos 3G/4G es aproximadamente del orden de los
µs.
Típicamente alrededor de: 1 − 3µs.
El indoor delay spread tiene un valor alrededor de los 10 a
50 ns.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 34 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Ancho de banda coherente
Considere el perfil de retardo (delay profile) h(τ). Ahora, se
desea calcular la transformada de Fourier, que constituye
el espectro de este perfil de retardo, i.e.,
H(f) =
∞
0
h(τ) exp−j2πfτ
dτ
El ancho de banda coherente Bc es la porción del espectro
sobre la cual la respuesta es aproximadamente constante.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 36 / 61
Ancho de banda coherente
Si Bs ≤ Bc, donde Bs es el ancho de
banda de la señal, entonces no existe
distorsión en la señal recibida.
Bs ≤ Bc → No existe distorsión →
“Flat-fading channel”
Si Bs > Bc, entonces la salida o
señal recibida se distorsiona.
Bs > Bc → Hay distorsión →
“Frequency selective distortion”
No hay
distorsión
attenuated
attenuated
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 37 / 61
Ancho de banda coherente
frequency-non-selective fading, respectively. For the given channel frequency response,
frequency selectivity is generally governed by signal bandwidth. Figure 1.10 intuitively
(a) Frequency-non-selective fading channel (b) Frequency-selective fading channel
x(t)
)h(t,τ
y(t)
H(f) Y(f)
cf
sT
t
0
<< >>
0 τ
t
)h(t,τ
x(t) y(t)
sT + τ
t
cf cf
fff
X(f)
sTτ
0
x(t)
)h(t,τ
y(t)
H(f) Y(f)
cf
sT
t
00 τ t
)h(t,τ
x(t) y(t)
sT + τ
t
cf cf
ff
X(f)
0 sT
sTτ
f
Figure 1.10 Characteristics of fading due to time dispersion over multi-path channel [2]. (Rappaport,
Theodore S., Wireless Communications: Principles and Practice, 2nd Edition, Ó 2002, pgs. 130–131.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.)
The Wireless Channel: Propagation and Fading 17
Referencia: [Cho et al., 2010]
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 38 / 61
Ancho de banda coherente
El ancho de banda coherente es igual a:
Bc ≈ 2 ×
1
4στ
=
1
2στ
donde στ representa el RMS delay spread.
point of significant
change
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 39 / 61
Relación entre Bc y στ en dominio del tiempo
Escenario στ << Tsym. Donde Tsym es la duración del
símbolo.
Señal
transmitida
En el
receptor
Trayecto directo
LOS
Trayecto disperso
NLOS
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 40 / 61
Relación entre Bc y στ en dominio del tiempo
Escenario στ >> Tsym.
Señal
transmitida
En el
receptor
Trayecto directo
LOS
Trayecto disperso
NLOS
Interferencia entre símbolos (ISI)
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 41 / 61
Relación entre Bc y στ en dominio del tiempo
στ ≤ Tsym → no Inter-symbol interference (ISI)
στ > Tsym → ISI
1
Tsym
>
1
στ
→ ISI
1
Bs
>
1
2Bc
→ ISI
Bs > Bc → condición para frequency selective distortion
Frequency selective implica ISI.
Bs > Bc → Freq. Sel. (dominio de la frecuencia), ISI
(dominio del tiempo).
Bs < Bc → Flat fading, NO ISI.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 42 / 61
Ejemplo: Ancho de banda coherente
Considere el outdoor channel στ = 1µs. Compare el ancho de banda de la señal
respecto al ancho de banda coherente para los sistemas: (a) GSM, (b) WCDMA.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 43 / 61
Ejemplo: Ancho de banda coherente
Considere el outdoor channel στ = 1µs. Compare el ancho de banda de la señal
respecto al ancho de banda coherente para los sistemas: (a) GSM, (b) WCDMA.
Solución:
Bc =
1
2στ
=
1
2 · 1 × 10−6
= 500kHz
(a) GSM System: Bs = 200 kHz. Por tanto:
Bs < Bc
200kHz < 500kHz
Por lo tanto, GSM es un canal flat-fading y no existe ISI.
(b) WCDMA System (3G Spread Sprectrum System): Bs = 5000 kHz
Bs >> Bc
5MHz >> 500kHz
Por lo tanto, el canal WCDMA es frequency selective fading y existe ISI
(necesario ecualizar).
Nota: Es necesario emplear alguna técnica en el Rx que pueda revertir esta
distorsión en el dominio de la frecuencia. Esta técnica se conoce como
ecualización.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 43 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Efecto Doppler
Debido al movimiento relativo entre el móvil y la estación base (EB),
cada onda multi-trayecto experimenta un aparente cambio (shift) en
frecuencia.
El cambio en la frecuencia de la señal recibida debido al movimiento es
llamado efecto Doppler.
El efecto Doppler es directamente proporcional a la velocidad y
dirección del movimiento del móvil con respecto a la dirección de
arribo de la onda multi-trayecto recibida.
Un micrófono inmóvil registra las sirenas de los policías en movimiento en diversos tonos dependiendo de su
dirección relativa [Wikipedia].
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 45 / 61
Efecto Doppler
El efecto Doppler es un cambio en la frecuencia de la onda
electromagnética que arriba al receptor debido a un movimiento
“relativo” entre el transmisor y el receptor.
Considere un móvil moviéndose a una velocidad constante v, a lo largo
de un segmento del trayecto que tiene una longitud d entre los puntos
X y Y , mientras este recibe señales de una fuente remota S.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 46 / 61
Efecto Doppler
La diferencia en la longitud del trayecto viajado por la onda de la
fuente S al móvil del punto X al Y es
∆l = d cos θ = v∆t cos θ
donde ∆t es el tiempo requerido por el móvil para viajar de X a Y , y θ
es asumido de tal forma que es igual para los puntos X y Y , ya que se
supone que la fuente se encuentra muy lejos.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 47 / 61
Efecto Doppler
El cambio de fase en la señal recibida debido a la diferencia
en la longitud del trayecto es
∆φ =
2π∆l
λ
=
2πv∆t
λ
cos θ
El aparente cambio en frecuencia, o Doppler shift, es dado
por
fd =
1
2π
·
∆φ
∆t
=
v
λ
· cos θ
Si el móvil se mueve hacia la dirección de arribo de la
onda, el efecto Doppler es positivo, i.e. la frecuencia
recibida aparente incrementa, caso contrario es negativo.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 48 / 61
Efecto Doppler
La frecuencia Doppler puede expresarse como
fd =
v cos θ
c
fc
donde fc es la frecuencia portadora.
0 ≤ θ ≤ π
2 : Móvil (MS) → BS.
π
2 ≤ θ ≤ π: Móvil (MS) ← BS.
θ = π
2 → La frecuencia recibida es igual a la frecuencia de
la portadora → movimiento perpendicular, no existe
cambio de frecuencia.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 49 / 61
Ejemplo: Efecto Doppler
Considere un transmisor que radia a una frecuencia portadora sinusoidal de 1850
MHz. Para un vehículo moviéndose a 60 mph, calcule la frecuencia recibida si el móvil
está moviéndose (a) en dirección hacia el Tx, (b) en dirección contraria al Tx, (c) en una
dirección perpendicular a la dirección de arribo de la señal de Tx.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 50 / 61
Ejemplo: Efecto Doppler
Considere un transmisor que radia a una frecuencia portadora sinusoidal de 1850
MHz. Para un vehículo moviéndose a 60 mph, calcule la frecuencia recibida si el móvil
está moviéndose (a) en dirección hacia el Tx, (b) en dirección contraria al Tx, (c) en una
dirección perpendicular a la dirección de arribo de la señal de Tx.
Solución:
Parámetros
fc = 1850 MHz, λ = c
fc
= 3×108
1850×106 = 0.162
Velocidad del vehículo v = 60mph = 26.82 m/s
(a) El efecto Doppler en este caso es positivo y la frecuencia en el
receptor es
f = fc + fd = 1850 × 106
+
26.82
0.162
= 1850.00016MHz
(b) El efecto Doppler en este caso es negativo y la frecuencia es
f = fc + fd = 1850 × 106
−
26.82
0.162
= 1849.999834 MHz
(c) En este caso, θ = 90◦
, cos θ = 0, y no existe efecto Doppler. La
frecuencia recibida de la señal es similar a la frecuencia transmitida, i.e.
1850 MHz.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 50 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Canal variante en el tiempo
Considere el canal multi-trayecto en banda base:
aiδ(t − τi)
donde ai y τi representan la atenuación y el retardo del i−ésimo
trayecto, respectivamente.
Después de un tiempo t, la distancia decrese por vt
τi −
vt
c
MS
BS
El cambio en el retardo respecto
al tiempo es:
τi(t) = τi −
v cos θt
c
donde τi es el tiempo inicial.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 52 / 61
Canal variante en el tiempo
Por lo tanto,
(Mobility =⇒ Doppler) =⇒ (Time varying channel =⇒ Time Selectivity)
El canal variante en el tiempo es también conocido como canal selectivo
en tiempo (Time-selective channel).
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 53 / 61
Agenda
1 Introducción
2 Propagación por multi-trayecto a pequeña escala
3 Delay Spread
4 Ancho de banda coherente (Coherence BW)
5 Efecto Doppler
6 Canal variante en el tiempo
7 Coherence time
Coherence time
Coherence time → Tc = 1
4fd
Coherence time: Tiempo sobre el cual el canal es
aproximadamente constante.
Tc =
1
4fd
=
1
2Bd
Bd = 2fd = Doppler Spread
Coherence time =
1
2 × Doppler spread
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 55 / 61
Example: Coherence time
Considere un móvil que se mueve a 60 mph y se comunica a fc = 1850MHz. Calcule
el tiempo coherente.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 56 / 61
Example: Coherence time
Considere un móvil que se mueve a 60 mph y se comunica a fc = 1850MHz. Calcule
el tiempo coherente.
Solución:
fd = 165 Hz
Bd = 2fd = 2 × 165 = 330 Hz → Doppler Spread
Tc =
1
2Bd
=
1
2 × 330
= 0.00155 = 1.5 ms
Tc = 1.5 ms
Nota: Esto significa que cuando el móvil se desplaza a 60 millas por hora
hacia la BS, aproximadamente, el periodo sobre el cual el canal es constante
puede asumirse como 1.5 ms. Después de 1.5 ms el canal cambia a otro
diferente. Esto es, al observar el fading coefficient durante 1.5 ms, éste se
mantiene aproximadamente constante, y en el siguiente periodo de 1.5 ms
este cambia a otro valor diferente.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 56 / 61
Coherence time
En canales inalámbricos prácticos, el tiempo coherente es
Tc ≈ ms.
Dos importantes cantidades, “diferente la una de la otra”:
Delay spread (µs)
Coherence time (ms).
El delay spread está relacionado con el intervalo de tiempo
sobre el cual la energía de la señal arriba, mientras el
coherence time está relacionado con la duración de tiempo
sobre la cual el canal es constante.
Existe una diferencia fundamental entre estas cantidades y
no se encuentran relacionadas entre si.
El coherence time está relacionado con el Doppler spread,
mientras que el coherence bandwidth está relacionado con
el delay spread.
Bc (coherence BW), στ (delay spread)
Bd (Doppler spread), Tc (coherence tiem)
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 57 / 61
Implicaciones del tiempo coherente
Para tener conocimiento del canal, es necesario medirlo cada coherence
time.
y(t) = hx(t) + n(t)
ˆx(t) =
1
h
y(t) = x(t) → invertir el canal
Se necesita conocimiento del canal h para la detección de x(t)
El medir o “estimar” h es conocido como “estimación de canal”
(channel estimation).
¿Cómo se realiza la estimación en el receptor?
A través del uso de entrenamiento o símbolos pilotos
Ejemplo, en GSM
Entrenamiento
26 símbolos
156 símbolos
slot for users
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 58 / 61
Fading
Desvanecimiento rápido o desvanecimiento lento?
Tc > te → desvanecimiento lento, donde te es el tiempo de
estimación entre canal.
Tc < te → desvanecimiento rápido
tiempo de
estimación
El canal
cambió
Esto resulta en
errores en el
receptor
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 59 / 61
Comprehensive Picture
Slow-Fading
Flat - Fading
No ISI
Slow-Fading
Frecuency - Selective
ISI
Fast-Fading
Flat - Fading
No ISI
Fast-Fading
Frequency - Selective
ISI
Coherence
time
Delay
spread
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 60 / 61
References I
[Cho et al., 2010] Cho, Y. S., Kim, J., Yang, W. Y., and Kang, C. G. (2010).
MIMO-OFDM wireless communications with MATLAB.
John Wiley & Sons.
[Jagannathan, 2013] Jagannathan (2013).
Advanced 3g and 4g wireless mobile communications.
[Rappaport et al., 1996] Rappaport, T. S. et al. (1996).
Wireless communications: principles and practice, volume 2.
Prentice Hall PTR New Jersey.
[Seybold, 2005] Seybold, J. S. (2005).
Introduction to RF propagation.
John Wiley & Sons.
[Tomás, 2012] Tomás, L. M. (2012).
Comunicaciones móviles.
fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 61 / 61

Más contenido relacionado

La actualidad más candente

Tema 3: Small-scale fading and multipath
Tema 3: Small-scale fading and multipathTema 3: Small-scale fading and multipath
Tema 3: Small-scale fading and multipath
Francisco Sandoval
 
Caracteristicas de los modelos de propagacion
Caracteristicas de los modelos de propagacionCaracteristicas de los modelos de propagacion
Caracteristicas de los modelos de propagacion
alfredo_tics
 
Equipos pasivos en redes hfc
Equipos pasivos en redes hfcEquipos pasivos en redes hfc
Equipos pasivos en redes hfc
Juan David Garcia
 
Zonas de fresnel
Zonas de fresnelZonas de fresnel
Zonas de fresnel
HuberLayonelMinchola
 
Taller uno antenas
Taller uno antenasTaller uno antenas
Taller uno antenas
Fernando Rios Cortes
 
6.6 Calculos de radioenlaces
6.6 Calculos de radioenlaces6.6 Calculos de radioenlaces
6.6 Calculos de radioenlaces
Edison Coimbra G.
 
Antena cuadro comparativo
Antena   cuadro comparativoAntena   cuadro comparativo
Antena cuadro comparativo
Jesus Escalona
 
4. Parámetros espaciales de las antenas
4. Parámetros espaciales de las antenas4. Parámetros espaciales de las antenas
4. Parámetros espaciales de las antenas
Edison Coimbra G.
 
Multiplexación tdma fdma cdma
Multiplexación tdma fdma cdmaMultiplexación tdma fdma cdma
Multiplexación tdma fdma cdma
Manuel Carreño (E.Fortuna, Oteima)
 
Probabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificadoProbabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificado
Pato Villacis
 
Diseño y Creación de un Transmisor FM
Diseño y Creación de un Transmisor FMDiseño y Creación de un Transmisor FM
Diseño y Creación de un Transmisor FM
Bryan Valencia Suárez
 
3. Propagación de onda en el espacio libre
3. Propagación de onda en el espacio libre3. Propagación de onda en el espacio libre
3. Propagación de onda en el espacio libre
Edison Coimbra G.
 
Transmisores opticos
Transmisores opticosTransmisores opticos
Transmisores opticos
DIEGOGONZALEZ624
 
Modulación qam
Modulación qamModulación qam
Modulación qam
Byron Luis Bolaño Ortega
 
Enlaces de microondas
Enlaces de microondasEnlaces de microondas
Enlaces de microondas
RaulGonzales41
 
Diseño de una red de fibra óptica
Diseño de una red de fibra ópticaDiseño de una red de fibra óptica
Diseño de una red de fibra óptica
Mao Herrera
 
Modelos de propagación
Modelos de propagaciónModelos de propagación
Modelos de propagación
BenjaminAnilema
 
1 modulación psk
1 modulación psk1 modulación psk
1 modulación psk
Byron Luis Bolaño Ortega
 
Presentacion sdh
Presentacion sdhPresentacion sdh
Presentacion sdh
Geovanni Castro Osorio
 
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
Jose Sanchez
 

La actualidad más candente (20)

Tema 3: Small-scale fading and multipath
Tema 3: Small-scale fading and multipathTema 3: Small-scale fading and multipath
Tema 3: Small-scale fading and multipath
 
Caracteristicas de los modelos de propagacion
Caracteristicas de los modelos de propagacionCaracteristicas de los modelos de propagacion
Caracteristicas de los modelos de propagacion
 
Equipos pasivos en redes hfc
Equipos pasivos en redes hfcEquipos pasivos en redes hfc
Equipos pasivos en redes hfc
 
Zonas de fresnel
Zonas de fresnelZonas de fresnel
Zonas de fresnel
 
Taller uno antenas
Taller uno antenasTaller uno antenas
Taller uno antenas
 
6.6 Calculos de radioenlaces
6.6 Calculos de radioenlaces6.6 Calculos de radioenlaces
6.6 Calculos de radioenlaces
 
Antena cuadro comparativo
Antena   cuadro comparativoAntena   cuadro comparativo
Antena cuadro comparativo
 
4. Parámetros espaciales de las antenas
4. Parámetros espaciales de las antenas4. Parámetros espaciales de las antenas
4. Parámetros espaciales de las antenas
 
Multiplexación tdma fdma cdma
Multiplexación tdma fdma cdmaMultiplexación tdma fdma cdma
Multiplexación tdma fdma cdma
 
Probabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificadoProbabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificado
 
Diseño y Creación de un Transmisor FM
Diseño y Creación de un Transmisor FMDiseño y Creación de un Transmisor FM
Diseño y Creación de un Transmisor FM
 
3. Propagación de onda en el espacio libre
3. Propagación de onda en el espacio libre3. Propagación de onda en el espacio libre
3. Propagación de onda en el espacio libre
 
Transmisores opticos
Transmisores opticosTransmisores opticos
Transmisores opticos
 
Modulación qam
Modulación qamModulación qam
Modulación qam
 
Enlaces de microondas
Enlaces de microondasEnlaces de microondas
Enlaces de microondas
 
Diseño de una red de fibra óptica
Diseño de una red de fibra ópticaDiseño de una red de fibra óptica
Diseño de una red de fibra óptica
 
Modelos de propagación
Modelos de propagaciónModelos de propagación
Modelos de propagación
 
1 modulación psk
1 modulación psk1 modulación psk
1 modulación psk
 
Presentacion sdh
Presentacion sdhPresentacion sdh
Presentacion sdh
 
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
Modelo de Difracción por Filo de Cuchillo (Microondas, UFT)
 

Similar a CI19. Presentación 5. Small scale path loss (simplificada)

CI19.2. Presentaciones: Small scale path loss
CI19.2. Presentaciones: Small scale path lossCI19.2. Presentaciones: Small scale path loss
CI19.2. Presentaciones: Small scale path loss
Francisco Sandoval
 
CI19. Presentación 5. Small scale path loss (completa)
CI19. Presentación 5. Small scale path loss (completa)CI19. Presentación 5. Small scale path loss (completa)
CI19. Presentación 5. Small scale path loss (completa)
Francisco Sandoval
 
Actividad 4 de Telecomunicaciones: Patloss
Actividad 4 de Telecomunicaciones: PatlossActividad 4 de Telecomunicaciones: Patloss
Actividad 4 de Telecomunicaciones: Patloss
SANTIAGO PABLO ALBERTO
 
188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales
Juancho Perdomo
 
Modulacion de señales en la comunicacion satelital
Modulacion de señales en la comunicacion satelital Modulacion de señales en la comunicacion satelital
Modulacion de señales en la comunicacion satelital
Joshua M Noriega
 
Attachment (1)
Attachment (1)Attachment (1)
Attachment (1)
Laura Cristina Guerrero
 
unidad 4
unidad 4unidad 4
unidad 4
guest56b6e
 
6A_MEDIOS_TRANSMISION_2.ppt
6A_MEDIOS_TRANSMISION_2.ppt6A_MEDIOS_TRANSMISION_2.ppt
6A_MEDIOS_TRANSMISION_2.ppt
osjuro
 
Antenas y acceso multiple
Antenas y acceso multipleAntenas y acceso multiple
Antenas y acceso multiple
EverlinCas
 
Capa Fisica (Paralelo A)
Capa Fisica (Paralelo A)Capa Fisica (Paralelo A)
Capa Fisica (Paralelo A)
Santiago Aguilera
 
Tecnica MIMO
Tecnica MIMOTecnica MIMO
Tecnica MIMO
Anthony Alvarez
 
Exposicion unidad 4
Exposicion unidad 4Exposicion unidad 4
Exposicion unidad 4
Juan Lopez
 
sistema satélital para realizar la transmisión de la copa america
sistema satélital para realizar la transmisión de la copa americasistema satélital para realizar la transmisión de la copa america
sistema satélital para realizar la transmisión de la copa america
sergiomendez25
 
Semana 3
Semana 3Semana 3
Modulación comunicaciones
Modulación comunicacionesModulación comunicaciones
Modulación comunicaciones
rhadyz
 
Fundamentos de Redes inalámbricas
Fundamentos de Redes inalámbricasFundamentos de Redes inalámbricas
Fundamentos de Redes inalámbricas
Rafael Monterroza Barrios
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
cococoP
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
cococoP
 
04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_
rodrigo valdez rueda
 
Analisis
AnalisisAnalisis
Analisis
paholoyo
 

Similar a CI19. Presentación 5. Small scale path loss (simplificada) (20)

CI19.2. Presentaciones: Small scale path loss
CI19.2. Presentaciones: Small scale path lossCI19.2. Presentaciones: Small scale path loss
CI19.2. Presentaciones: Small scale path loss
 
CI19. Presentación 5. Small scale path loss (completa)
CI19. Presentación 5. Small scale path loss (completa)CI19. Presentación 5. Small scale path loss (completa)
CI19. Presentación 5. Small scale path loss (completa)
 
Actividad 4 de Telecomunicaciones: Patloss
Actividad 4 de Telecomunicaciones: PatlossActividad 4 de Telecomunicaciones: Patloss
Actividad 4 de Telecomunicaciones: Patloss
 
188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales188232327 redes-de-comunicaciones-i-redes-satelitales
188232327 redes-de-comunicaciones-i-redes-satelitales
 
Modulacion de señales en la comunicacion satelital
Modulacion de señales en la comunicacion satelital Modulacion de señales en la comunicacion satelital
Modulacion de señales en la comunicacion satelital
 
Attachment (1)
Attachment (1)Attachment (1)
Attachment (1)
 
unidad 4
unidad 4unidad 4
unidad 4
 
6A_MEDIOS_TRANSMISION_2.ppt
6A_MEDIOS_TRANSMISION_2.ppt6A_MEDIOS_TRANSMISION_2.ppt
6A_MEDIOS_TRANSMISION_2.ppt
 
Antenas y acceso multiple
Antenas y acceso multipleAntenas y acceso multiple
Antenas y acceso multiple
 
Capa Fisica (Paralelo A)
Capa Fisica (Paralelo A)Capa Fisica (Paralelo A)
Capa Fisica (Paralelo A)
 
Tecnica MIMO
Tecnica MIMOTecnica MIMO
Tecnica MIMO
 
Exposicion unidad 4
Exposicion unidad 4Exposicion unidad 4
Exposicion unidad 4
 
sistema satélital para realizar la transmisión de la copa america
sistema satélital para realizar la transmisión de la copa americasistema satélital para realizar la transmisión de la copa america
sistema satélital para realizar la transmisión de la copa america
 
Semana 3
Semana 3Semana 3
Semana 3
 
Modulación comunicaciones
Modulación comunicacionesModulación comunicaciones
Modulación comunicaciones
 
Fundamentos de Redes inalámbricas
Fundamentos de Redes inalámbricasFundamentos de Redes inalámbricas
Fundamentos de Redes inalámbricas
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
 
No guiados maro
No guiados maroNo guiados maro
No guiados maro
 
04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_04 radioenlaces terrestres_microondas_
04 radioenlaces terrestres_microondas_
 
Analisis
AnalisisAnalisis
Analisis
 

Más de Francisco Sandoval

CI19.2. Presentaciones: Large scale path loss
CI19.2. Presentaciones: Large scale path lossCI19.2. Presentaciones: Large scale path loss
CI19.2. Presentaciones: Large scale path loss
Francisco Sandoval
 
CI19.2 Presentaciones: Introduccion a los sistemas de comunicación
CI19.2 Presentaciones: Introduccion a los sistemas de comunicaciónCI19.2 Presentaciones: Introduccion a los sistemas de comunicación
CI19.2 Presentaciones: Introduccion a los sistemas de comunicación
Francisco Sandoval
 
CI19.2 Presentaciones: Canales inalámbricos, Introducción
CI19.2 Presentaciones: Canales inalámbricos, IntroducciónCI19.2 Presentaciones: Canales inalámbricos, Introducción
CI19.2 Presentaciones: Canales inalámbricos, Introducción
Francisco Sandoval
 
AEP19. Presentaciones: Cap. 6 Vectores gaussianos
AEP19. Presentaciones: Cap. 6 Vectores gaussianosAEP19. Presentaciones: Cap. 6 Vectores gaussianos
AEP19. Presentaciones: Cap. 6 Vectores gaussianos
Francisco Sandoval
 
AEP19. Presentaciones: Cap. 5. Valor esperado
AEP19. Presentaciones: Cap. 5. Valor esperadoAEP19. Presentaciones: Cap. 5. Valor esperado
AEP19. Presentaciones: Cap. 5. Valor esperado
Francisco Sandoval
 
Media, varianza y valor cuadrático medio de una variable aleatoria uniforme
Media, varianza y valor cuadrático medio de una variable aleatoria uniformeMedia, varianza y valor cuadrático medio de una variable aleatoria uniforme
Media, varianza y valor cuadrático medio de una variable aleatoria uniforme
Francisco Sandoval
 
Media y varianza de una variable aleatoria discreta
Media y varianza de una variable aleatoria discretaMedia y varianza de una variable aleatoria discreta
Media y varianza de una variable aleatoria discreta
Francisco Sandoval
 
Media, varianza y valor cuadrático medio de una variable aleatoria gaussiana
Media, varianza y valor cuadrático medio de una variable aleatoria gaussianaMedia, varianza y valor cuadrático medio de una variable aleatoria gaussiana
Media, varianza y valor cuadrático medio de una variable aleatoria gaussiana
Francisco Sandoval
 
AEP19. Presentación 4: Funciones de variables aleatorias
AEP19. Presentación 4: Funciones de variables aleatoriasAEP19. Presentación 4: Funciones de variables aleatorias
AEP19. Presentación 4: Funciones de variables aleatorias
Francisco Sandoval
 
AEP19. Presentación 3: Variables aleatorias
AEP19. Presentación 3:  Variables aleatoriasAEP19. Presentación 3:  Variables aleatorias
AEP19. Presentación 3: Variables aleatorias
Francisco Sandoval
 
AEP19. Tarea 3
AEP19. Tarea 3AEP19. Tarea 3
AEP19. Tarea 3
Francisco Sandoval
 
AEP19. Trabajo grupal 4 [tutoría]
AEP19. Trabajo grupal 4 [tutoría]AEP19. Trabajo grupal 4 [tutoría]
AEP19. Trabajo grupal 4 [tutoría]
Francisco Sandoval
 
AEP19. Trabajo grupal 3 [tutoría]
AEP19. Trabajo grupal 3 [tutoría]AEP19. Trabajo grupal 3 [tutoría]
AEP19. Trabajo grupal 3 [tutoría]
Francisco Sandoval
 
AEP19. Presentación 2: Teoría de las Probabilidades
AEP19. Presentación 2: Teoría de las ProbabilidadesAEP19. Presentación 2: Teoría de las Probabilidades
AEP19. Presentación 2: Teoría de las Probabilidades
Francisco Sandoval
 
AEP19: Trabajo grupal 2 (Tutoría)
AEP19: Trabajo grupal 2 (Tutoría)AEP19: Trabajo grupal 2 (Tutoría)
AEP19: Trabajo grupal 2 (Tutoría)
Francisco Sandoval
 
AEP17. Examen segundo bimestre
AEP17. Examen segundo bimestreAEP17. Examen segundo bimestre
AEP17. Examen segundo bimestre
Francisco Sandoval
 
AEP17. Examen primer bimestre
AEP17. Examen primer bimestreAEP17. Examen primer bimestre
AEP17. Examen primer bimestre
Francisco Sandoval
 
AEP19. Tarea 5
AEP19. Tarea 5 AEP19. Tarea 5
AEP19. Tarea 5
Francisco Sandoval
 
AEP19. Tarea 4
AEP19. Tarea 4 AEP19. Tarea 4
AEP19. Tarea 4
Francisco Sandoval
 
AEP19. Tarea 2
AEP19. Tarea 2AEP19. Tarea 2
AEP19. Tarea 2
Francisco Sandoval
 

Más de Francisco Sandoval (20)

CI19.2. Presentaciones: Large scale path loss
CI19.2. Presentaciones: Large scale path lossCI19.2. Presentaciones: Large scale path loss
CI19.2. Presentaciones: Large scale path loss
 
CI19.2 Presentaciones: Introduccion a los sistemas de comunicación
CI19.2 Presentaciones: Introduccion a los sistemas de comunicaciónCI19.2 Presentaciones: Introduccion a los sistemas de comunicación
CI19.2 Presentaciones: Introduccion a los sistemas de comunicación
 
CI19.2 Presentaciones: Canales inalámbricos, Introducción
CI19.2 Presentaciones: Canales inalámbricos, IntroducciónCI19.2 Presentaciones: Canales inalámbricos, Introducción
CI19.2 Presentaciones: Canales inalámbricos, Introducción
 
AEP19. Presentaciones: Cap. 6 Vectores gaussianos
AEP19. Presentaciones: Cap. 6 Vectores gaussianosAEP19. Presentaciones: Cap. 6 Vectores gaussianos
AEP19. Presentaciones: Cap. 6 Vectores gaussianos
 
AEP19. Presentaciones: Cap. 5. Valor esperado
AEP19. Presentaciones: Cap. 5. Valor esperadoAEP19. Presentaciones: Cap. 5. Valor esperado
AEP19. Presentaciones: Cap. 5. Valor esperado
 
Media, varianza y valor cuadrático medio de una variable aleatoria uniforme
Media, varianza y valor cuadrático medio de una variable aleatoria uniformeMedia, varianza y valor cuadrático medio de una variable aleatoria uniforme
Media, varianza y valor cuadrático medio de una variable aleatoria uniforme
 
Media y varianza de una variable aleatoria discreta
Media y varianza de una variable aleatoria discretaMedia y varianza de una variable aleatoria discreta
Media y varianza de una variable aleatoria discreta
 
Media, varianza y valor cuadrático medio de una variable aleatoria gaussiana
Media, varianza y valor cuadrático medio de una variable aleatoria gaussianaMedia, varianza y valor cuadrático medio de una variable aleatoria gaussiana
Media, varianza y valor cuadrático medio de una variable aleatoria gaussiana
 
AEP19. Presentación 4: Funciones de variables aleatorias
AEP19. Presentación 4: Funciones de variables aleatoriasAEP19. Presentación 4: Funciones de variables aleatorias
AEP19. Presentación 4: Funciones de variables aleatorias
 
AEP19. Presentación 3: Variables aleatorias
AEP19. Presentación 3:  Variables aleatoriasAEP19. Presentación 3:  Variables aleatorias
AEP19. Presentación 3: Variables aleatorias
 
AEP19. Tarea 3
AEP19. Tarea 3AEP19. Tarea 3
AEP19. Tarea 3
 
AEP19. Trabajo grupal 4 [tutoría]
AEP19. Trabajo grupal 4 [tutoría]AEP19. Trabajo grupal 4 [tutoría]
AEP19. Trabajo grupal 4 [tutoría]
 
AEP19. Trabajo grupal 3 [tutoría]
AEP19. Trabajo grupal 3 [tutoría]AEP19. Trabajo grupal 3 [tutoría]
AEP19. Trabajo grupal 3 [tutoría]
 
AEP19. Presentación 2: Teoría de las Probabilidades
AEP19. Presentación 2: Teoría de las ProbabilidadesAEP19. Presentación 2: Teoría de las Probabilidades
AEP19. Presentación 2: Teoría de las Probabilidades
 
AEP19: Trabajo grupal 2 (Tutoría)
AEP19: Trabajo grupal 2 (Tutoría)AEP19: Trabajo grupal 2 (Tutoría)
AEP19: Trabajo grupal 2 (Tutoría)
 
AEP17. Examen segundo bimestre
AEP17. Examen segundo bimestreAEP17. Examen segundo bimestre
AEP17. Examen segundo bimestre
 
AEP17. Examen primer bimestre
AEP17. Examen primer bimestreAEP17. Examen primer bimestre
AEP17. Examen primer bimestre
 
AEP19. Tarea 5
AEP19. Tarea 5 AEP19. Tarea 5
AEP19. Tarea 5
 
AEP19. Tarea 4
AEP19. Tarea 4 AEP19. Tarea 4
AEP19. Tarea 4
 
AEP19. Tarea 2
AEP19. Tarea 2AEP19. Tarea 2
AEP19. Tarea 2
 

Último

TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
alexandrachura18255
 
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
MariaAngelicaMachica
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
Cátedra Banco Santander
 
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
Yulietcharcaapaza
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
Jose Luis Jimenez Rodriguez
 
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
justinomorales8
 
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa
 
Matriz de relación mixta Fortalezas - Amenazas
Matriz de relación mixta Fortalezas - AmenazasMatriz de relación mixta Fortalezas - Amenazas
Matriz de relación mixta Fortalezas - Amenazas
JonathanCovena1
 
Imagenes-en-la-Comunicacion-Didactica.pdf
Imagenes-en-la-Comunicacion-Didactica.pdfImagenes-en-la-Comunicacion-Didactica.pdf
Imagenes-en-la-Comunicacion-Didactica.pdf
ShimmyKoKoBop
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
nelsontobontrujillo
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Cátedra Banco Santander
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
Cátedra Banco Santander
 
Lengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprendLengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprend
RaqelBenitez
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
Cátedra Banco Santander
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
Evaluacion Formativa en el Aula ECH1 Ccesa007.pdf
Evaluacion Formativa en el Aula   ECH1  Ccesa007.pdfEvaluacion Formativa en el Aula   ECH1  Ccesa007.pdf
Evaluacion Formativa en el Aula ECH1 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
Cátedra Banco Santander
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
nelsontobontrujillo
 

Último (20)

TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
 
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
 
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO(NEOPOSITIVISM...
POSITIVISMO LÓGICO, CONCEPCIÓN HEREDADA Y RACIONALISMO CRITICO (NEOPOSITIVISM...
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024. Completo - Jose Luis Jimenez Rodr...
 
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
 
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
 
Matriz de relación mixta Fortalezas - Amenazas
Matriz de relación mixta Fortalezas - AmenazasMatriz de relación mixta Fortalezas - Amenazas
Matriz de relación mixta Fortalezas - Amenazas
 
Imagenes-en-la-Comunicacion-Didactica.pdf
Imagenes-en-la-Comunicacion-Didactica.pdfImagenes-en-la-Comunicacion-Didactica.pdf
Imagenes-en-la-Comunicacion-Didactica.pdf
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
 
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
2. LA ENERGIA Y TIPOSGRADO SEXTO.SANTA TERESApptx
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
 
Lengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprendLengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprend
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
Evaluacion Formativa en el Aula ECH1 Ccesa007.pdf
Evaluacion Formativa en el Aula   ECH1  Ccesa007.pdfEvaluacion Formativa en el Aula   ECH1  Ccesa007.pdf
Evaluacion Formativa en el Aula ECH1 Ccesa007.pdf
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
 
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
1. QUE ES UNA ESTRUCTURAOCTAVOASANTA TERESA .pptx
 

CI19. Presentación 5. Small scale path loss (simplificada)

  • 1. Comunicaciones Inalámbricas Capítulo 2: Canales Inalámbricos, Small-Scale Fading and Multipath Francisco Sandoval1 1Departamento de Ciencias de la Computación y Electrónica Universidad Técnica Particular de Loja Loja, Ecuador fasandoval@utpl.edu.ec 2019.1
  • 2. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 3. Modelo del Sistema de Comunicaciones Balance del enlace Balance del enlace: Relación que expresa la potencia disponible en el receptor en función de la potencia entregada por el Tx y las diferentes pérdidas y ganancias que aparecen en el trayecto del Tx al Rx. Pdr = Pst − Ltt + Gt − Lb + Gr − Ltr donde las pérdidas/ganancias están en dB y las potencias en unidades logarítmicas similares (dBm). 5Comunicaciones Móviles: 3 AtenuaciAtenuacióónn )dB(btrttrttr LLLGGPP −−−++= )dB(btrrr LLGPIREP −−+= )dB(exbfb LLL += Parte determinista Parte aleatoria: desvanecimiento Modelos Caracterización estadística bL fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 3 / 61
  • 4. Atenuación Modelos: Determinísticos o analíticos Semi-empíricos Empíricos Caracterízación estadística: Desvanecimiento por sombra Desvanecimiento multi-trayecto 7Comunicaciones Móviles: 3 DesvanecimientoDesvanecimiento obstáculo dispersores Desvanecimiento por sombra Desvanecimiento multitrayecto Referencia: [Tomás, 2012] fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 4 / 61
  • 5. Desvanecimiento El devanecimiento por sombra es lento: varía despacio con la posición del móvil (≈ m). El efecto de multi-trayecto es rápido: varía deprisa (≈ fracción de λ: varios cm) con la posición del móvil. La atenuación por sombra de un obstáculo puede ser determinista o desvanecimiento (o parte de cada), según que el modelo tenga en cuenta o no el efecto de ese obstáculo. Las variaciones de atenuación por multi-trayecto son siempre desvanecimiento, ya que no pueden calcularse de forma determinista, debido a su carácter rápido. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 5 / 61
  • 6. Distorsión La propagación multitrayecto, además de producir desvanecimiento, puede introducir distorsión lineal en la señal: Dispersión temporal Dispersión en frecuencia La importancia de estos efectos depende del tipo de canal de propagación y de las características de la señal. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 6 / 61
  • 7. Desvanecimiento a pequeña escala y multi-trayectoria El desvanecimiento a pequeña escala, o simplemente desvanecimiento, es usado para describir la rápida fluctuación de la amplitud de una señal de radio sobre un corto periodo de tiempo o distancia de viaje, por lo tanto, los efectos de las pérdidas por trayecto a larga escala pueden ser ignoradas. 0 K (dB) Pr P (dB) t log (d) Path Loss Alone Shadowing and Path Loss Multipath, Shadowing, and Path Loss Figure 2.1: Path Loss, Shadowing and Multipath versus Distance. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 7 / 61
  • 8. Desvanecimiento a pequeña escala y multi-trayectoria El desvanecimiento es causado por la interferencia entre dos o más versiones (ondas multi-trayectoria) de la señal transmitida, la cual arriba al receptor en un tiempo ligeramente diferente. Las ondas multi-trayectoria son combinadas en la antena receptora para dar como resultado una señal, la cual puede variar ampliamente en amplitud y fase, dependiendo de la distribución de la intensidad, el tiempo de propagación relativo de las ondas, y el ancho de banda de la señal transmitida. Reflection Scattering Diffraction Direct LOS Path fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 8 / 61
  • 9. Desvanecimiento a pequeña y gran escala Modelos de gran escala Explican el comportamiento de las potencias a distancias mucho mayores que la longitud de onda (∼Km). Espacio libre, Okumura-Hata Bloqueo: Log-distancia, Log-normal (modelo gaussiano en dB) Modelos de pequeña escala Explican el comportamiento de las potencias en distancias comparables a la longitud de onda (∼m). Multitrayecto y Doppler Modelo estadístico Amplitud → Rayleigh Relación Eb/N0 → Exponencial fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 9 / 61
  • 10. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 11. Propagación por multi-trayecto a pequeña escala El multi-trayecto en un canal de radio produce desvanecimiento a pequeña escala. Los 3 efectos más importantes son: Cambios rápidos en la intensidad de la señal sobre un intervalo de tiempo pequeño. Modulación en frecuencia aleatoria al considerar señales multi-trayectoria diferentes debido a la variación por el efecto Doppler. Dispersión en tiempo (ecos) causados por los retardos en la propagación por multi-trayecto. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 11 / 61
  • 12. Propagación por multi-trayecto a pequeña escala En áreas urbanas edificadas, el desvanecimiento ocurre porque la altura de las antenas de los móviles, están muy por debajo de la altura de las estructuras circundantes. No existe línea de vista respecto a la estación base. Aún si existiera línea de vista, los multi-trayectos pueden ocurrir debido a la reflexión en la tierra y las estructuras cercanas. La onda de radio entrante arriba de diferentes direcciones con diferentes retados de propagación. La señal recibida por el móvil en cualquier punto del espacio puede consistir de un número grande de ondas planas que tienen distribuciones aleatorias de amplitud, fase y ángulo de arribo. Aún cuando el receptor no se mueva, la señal recibida puede cambiar debido al movimiento de los objetos cercanos. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 12 / 61
  • 13. Propagación por multi-trayecto a pequeña escala Si los objetos en el radio canal se encuentran estáticos, y el movimiento se debe únicamente al móvil, el desvanecimiento es un fenómeno puramente espacial. Las variaciones espaciales de la señal resultante son vistas como variaciones temporales por el Rx. Debido a los efectos constructivos y destructivos de la suma de ondas multi-trayectoria en varios puntos del espacio, un receptor que se mueve a altas velocidades puede pasar a través de varios desvanecimientos en un periodo pequeño de tiempo. Un Rx puede parar en una ubicación particular en la cual la señal recibida se encuentra en un desvanecimiento profundo. Mantener buenas comunicaciones puede ser muy difícil. Los vehículos que pasan o las personas que caminan en la vecindad del móvil pueden ofrecer interferencia, produciendo un nulo profundo por un periodo largo de tiempo. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 13 / 61
  • 14. Factores influyentes en el desvanecimiento a pequeña escala La propagación multi-trayecto. La velocidad del móvil. La velocidad de los objetos circundantes. El ancho de banda de transmisión de la señal. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 14 / 61
  • 15. Factores influyentes en el desvanecimiento a pequeña escala Propagación multi-trayecto La presencia de objetos que reflejan y dispersan la señal en el canal crea un constante cambio en el medio que altera la energía de la señal en amplitud, fase o tiempo. Como resultado, se tiene multiples versiones de la señal transmitida que arriba a la antena Rx. La fase y amplitud aleatoria en los diferentes componentes de la señal generados por las multi-trayectorias, causan fluctuaciones en la intensidad de la señal, que induce desvanecimiento a pequeña escala, distorsión de la señal, o ambas. La velocidad del móvil El movimiento relativo entre la EB y el móvil resulta en modulación de frecuencia aleatoria debido al efecto Doppler en cada componente multi-trayectoria. El efecto Doppler puede ser positivo o negativo dependiendo de si el móvil se está moviendo hacia o lejos de la EB. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 15 / 61
  • 16. Factores influyentes en el desvanecimiento a pequeña escala Velocidad de los objetos circundantes Si los objetos en el radio canal se encuentran en movimiento, ellos inducen una variación en tiempo por efecto Doppler en las componentes multi-trayectoria. Si los objetos circundantes se mueven a gran tasa respecto al móvil, entonces este efecto domina el desvanecimiento a pequeña escala. Caso contrario, el movimiento de los objetos circundantes puede ser ignorado, y únicamente se considera la velocidad del móvil. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 16 / 61
  • 17. Factores influyentes en el desvanecimiento a pequeña escala Ancho de banda de transmisión de la señal Si el ancho de banda del transmisor es más grande que el ancho de banda del canal multi-trayecto, la señal recibida puede ser distorsionada, pero el desvanecimiento de la señal recibida sobre una área local podría no ser mayor. El ancho de banda del canal puede ser cuantificado por el ancho de banda coherente el cual se relaciona con la estructura específica del canal multi-trayecto. El ancho de banda coherente es la medida de la máxima diferencia en frecuencia para la cual las señales son todavía fuertemente correlatadas en amplitud. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 17 / 61
  • 18. Modelo de respuesta al impulso de un canal multi-trayecto Considere el caso donde la variación en tiempo depende estrictamente del movimiento del receptor en el espacio. posición espacial El Rx se mueve a lo largo de la tierra a velocidad constante v. Para una posición fija d, el canal entre Tx–Rx puede ser modelado como un sistema lineal invariante en el tiempo. Sin embargo, debido a las diferentes ondas multi-trayectos las cuales tienen retardos de propagación y varían con la posición espacial del Rx, la respuesta al impulso de un canal lineal invariante en el tiempo debería ser una función de la posición del Rx. La respuesta del canal al impulso puede ser expresada como h(d, t). fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 18 / 61
  • 19. Modelo de respuesta al impulso de un canal multi-trayecto Ya que la señal recibida en un canal multi-trayecto consiste en una serie de atenuaciones, retardos en tiempo, y replicas desplazadas en fase de la señal transmitida, la respuesta al impulso en banda-base de un canal multi-trayecto puede expresarse como [Rappaport et al., 1996] hb(t, τ) = L−1 i=0 ai(t, τ) exp[j(2πfcτi(t) + φi(t, τ))]δ(τ − τi(t)) donde ai(t, τ) y τi(t) son las amplitudes reales y los retardos, respectivamente de i−ésimo componente multi-trayectoria en el tiempo t. 146 Ch. 4 • Mobile Radio Propagation: Small-Scale Fading and Multipath of the first arriving multipath component, and neglects the propagation delay between the transmitter and receiver Excess delay is the relative delay of the i th multipath component as compared to the first arriving component and is given by t1. The maximum excess delay of the channel is given by NAt. Since the received signal in a multipath channel consists of a series of attenuated, time-delayed, phase shifted replicas of the transmitted signal, the baseband impulse response of a multipath channel can be expressed as N-I h6(t, 'c) = a1(t, + $1(t, r))j8(t — (4.12) where a1(t, t) and are the real amplitudes and excess delays, respectively, of i th multipath component at time t [Tur721. The phase term + t)in (4.12) represents the phase shift due to free space propaga- tion of the i th multipath component, plus any additional phase shifts which are encountered in the channel. In general, the phase term is simply represented by a single variable t) which lumps together all the mechanisms for phase shifts of a single multipath component within the ith excess delay bin. Note that some excess delay bins may have no multipath at some time t and delay t1, since t) may be zero. In equation (4.12), N is the total possible number of multipath components (bins), and S(.) is the unit impulse function which deter- mines the specific multipath bins that have components at time t and excess delays t1. Figure 4.4 illustrates an example of different snapshots of h5(t, t), where t varies into the page, and the time delay bins are quantized to widths of At. to 1(13) Figure 4.4 An example of the time varying discrete-time impulse response model for a multipath radio channel. 4 to t1 t2 t3 t4 TNI 1(h) fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 19 / 61
  • 20. Modelo de respuesta al impulso de un canal multi-trayecto hb(t, τ) = L−1 i=0 ai(t, τ) exp[j(2πfcτi(t) + φi(t, τ))]δ(τ − τi(t)) El término de fase 2πfcτi(t) + φi(t, τ) representa el desplazamiento de fase debido a la propagación en espacio libre de la i−ésima componente multi-trayectoria, más cualquier desplazamiento en fase adicional encontrado en el canal. L es el número total de posibles multi-trayectorias. δ(·) es la función impulso unitario que determina un multi-trayecto específico que tiene una componente en el tiempo t y un retardo τi. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 20 / 61
  • 21. Modelo de respuesta al impulso de un canal multi-trayecto 56Comunicaciones Móviles: 3 MultitrayectoMultitrayecto h(τ) τ Respuesta al impulso en un instante dado Parámetros de las componentes: • Amplitud • Retardo • Desplazamiento Doppler • Desfase Referencia: [Tomás, 2012] fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 21 / 61
  • 22. Modelo de respuesta al impulso de un canal multi-trayecto 57Comunicaciones Móviles: 3 CaracterizaciCaracterizacióón del canaln del canal τ τ τ Sistema lineal variante: h(t,τ) Respuesta del canal en el instante t a un impulso transmitido τ segundos antes t Referencia: [Tomás, 2012] fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 22 / 61
  • 23. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 24. Modelo simplificado del canal multi-trayecto Para el análisis se considera un modelo simplificado del canal que incluye la atenuación (ai) y el retardo (τi) en cada trayecto (i) para los L trayectos, i.e. h(τ) = L−1 i=0 aiδ(τ − τi) h(τ) τ Respuesta al impulso en un instante dado mponentes: ppler fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 24 / 61
  • 25. Power profile φ(τ) = |h(τ)|2 = L−1 i=0 |ai|2 δ(τ − τi) = L−1 i=0 giδ(τ − τi) donde |ai|2 es la potencia que llega. gi es la ganancia de el i−ésimo trayecto. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 25 / 61
  • 26. Ejemplo: Power profile Considerar un canal multi-trayectoria con L = 4, establezca el power profile para el sistema de comunicaciones inalámbrico. Gain Delay |a0|2 τ0 |a1|2 τ1 |a2|2 τ2 |a3|2 τ3 fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 26 / 61
  • 27. Delay spread Múltiples copias de la señal llegan sobre un intervalo de tiempo al Rx. Este tiempo de dispersión (time spread) es conocido como delay spread representado por στ . En un canal inalámbrico, ¿cómo se calcula el delay spread? Máximo delay spread RMS delay spread time spread fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 27 / 61
  • 28. Delay spread SMALL-SCALE FADING 195 0 0.01 0.02 0.03 0.04 0.05 2 0 2 Direct Signal 1st Reflection 2nd Reflection 0 0.01 0.02 0.03 0.04 0.05 2 1 0 1 2 Direct Signal Total Signal Figure 8.22 Illustration of the effect of multipath delay spread on received symbols. It is desirable to have the maximum delay spread to be small relative to the symbol interval of a digital communication signal. An analogous requirement SMALL-SCALE FADING 195 0 0.01 0.02 0.03 0.04 0.05 2 0 2 Direct Signal 1st Reflection 2nd Reflection 0 0.01 0.02 0.03 0.04 0.05 2 1 0 1 2 Direct Signal Total Signal Figure 8.22 Illustration of the effect of multipath delay spread on received symbols.Effect of multipath delay spread on received symbols. Referencia: [Seybold, 2005] fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 28 / 61
  • 29. Máximo delay spread La primera componente llega en el instante τ0. La última componente llega en el tiempo τL−1 . σmax = τL−1 − τ0 Ej.: un canal de 4 trayectos, donde τ0 = 0µs, y τ3 = 5µs. Luego, el max delay spread es σmax = 5µs − 0µs = 5µs Primero Último spread or maximum spread Una medida más apropiada del retardo es el RMS delay spread. spread or maximum spread low power! fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 29 / 61
  • 30. RMS delay spread Si la ganancia del i−ésimo trayecto gi = |ai|2 tiene asociado un retardo τi. El RMS delay spread del canal inalámbrico es dado por: στ = L−1 i=0 gi(τi − ¯τ)2 L−1 i=0 gi donde ¯τ representa el retardo medio dado por: ¯τ = L−1 i=0 giτi L−1 j=0 gj y L−1 i=0 gi representa la potencia total. Considerando gi = |ai|2 , στ = L−1 i=0 |ai|2 (τi − ¯τ)2 L−1 i=0 |ai|2 fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 30 / 61
  • 31. Ejemplo: RMS delay spread Dado el ejemplo de la figura, calcule el max delay spread y el RMS delay spread. -20 dB -10 dB 0 dB 0.01 0.1 1 0.1 0 1 3 5 fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 31 / 61
  • 32. Ejemplo: RMS delay spread τ (µs) Ganancia (dB) Ganancia g (lineal) a = √ g 0 -20 0.01 0.1 1 -10 0.1 0.3162 3 0 1 1 5 -10 0.1 0.3162 τmax = 5µs. Primero calcular el average waighted delay ¯τ: ¯τ = L−1 i=0 giτi L−1 i=0 gi = 0.01 × 0 + 01 × 1 + 1 × 3 + 0.1 × 5 0.01 + 0.1 + 1 + 0.1 = 2.9752µs Por lo tanto: στ = 0.01 × (0 − 2.9752)2 + 0.1 × (1 − 2.9752)2 + 1 × (3 − 2.9752)2 + 0.1 × (5 − 2.9752)2 0.01 + 0.1 + 1 + 0.1 2 = 0.8573µs Opción más pesimista: σ2 = 5µs. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 32 / 61
  • 33. Average delay spread in outdoor channels Considere una celda típica con la estación base en el centro y el móvil en una posición cualquiera cerca al límite de la celda. Recordar, que el radio típico de una celda es alrededor de 3 a 4 Km (a veces podría llegar a estar entre 5 a 10 Km). La diferencia en distancia entre el trayecto disperso y el trayecto directo será un valor en término de los ≈ Km. 2 Km 2 Km fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 33 / 61
  • 34. Average delay spread in outdoor channels El rayo directo llega con retardo τ0 ≈ 2 Km c . El rayo dispersado llega con retardo τ1 ≈ 3 Km c . El delay spread o diferencia entre en tiempo entre el trayecto directo y el disperso, es entonces ≈ 1Km c = 1000m 3 × 108 = 3.33µs El outdoor delay spread en sistemas de comunicaciones inalámbricos 3G/4G es aproximadamente del orden de los µs. Típicamente alrededor de: 1 − 3µs. El indoor delay spread tiene un valor alrededor de los 10 a 50 ns. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 34 / 61
  • 35. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 36. Ancho de banda coherente Considere el perfil de retardo (delay profile) h(τ). Ahora, se desea calcular la transformada de Fourier, que constituye el espectro de este perfil de retardo, i.e., H(f) = ∞ 0 h(τ) exp−j2πfτ dτ El ancho de banda coherente Bc es la porción del espectro sobre la cual la respuesta es aproximadamente constante. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 36 / 61
  • 37. Ancho de banda coherente Si Bs ≤ Bc, donde Bs es el ancho de banda de la señal, entonces no existe distorsión en la señal recibida. Bs ≤ Bc → No existe distorsión → “Flat-fading channel” Si Bs > Bc, entonces la salida o señal recibida se distorsiona. Bs > Bc → Hay distorsión → “Frequency selective distortion” No hay distorsión attenuated attenuated fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 37 / 61
  • 38. Ancho de banda coherente frequency-non-selective fading, respectively. For the given channel frequency response, frequency selectivity is generally governed by signal bandwidth. Figure 1.10 intuitively (a) Frequency-non-selective fading channel (b) Frequency-selective fading channel x(t) )h(t,τ y(t) H(f) Y(f) cf sT t 0 << >> 0 τ t )h(t,τ x(t) y(t) sT + τ t cf cf fff X(f) sTτ 0 x(t) )h(t,τ y(t) H(f) Y(f) cf sT t 00 τ t )h(t,τ x(t) y(t) sT + τ t cf cf ff X(f) 0 sT sTτ f Figure 1.10 Characteristics of fading due to time dispersion over multi-path channel [2]. (Rappaport, Theodore S., Wireless Communications: Principles and Practice, 2nd Edition, Ó 2002, pgs. 130–131. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.) The Wireless Channel: Propagation and Fading 17 Referencia: [Cho et al., 2010] fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 38 / 61
  • 39. Ancho de banda coherente El ancho de banda coherente es igual a: Bc ≈ 2 × 1 4στ = 1 2στ donde στ representa el RMS delay spread. point of significant change fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 39 / 61
  • 40. Relación entre Bc y στ en dominio del tiempo Escenario στ << Tsym. Donde Tsym es la duración del símbolo. Señal transmitida En el receptor Trayecto directo LOS Trayecto disperso NLOS fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 40 / 61
  • 41. Relación entre Bc y στ en dominio del tiempo Escenario στ >> Tsym. Señal transmitida En el receptor Trayecto directo LOS Trayecto disperso NLOS Interferencia entre símbolos (ISI) fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 41 / 61
  • 42. Relación entre Bc y στ en dominio del tiempo στ ≤ Tsym → no Inter-symbol interference (ISI) στ > Tsym → ISI 1 Tsym > 1 στ → ISI 1 Bs > 1 2Bc → ISI Bs > Bc → condición para frequency selective distortion Frequency selective implica ISI. Bs > Bc → Freq. Sel. (dominio de la frecuencia), ISI (dominio del tiempo). Bs < Bc → Flat fading, NO ISI. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 42 / 61
  • 43. Ejemplo: Ancho de banda coherente Considere el outdoor channel στ = 1µs. Compare el ancho de banda de la señal respecto al ancho de banda coherente para los sistemas: (a) GSM, (b) WCDMA. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 43 / 61
  • 44. Ejemplo: Ancho de banda coherente Considere el outdoor channel στ = 1µs. Compare el ancho de banda de la señal respecto al ancho de banda coherente para los sistemas: (a) GSM, (b) WCDMA. Solución: Bc = 1 2στ = 1 2 · 1 × 10−6 = 500kHz (a) GSM System: Bs = 200 kHz. Por tanto: Bs < Bc 200kHz < 500kHz Por lo tanto, GSM es un canal flat-fading y no existe ISI. (b) WCDMA System (3G Spread Sprectrum System): Bs = 5000 kHz Bs >> Bc 5MHz >> 500kHz Por lo tanto, el canal WCDMA es frequency selective fading y existe ISI (necesario ecualizar). Nota: Es necesario emplear alguna técnica en el Rx que pueda revertir esta distorsión en el dominio de la frecuencia. Esta técnica se conoce como ecualización. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 43 / 61
  • 45. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 46. Efecto Doppler Debido al movimiento relativo entre el móvil y la estación base (EB), cada onda multi-trayecto experimenta un aparente cambio (shift) en frecuencia. El cambio en la frecuencia de la señal recibida debido al movimiento es llamado efecto Doppler. El efecto Doppler es directamente proporcional a la velocidad y dirección del movimiento del móvil con respecto a la dirección de arribo de la onda multi-trayecto recibida. Un micrófono inmóvil registra las sirenas de los policías en movimiento en diversos tonos dependiendo de su dirección relativa [Wikipedia]. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 45 / 61
  • 47. Efecto Doppler El efecto Doppler es un cambio en la frecuencia de la onda electromagnética que arriba al receptor debido a un movimiento “relativo” entre el transmisor y el receptor. Considere un móvil moviéndose a una velocidad constante v, a lo largo de un segmento del trayecto que tiene una longitud d entre los puntos X y Y , mientras este recibe señales de una fuente remota S. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 46 / 61
  • 48. Efecto Doppler La diferencia en la longitud del trayecto viajado por la onda de la fuente S al móvil del punto X al Y es ∆l = d cos θ = v∆t cos θ donde ∆t es el tiempo requerido por el móvil para viajar de X a Y , y θ es asumido de tal forma que es igual para los puntos X y Y , ya que se supone que la fuente se encuentra muy lejos. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 47 / 61
  • 49. Efecto Doppler El cambio de fase en la señal recibida debido a la diferencia en la longitud del trayecto es ∆φ = 2π∆l λ = 2πv∆t λ cos θ El aparente cambio en frecuencia, o Doppler shift, es dado por fd = 1 2π · ∆φ ∆t = v λ · cos θ Si el móvil se mueve hacia la dirección de arribo de la onda, el efecto Doppler es positivo, i.e. la frecuencia recibida aparente incrementa, caso contrario es negativo. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 48 / 61
  • 50. Efecto Doppler La frecuencia Doppler puede expresarse como fd = v cos θ c fc donde fc es la frecuencia portadora. 0 ≤ θ ≤ π 2 : Móvil (MS) → BS. π 2 ≤ θ ≤ π: Móvil (MS) ← BS. θ = π 2 → La frecuencia recibida es igual a la frecuencia de la portadora → movimiento perpendicular, no existe cambio de frecuencia. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 49 / 61
  • 51. Ejemplo: Efecto Doppler Considere un transmisor que radia a una frecuencia portadora sinusoidal de 1850 MHz. Para un vehículo moviéndose a 60 mph, calcule la frecuencia recibida si el móvil está moviéndose (a) en dirección hacia el Tx, (b) en dirección contraria al Tx, (c) en una dirección perpendicular a la dirección de arribo de la señal de Tx. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 50 / 61
  • 52. Ejemplo: Efecto Doppler Considere un transmisor que radia a una frecuencia portadora sinusoidal de 1850 MHz. Para un vehículo moviéndose a 60 mph, calcule la frecuencia recibida si el móvil está moviéndose (a) en dirección hacia el Tx, (b) en dirección contraria al Tx, (c) en una dirección perpendicular a la dirección de arribo de la señal de Tx. Solución: Parámetros fc = 1850 MHz, λ = c fc = 3×108 1850×106 = 0.162 Velocidad del vehículo v = 60mph = 26.82 m/s (a) El efecto Doppler en este caso es positivo y la frecuencia en el receptor es f = fc + fd = 1850 × 106 + 26.82 0.162 = 1850.00016MHz (b) El efecto Doppler en este caso es negativo y la frecuencia es f = fc + fd = 1850 × 106 − 26.82 0.162 = 1849.999834 MHz (c) En este caso, θ = 90◦ , cos θ = 0, y no existe efecto Doppler. La frecuencia recibida de la señal es similar a la frecuencia transmitida, i.e. 1850 MHz. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 50 / 61
  • 53. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 54. Canal variante en el tiempo Considere el canal multi-trayecto en banda base: aiδ(t − τi) donde ai y τi representan la atenuación y el retardo del i−ésimo trayecto, respectivamente. Después de un tiempo t, la distancia decrese por vt τi − vt c MS BS El cambio en el retardo respecto al tiempo es: τi(t) = τi − v cos θt c donde τi es el tiempo inicial. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 52 / 61
  • 55. Canal variante en el tiempo Por lo tanto, (Mobility =⇒ Doppler) =⇒ (Time varying channel =⇒ Time Selectivity) El canal variante en el tiempo es también conocido como canal selectivo en tiempo (Time-selective channel). fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 53 / 61
  • 56. Agenda 1 Introducción 2 Propagación por multi-trayecto a pequeña escala 3 Delay Spread 4 Ancho de banda coherente (Coherence BW) 5 Efecto Doppler 6 Canal variante en el tiempo 7 Coherence time
  • 57. Coherence time Coherence time → Tc = 1 4fd Coherence time: Tiempo sobre el cual el canal es aproximadamente constante. Tc = 1 4fd = 1 2Bd Bd = 2fd = Doppler Spread Coherence time = 1 2 × Doppler spread fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 55 / 61
  • 58. Example: Coherence time Considere un móvil que se mueve a 60 mph y se comunica a fc = 1850MHz. Calcule el tiempo coherente. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 56 / 61
  • 59. Example: Coherence time Considere un móvil que se mueve a 60 mph y se comunica a fc = 1850MHz. Calcule el tiempo coherente. Solución: fd = 165 Hz Bd = 2fd = 2 × 165 = 330 Hz → Doppler Spread Tc = 1 2Bd = 1 2 × 330 = 0.00155 = 1.5 ms Tc = 1.5 ms Nota: Esto significa que cuando el móvil se desplaza a 60 millas por hora hacia la BS, aproximadamente, el periodo sobre el cual el canal es constante puede asumirse como 1.5 ms. Después de 1.5 ms el canal cambia a otro diferente. Esto es, al observar el fading coefficient durante 1.5 ms, éste se mantiene aproximadamente constante, y en el siguiente periodo de 1.5 ms este cambia a otro valor diferente. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 56 / 61
  • 60. Coherence time En canales inalámbricos prácticos, el tiempo coherente es Tc ≈ ms. Dos importantes cantidades, “diferente la una de la otra”: Delay spread (µs) Coherence time (ms). El delay spread está relacionado con el intervalo de tiempo sobre el cual la energía de la señal arriba, mientras el coherence time está relacionado con la duración de tiempo sobre la cual el canal es constante. Existe una diferencia fundamental entre estas cantidades y no se encuentran relacionadas entre si. El coherence time está relacionado con el Doppler spread, mientras que el coherence bandwidth está relacionado con el delay spread. Bc (coherence BW), στ (delay spread) Bd (Doppler spread), Tc (coherence tiem) fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 57 / 61
  • 61. Implicaciones del tiempo coherente Para tener conocimiento del canal, es necesario medirlo cada coherence time. y(t) = hx(t) + n(t) ˆx(t) = 1 h y(t) = x(t) → invertir el canal Se necesita conocimiento del canal h para la detección de x(t) El medir o “estimar” h es conocido como “estimación de canal” (channel estimation). ¿Cómo se realiza la estimación en el receptor? A través del uso de entrenamiento o símbolos pilotos Ejemplo, en GSM Entrenamiento 26 símbolos 156 símbolos slot for users fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 58 / 61
  • 62. Fading Desvanecimiento rápido o desvanecimiento lento? Tc > te → desvanecimiento lento, donde te es el tiempo de estimación entre canal. Tc < te → desvanecimiento rápido tiempo de estimación El canal cambió Esto resulta en errores en el receptor fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 59 / 61
  • 63. Comprehensive Picture Slow-Fading Flat - Fading No ISI Slow-Fading Frecuency - Selective ISI Fast-Fading Flat - Fading No ISI Fast-Fading Frequency - Selective ISI Coherence time Delay spread fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 60 / 61
  • 64. References I [Cho et al., 2010] Cho, Y. S., Kim, J., Yang, W. Y., and Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. John Wiley & Sons. [Jagannathan, 2013] Jagannathan (2013). Advanced 3g and 4g wireless mobile communications. [Rappaport et al., 1996] Rappaport, T. S. et al. (1996). Wireless communications: principles and practice, volume 2. Prentice Hall PTR New Jersey. [Seybold, 2005] Seybold, J. S. (2005). Introduction to RF propagation. John Wiley & Sons. [Tomás, 2012] Tomás, L. M. (2012). Comunicaciones móviles. fasandoval@utpl.edu.ec CI CI-Small-Scale Fading and Multipath 61 / 61