CONCEPTO DE DERIVADA:
Algunas sugerencias/preguntas guía para abordar
la actividad
• Abran en DERIVE 6.10 una ventana de álgebra y otra de dibujo
• Ingresen en la pantalla de álgebra f(x) : =-0,5x²+3x-1 (no olviden “:”) y grafíquenla
• El punto P tiene sus coordenadas bien definidas. El punto Q representa un punto
cualquiera sobre la curva, por eso sus coordenadas son (a, f(a))
• ¿Qué significa Q  P, entonces a  1 y f(a)  f(1)?
De los ítem a) y b)
 En el ítem a) la propuesta es encontrar una expresión que les
permita calcular el valores de la pendiente de cualquier recta
secante que pase por los puntos P y Q; esto es definir la función
pendiente de la recta secante. Recuerden que P es fijo y que Q se
mueve hacia P. ¿De quién depende m?
De la misma manera, en el ítem b) les solicitan, que utilicen la
función pendiente de la recta secante para calcular distintos
valores de la misma cuando P tiende a Q
¿Podemos expresar esta situación en términos de límite?
Del ítem c)
En los ítem anteriores definieron la función pendiente de la recta
secante, a la que llamaron “m”. Consideren que P está fijo y Q se
mueve hacia P tomando distintas posiciones, por lo tanto genera
distintas pendientes de rectas secantes.
Ahora, utilizando “m”, deben definir una función ecuación de la
recta secante, a la que llamaremos S, que pase por P y Q. ¿De quién
depende S?
Con esa nueva función, encuentren las ecuaciones de las rectas
secantes cuando Q se acerca a P y grafíquenlas sobre la curva f(x).
De los otros ítem
 Si Q se acerca a P, ¿cuál es la posición límite de las rectas
secantes?¿Cómo expresarían en términos de límite esta
situación?
 Utilicen el programa para comparar los resultados obtenidos
en e) con los de los ítem anteriores.
 Escriban las conclusiones a las que arribaron y compárenlas
con sus compañeros
Exploren con DERIVE 6.10, la pestaña “cálculo”;
elijan la opción “derivadas”, ¿cómo y para qué
utilizarían?

Derivada power

  • 1.
    CONCEPTO DE DERIVADA: Algunassugerencias/preguntas guía para abordar la actividad • Abran en DERIVE 6.10 una ventana de álgebra y otra de dibujo • Ingresen en la pantalla de álgebra f(x) : =-0,5x²+3x-1 (no olviden “:”) y grafíquenla • El punto P tiene sus coordenadas bien definidas. El punto Q representa un punto cualquiera sobre la curva, por eso sus coordenadas son (a, f(a)) • ¿Qué significa Q  P, entonces a  1 y f(a)  f(1)?
  • 2.
    De los ítema) y b)  En el ítem a) la propuesta es encontrar una expresión que les permita calcular el valores de la pendiente de cualquier recta secante que pase por los puntos P y Q; esto es definir la función pendiente de la recta secante. Recuerden que P es fijo y que Q se mueve hacia P. ¿De quién depende m? De la misma manera, en el ítem b) les solicitan, que utilicen la función pendiente de la recta secante para calcular distintos valores de la misma cuando P tiende a Q ¿Podemos expresar esta situación en términos de límite?
  • 3.
    Del ítem c) Enlos ítem anteriores definieron la función pendiente de la recta secante, a la que llamaron “m”. Consideren que P está fijo y Q se mueve hacia P tomando distintas posiciones, por lo tanto genera distintas pendientes de rectas secantes. Ahora, utilizando “m”, deben definir una función ecuación de la recta secante, a la que llamaremos S, que pase por P y Q. ¿De quién depende S? Con esa nueva función, encuentren las ecuaciones de las rectas secantes cuando Q se acerca a P y grafíquenlas sobre la curva f(x).
  • 4.
    De los otrosítem  Si Q se acerca a P, ¿cuál es la posición límite de las rectas secantes?¿Cómo expresarían en términos de límite esta situación?  Utilicen el programa para comparar los resultados obtenidos en e) con los de los ítem anteriores.  Escriban las conclusiones a las que arribaron y compárenlas con sus compañeros Exploren con DERIVE 6.10, la pestaña “cálculo”; elijan la opción “derivadas”, ¿cómo y para qué utilizarían?