Ejercicios de derivadas e integrales




Este material puede descargarse desde http://www.uv.es/~montes/biologia/matcero.pdf

Departament d’Estad´ ıstica i Investigaci´ Operativa
                                         o
Universitat de Val`ncia
                  e
Derivadas

Reglas de derivaci´n
                  o

                        d
  Suma                    [f (x) + g(x)] = f (x) + g (x)
                       dx


                        d
                          [kf (x)] = kf (x)
                       dx
  Producto
                        d
                          [f (x)g(x)] = f (x)g(x) + f (x)g (x)
                       dx


                        d f (x)   f (x)g(x) − f (x)g (x)
  Cociente                      =
                       dx g(x)            g(x)2


                        d
                          {f [g(x)]} = f [g(x)]g (x)
                       dx
  Regla de la cadena
                        d
                          {f (g[h(x)])} = f (g[h(x)])g [h(x)]h (x)
                       dx


                        d k                                 d
                          (x ) = kxk−1                        [f (x)k ] = kf (x)k−1 f (x)
                       dx                                  dx
                        d √       d 1/2    1                d                 f (x)
  Potencia                ( x) =    (x ) = √                  [   f (x)] =
                       dx        dx       2 x              dx                2 f (x)

                        d   1        d −1       1           d   1      f (x)
                                =      (x ) = − 2                   =−
                       dx   x       dx         x           dx f (x)    f (x)2
2



Reglas de derivaci´n (continuaci´n)
                  o             o


                         d                           d
                           (sin x) = cos x             [sin f (x)] = cos f (x)f (x)
                        dx                          dx
                         d                           d
    Trigonom´tricas
            e              (cos x) = − sin x           [cos f (x)] = − sin f (x)f (x)
                        dx                          dx
                         d                           d
                           (tan x) = 1 + tan2 x        [tan f (x)] = [1 + tan2 f (x)]f (x)
                        dx                          dx


                         d                  1        d                       f (x)
                           (arcsin x) = √              [arcsin f (x)] =
                        dx                1 − x2    dx                      1 − f (x)2

                         d                  −1       d                      −f (x)
    Funciones de arco      (arc cos x) = √             [arc cos f (x)] =
                        dx                 1 − x2   dx                      1 − f (x)2

                         d                 1         d                    f (x)
                           (arctan x) =                [arctan f (x)] =
                        dx              1 + x2      dx                  1 + f (x)2


                         d x                         d f (x)
                           (e ) = ex                   (e    ) = ef (x) f (x)
                        dx                          dx
    Exponenciales
                         d x                         d f (x)
                           (a ) = ax ln a              (a    ) = af (x) ln af (x)
                        dx                          dx


                         d          1                d              f (x)
                           (ln x) =                    (ln f (x)) =
                        dx          x               dx              f (x)
    Logar´
         ıtmicas
                         d          1 1              d              f (x) 1
                           (lg x) =                    (lg f (x)) =
                        dx a        x ln a          dx a            f (x) ln a
3



Ejercicios de derivadas
  1. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´
                                     a                                                    ıneas
     tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gr´fica y representar
                                                                           a
     las l´
          ıneas tangentes.
     Soluci´n.- a) 3/4, b) 3.
           o
  2. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´
                                     a                                                    ıneas
     tangentes a la curva y = 1/x cuando x = 1/2 y x = 1, construir la gr´fica y representar
                                                                           a
     las l´
          ıneas tangentes.
     Soluci´n.- a) -4, b) -1.
           o
  3. Hallar la derivada de la funci´n y = x4 + 3x2 − 6.
                                   o
     Soluci´n.- y = 4x3 + 6x.
           o
  4. Hallar la derivada de la funci´n y = 6x3 − x2 .
                                   o
     Soluci´n.- y = 18x2 − 2x.
           o
                                                             x5              x2
  5. Hallar la derivada de la funci´n y =
                                   o                        a+b         −   a−b .
                       5x4         2x
     Soluci´n.- y =
           o           a+b    −   a−b .

                                                            x3 −x2 +1
  6. Hallar la derivada de la funci´n y =
                                   o                            5     .
                       3x2 −2x
     Soluci´n.- y =
           o              5    .
                                                                                x2
  7. Hallar la derivada de la funci´n y = 2ax3 −
                                   o                                             b      + c.
                             2        2x
     Soluci´n.- y = 6ax −
           o                           b .
                                                                7                   5
  8. Hallar la derivada de la funci´n y = 6x 2 + 4x 2 + 2x.
                                   o
                              5              3
     Soluci´n.- y = 21x 2 + 10x 2 + 2.
           o
                                                            √                   √       1
  9. Hallar la derivada de la funci´n y =
                                   o                            3x +            3
                                                                                    x + x.
                        √
                          3            1             1
     Soluci´n.- y =
           o            √
                       2 x
                              +       √
                                      3 2    −       x2 .
                                  3     x

                                                            (x+1)3
 10. Hallar la derivada de la funci´n y =
                                   o                                3       .
                                                              x2
                       3(x+1)2 (x−1)
     Soluci´n.- y =
           o                      5          .
                              2x 2
                                                            √
                                                            3         √
 11. Hallar la derivada de la funci´n y =
                                   o                            x2 − 2 x + 5.
                         1
                       2 √             1
     Soluci´n.- y =
           o           3 3x       −   √ .
                                        x
                                                                                            √
                                                                                            3
                                                            ax2              b              √x .
 12. Hallar la derivada de la funci´n y =
                                   o                        √3
                                                               x
                                                                        +    √
                                                                            x x
                                                                                        −     x
                              2                  5              7
     Soluci´n.- y = 5 ax 3 − 2 bx− 2 + 1 x− 6 .
           o        3
                             3
                                       6

 13. Hallar la derivada de la funci´n y = (1 + 4x3 )(1 + 2x2 ).
                                   o
     Soluci´n.- y = 4x(1 + 3x + 10x3 ).
           o
 14. Hallar la derivada de la funci´n y = x(2x − 1)(3x + 2).
                                   o
     Soluci´n.- y = 2(9x2 + x − 1).
           o
4



    15. Hallar la derivada de la funci´n y = (2x − 1)(x2 − 6x + 3).
                                      o
        Soluci´n.- y = 6x2 − 26x + 12.
              o
                                                  2x4
    16. Hallar la derivada de la funci´n y =
                                      o          b2 −x2 .
                          4x3 (2b2 −x2 )
        Soluci´n.- y =
              o            (b2 −x2 )2 .

                                                 a−x
    17. Hallar la derivada de la funci´n y =
                                      o          a+x .
                           2a
        Soluci´n.- y = − (a+x)2 .
              o

                                                       t3
    18. Hallar la derivada de la funci´n f (t) =
                                      o               1+t2 .
                              t2 (3+t2
        Soluci´n.- f (t) =
              o               (1+t2 )2 .

                                                      (s+4)2
    19. Hallar la derivada de la funci´n f (s) =
                                      o                 s+3 .
                               (s+2)(s+4)
        Soluci´n.- f (s) =
              o                  (s+3)2 .

                                                  x3 +1
    20. Hallar la derivada de la funci´n y =
                                      o          x2 −x−2 .
                          x4 −2x3 −6x2 −2x+1
        Soluci´n.- y =
              o               (x2 −x−2)2     .

    21. Hallar la derivada de la funci´n y = (2x2 − 3)2 .
                                      o
        Soluci´n.- y = 8x(2x2 − 3).
              o

    22. Hallar la derivada de la funci´n y = (x2 + a2 )5 .
                                      o
        Soluci´n.- y = 10x(x2 + a2 )4 .
              o
                                                 √
    23. Hallar la derivada de la funci´n y =
                                      o              x2 + a2 .
        Soluci´n.- y =
              o           √ x     .
                           x2 +a2
                                                    √
    24. Hallar la derivada de la funci´n y = (a + x) a − x.
                                      o
                           a−3x
        Soluci´n.- y =
              o            √
                          2 a−x
                                .

                                                     1+x
    25. Hallar la derivada de la funci´n y =
                                      o              1−x .
                               1
        Soluci´n.- y =
              o                √
                          (1−x) 1−x2
                                     .

                                                  2x2 −1
    26. Hallar la derivada de la funci´n y =
                                      o           √
                                                 x 1+x2
                                                         .
                              1+4x2
        Soluci´n.- y =
              o                      3   .
                          x2 (1+x2 ) 2
                                                 √
                                                 3
    27. Hallar la derivada de la funci´n y =
                                      o              x2 + x + 1.
                                2x+1
        Soluci´n.- y = √
              o        3
                                          .
                          3    (x2 +x+1)2
                                                         √
    28. Hallar la derivada de la funci´n y = (1 +
                                      o                  3
                                                             x)3 .
                                         2
                                   1
        Soluci´n.- y = 1 +
              o                   √
                                  3
                                    x
                                             .
5



29. Hallar la derivada de la funci´n y = sin2 x.
                                  o
    Soluci´n.- y = sin 2x.
          o

30. Hallar la derivada de la funci´n y = 2 sin x + cos 3x.
                                  o
    Soluci´n.- y = 2 cos x − 3 sin 3x.
          o

31. Hallar la derivada de la funci´n y = tan(ax + b).
                                  o
                            a
    Soluci´n.- y =
          o           cos2 (ax+b) .

                                             sin x
32. Hallar la derivada de la funci´n y =
                                  o         1+cos x .
                        1
    Soluci´n.- y =
          o           1+cos x .

33. Hallar la derivada de la funci´n y = sin 2x cos 3x.
                                  o
    Soluci´n.- y = 2 cos 2x cos 3x − 3 sin 2x sin 3x.
          o

34. Hallar la derivada de la funci´n y = cot2 5x.
                                  o
    Soluci´n.- y = −10 cot 5x csc2 5x.
          o

35. Hallar la derivada de la funci´n f (t) = t sin t + cos t.
                                  o
    Soluci´n.- f (t) = t cos t.
          o

36. Hallar la derivada de la funci´n f (t) = sin3 t cos t.
                                  o
    Soluci´n.- f (t) = sin2 t(3 cos2 t − sin2 t).
           o
                                            √
37. Hallar la derivada de la funci´n y = a cos 2x.
                                  o
    Soluci´n.- y = − √sin 2x .
          o          a
                       cos 2x

                                            1
38. Hallar la derivada de la funci´n y =
                                  o         2   tan2 x.
    Soluci´n.- y = tan x sec2 x.
          o

39. Hallar la derivada de la funci´n y = ln cos x.
                                  o
    Soluci´n.- y = − tan x.
          o

40. Hallar la derivada de la funci´n y = ln tan x.
                                  o
                         2
    Soluci´n.- y =
          o           sin 2x .

41. Hallar la derivada de la funci´n y = ln sin2 x.
                                  o
    Soluci´n.- y = 2 cot x.
          o
                                            tan x−1
42. Hallar la derivada de la funci´n y =
                                  o           sec x .
    Soluci´n.- y = sin x + cos x.
          o
                                                   1+sin x
43. Hallar la derivada de la funci´n y = ln
                                  o                1−sin x .
                        1
    Soluci´n.- y =
          o           cos x .

44. Hallar la derivada de la funci´n f (x) = sin(ln x).
                                  o
                          cos(ln x)
    Soluci´n.- f (x) =
          o                   x     .
6



    45. Hallar la derivada de la funci´n f (x) = tan(ln x).
                                      o
                               sec2 (ln x)
        Soluci´n.- f (x) =
              o                     x      .

    46. Hallar la derivada de la funci´n f (x) = sin(cos x).
                                      o
        Soluci´n.- f (x) = − sin x cos(cos x).
              o
                                                1+x
    47. Hallar la derivada de la funci´n y = ln 1−x .
                                      o
                            2
        Soluci´n.- y =
              o           1−x2 .

    48. Hallar la derivada de la funci´n y = log3 (x2 − sin x).
                                      o
                            2x−cos x
        Soluci´n.- y =
              o           (x2 −sin x) ln 3 .

                                                               2
                                                1+x
    49. Hallar la derivada de la funci´n y = ln 1−x2 .
                                      o
                           4x
        Soluci´n.- y =
              o           1−x4 .

    50. Hallar la derivada de la funci´n y = ln(x2 + x).
                                      o
                          2x+1
        Soluci´n.- y =
              o           x2 +x .

    51. Hallar la derivada de la funci´n y = ln(x3 − 2x + 5).
                                      o
                           3x2 −2
        Soluci´n.- y =
              o           x3 −2x+5 .

    52. Hallar la derivada de la funci´n y = x ln x.
                                      o
        Soluci´n.- y = ln x + 1.
              o

    53. Hallar la derivada de la funci´n y = ln3 x.
                                      o
                          3 ln2 x
        Soluci´n.- y =
              o              x .
                                                                   √
    54. Hallar la derivada de la funci´n y = ln(x +
                                      o                                 1 + x2 ).
        Soluci´n.- y =
              o           √ 1   .
                           1+x2

    55. Hallar la derivada de la funci´n y = ln(ln x).
                                      o
                             1
        Soluci´n.- y =
              o           x ln x .

    56. Hallar la derivada de la funci´n y = e(4x+5) .
                                      o
        Soluci´n.- y = 4e(4x+5) .
              o
                                                         2
    57. Hallar la derivada de la funci´n y = ax .
                                      o
                                2
        Soluci´n.- y = 2xax ln a.
              o
                                                         2
    58. Hallar la derivada de la funci´n y = 7(x
                                      o                      +2x)
                                                                    .
                                          2
                                       (x +2x)
        Soluci´n.- y = 2(x + 1)7
              o                                  ln 7.

    59. Hallar la derivada de la funci´n y = ex (1 − x2 ).
                                      o
        Soluci´n.- y = ex (1 − 2x − x2 ).
              o
                                                     ex −1
    60. Hallar la derivada de la funci´n y =
                                      o              ex +1 .
                            2ex
        Soluci´n.- y =
              o           (ex +1)2 .
7



61. Hallar la derivada de la funci´n y = esin x .
                                  o
    Soluci´n.- y = esin x cos x.
          o
62. Hallar la derivada de la funci´n y = atan nx .
                                  o
    Soluci´n.- y = natan nx sec2 nx ln a.
          o
63. Hallar la derivada de la funci´n y = ecos x sin x.
                                  o
    Soluci´n.- y = ecos x (cos x − sin2 x).
          o
64. Hallar la derivada de la funci´n y = ex ln(sin x).
                                  o
    Soluci´n.- y = ex (cot x + ln(sin x)).
          o
                                              1
65. Hallar la derivada de la funci´n y = x x .
                                  o
                        1   1−ln x
    Soluci´n.- y = x x
          o                   x2     .
66. Hallar la derivada de la funci´n y = xln x .
                                  o
    Soluci´n.- y = xln x−1 ln x2 .
          o
67. Hallar la derivada de la funci´n y = xx .
                                  o
    Soluci´n.- y = xx (1 + ln x).
          o
                                              x
68. Hallar la derivada de la funci´n y = ex .
                                  o
                        x
    Soluci´n.- y = ex (1 + ln x)xx .
          o
8
Integrales

Tabla de integrales inmediatas


                xp+1                                      f (x)p+1
      xp dx =        +C     (p = −1)   f (x)p f (x)dx =            +C      (p = −1)
                p+1                                         p+1


      1                                f (x)
        dx = ln |x| + C                      dx = ln |f (x)| + C
      x                                f (x)



      sin xdx = − cos x + C            f (x) sin f (x)dx = − cos f (x) + C



      cos xdx = sin x + C              f (x) cos f (x)dx = sin f (x) + C



        1                                f (x)
             dx = tan x + C                       dx = tan f (x) + C
      cos2 x                           cos2 f (x)


         1                               f (x)
             dx = − cot x + C                     dx = − cot f (x) + C
      sin2 x                           sin2 f (x)


         1                               f (x)
             dx = arctan x + C                    dx = arctan f (x) + C
      1 + x2                           1 + f (x)2


            1                             f (x)
      √          dx = arcsin x + C                    dx = arcsin f (x) + C
          1 − x2                         1 − f (x)2
10



Tabla de integrales inmediatas (continuaci´n)
                                          o


                       −1                                 −f (x)
                  √          dx = arc cos x + C                        dx = arc cos f (x) + C
                      1 − x2                              1 − f (x)2



                  ex dx = ex + C                        f (x)ef (x) dx = ef (x) + C



                             ax                                            af (x)
                  ax dx =        +C                     f (x)af (x) dx =          +C
                            ln a                                            ln a




Ejercicios de integrales indefinidas
     1. Calcular la integral    x5 dx.
                      x6
        Soluci´n.-
              o          + C.
                      6
                                   √
     2. Calcular la integral (x + x)dx.
                              √
                     x2   2x x
        Soluci´n.-
              o         +       + C.
                     2        3
                                      √
                                 3   x x
     3. Calcular la integral    √ −               dx.
                                  x   4
                      √       1 √
        Soluci´n.- 6 x − x2 x + C.
              o
                             10
                                x2
     4. Calcular la integral    √ dx.
                                 x
                      2 2√
        Soluci´n.-
              o         x x + C.
                      5
                                   1    4
     5. Calcular la integral          + √ + 2 dx.
                                   x2  x x
                       1    8
        Soluci´n.- −
              o          − √ + 2x + C.
                       x     x
                                 1
     6. Calcular la integral    √ dx.
                                4
                                  x
                      4√ 3
                        4
        Soluci´n.-
              o           x + C.
                      3
11



 7. Calcular la integral e5x dx.
                 1
    Soluci´n.- e5x + C.
          o
                 5
 8. Calcular la integral   cos 5xdx.
                 sin 5x
    Soluci´n.-
          o             + C.
                    5
 9. Calcular la integral sin axdx.
                   cos ax
    Soluci´n.- −
          o               + C.
                     a
                           ln x
10. Calcular la integral        dx.
                            x
                 1 2
    Soluci´n.-
          o        ln x + C.
                 2
                              1
11. Calcular la integral           dx.
                           sin2 3x
                   cot 3x
    Soluci´n.- −
          o               + C.
                     3
                              1
12. Calcular la integral           dx.
                           cos2 7x
                 tan 7x
    Soluci´n.-
          o             + C.
                   7
                             1
13. Calcular la integral          dx.
                           3x − 7
                 1
    Soluci´n.-
          o        ln |3x − 7| + C.
                 3
                            1
14. Calcular la integral       dx.
                          1−x
    Soluci´n.- − ln |1 − x| + C.
          o
                              1
15. Calcular la integral          dx.
                           5 − 2x
                1
    Soluci´n.- − ln |5 − 2x| + C.
          o
                2
16. Calcular la integral   tan 2xdx.
                1
    Soluci´n.- − ln | cos 2x| + C.
          o
                2
17. Calcular la integral   sin2 x cos xdx.
                 sin3 x
    Soluci´n.-
          o             + C.
                    3
18. Calcular la integral   cos3 x sin xdx.
                   cos4 x
    Soluci´n.- −
          o               + C.
                     4
12


                              √
 19. Calcular la integral    x x2 + 1dx.
                  1
     Soluci´n.-
           o           (x2 + 1)3 + C.
                  3
                                     x
 20. Calcular la integral     √            dx.
                                   2x2 + 3
                  1
     Soluci´n.-
           o           2x2 + 3 + C.
                  2
                              cos x
 21. Calcular la integral            dx.
                              sin2 x
                        1
     Soluci´n.- −
           o                + C.
                      sin x
                               sin x
 22. Calcular la integral            dx.
                              cos3 x
                     1
     Soluci´n.-
           o               + C.
                  2 cos2 x
                              tan x
 23. Calcular la integral            dx.
                              cos2 x
                  tan2 x
     Soluci´n.-
           o             + C.
                    2
                              cot x
 24. Calcular la integral            dx.
                              sin2 x
                      cot2 x
     Soluci´n.- −
           o                 + C.
                        2
                              ln(x + 1)
 25. Calcular la integral               dx.
                                x+1
                  ln2 (x + 1)
     Soluci´n.-
           o                  + C.
                       2
                                 cos x
 26. Calcular la integral √                dx.
                               2 sin x + 1
                  √
     Soluci´n.- 2 sin x + 1 + C.
           o
                                  sin 2x
 27. Calcular la integral                   dx.
                              (1 + cos 2x)2
                        1
     Soluci´n.-
           o                    + C.
                  2(1 + cos 2x)
                                    sin 2x
 28. Calcular la integral                       dx.
                                   1 + sin2 x
     Soluci´n.- 2 1 + sin2 x + C.
           o
                            √
                              tan x + 1
 29. Calcular la integral               dx.
                               cos2 x
                  2
     Soluci´n.-
           o         (tan x + 1)3 + C.
                  3
13



                             ln2 x
30. Calcular la integral           dx.
                               x
                 ln3 x
    Soluci´n.-
          o            + C.
                   3
                             arcsin x
31. Calcular la integral     √        dx.
                               1 − x2
                 arcsin2 x
    Soluci´n.-
          o                + C.
                     2
                             x
32. Calcular la integral          dx.
                           x2 + 1
                 1
    Soluci´n.- ln(x2 + 1) + C.
          o
                 2
                                x+1
33. Calcular la integral                 dx.
                             x2 + 2x + 3
                 1
    Soluci´n.-
          o        ln(x2 + 2x + 3) + C.
                 2
34. Calcular la integral e2x dx.
                 1
    Soluci´n.- e2x + C.
          o
                 2
                              x
35. Calcular la integral   e 2 dx.
                   x
    Soluci´n.- 2e 2 + C.
          o

36. Calcular la integral   esin x cos xdx.
    Soluci´n.- esin x + C.
          o

37. Calcular la integral   3x ex dx.
                   3x e x
    Soluci´n.-
          o               + C.
                 ln 3 + 1
38. Calcular la integral e−3x dx.
                   1
    Soluci´n.- − e−3x + C.
          o
                   3
                               2
39. Calcular la integral ex +4x+3 (x + 2)dx.
                 1 2
    Soluci´n.- ex +4x+3 + C.
          o
                 2
                          1
40. Calcular la integral       dx.
                       1 + 2x2
                1       √
    Soluci´n.- √ arctan( 2x) + C.
          o
                 2
                           1
41. Calcular la integral     √   dx.
                         1 − 3x2
                1       √
    Soluci´n.- √ arcsin( 3x) + C.
          o
                 3
14


                                  1
 42. Calcular la integral   √          dx.
                                9 − x2
                         x
     Soluci´n.- arcsin
           o               + C.
                         3
                          1
 43. Calcular la integral     dx.
                       4 + x2
               1      x
     Soluci´n.- arctan + C.
           o
               2      2
15



Integraci´n por partes
         o
   Recordemos la f´rmula de la deriva del producto de funciones
                  o
                            d
                              [u(x)v(x)] = u (x)v(x) + u(x)v (x),
                           dx
que expresada bajo forma de diferencial da lugar a
                           d[u(x)v(x)] = d[u(x)]v(x) + u(x)d[v(x)].
De donde se obtiene,
                           u(x)d[v(x)] = d[u(x)v(x)] − v(x)d[u(x)].
Integrando ahora ambos miembros tendremos

                            u(x)d[v(x)] = u(x)v(x) −        v(x)d[u(x)],

que se escribe tambi´n en forma abreviada,
                    e

                                        udv = uv −        vdu.                               (1)

Esta expresi´n es conocida como la f´rmula de la integraci´n por partes y es de gran utilidad
            o                         o                     o
para la resoluci´n de integrales. Se aplica a la resoluci´n de las integrales udv a partir de
                o                                        o
la integral vdu que se supone m´s sencilla. La aplicaci´n de (1) exige primero identificar
                                    a                      o
adecuadamente en el integrando las funciones u(x) y v(x). Veamos un ejemplo
Ejemplo 1 Si queremos calcular la integral

                                             x3 ln xdx,

observemos que la integral de x3 es inmediata y que la derivada de ln x es tambi´n muy sencilla.
                                                                                e
As´ si asignamos
  ı,
                                   u = ln x y dv = x3 dx,
tendremos
                                        dx             x4
                                 du =        y    v=      + C1 ,
                                        x              4
si integramos ahora
                                                  x4
                       x3 ln xdx =       ln x d      + C1
                                                  4

                                         x4                      x4        dx
                                  =         + C1 ln x −             + C1
                                         4                       4         x

                                         x4                      x3   C1
                                  =         + C1 ln x −             +      dx
                                         4                       4    x

                                      x4        x4
                                  =      ln x −    + C.
                                       4        16
Observemos que la primera constante de integraci´n C1 se cancela de la respuesta final (C1 ln x−
                                                o
C1 ln x). Este es siempre el caso cuando integramos por partes, por ello, en la pr´ctica, nunca
                                                                                  a
incluimos una constante de integraci´n en v(x), simplemente tomaremos para v(x) cualquier
                                     o
primitiva de dv(x).
16



Algunos tipos de integrales que se resuelven por partes


        xn ex dx      u = xn              dv = ex dx     xn sin xdx   u = xn     dv = sin xdx


        xn cos xdx    u = xn              dv = cos xdx   xn ln xdx    u = ln x   dv = xn dx


        arctan xdx u = arctan x           dv = dx        arcsin xdx u = arcsin x dv = dx


        ln xdx        u = ln x            dv = dx



Ejercicios de integraci´n por partes
                       o
     1. Calcular la integral     xex dx.
        Soluci´n.- xex − ex + C.
              o

     2. Calcular la integral     ln xdx.
        Soluci´n.- x ln x − x + C.
              o
     3. Calcular la integral     x2 e3x dx.
                           x2   2x   2
        Soluci´n.- e3x
              o               −    +            + C.
                           3     9   27
     4. Calcular la integral     x3 e−x dx.
        Soluci´n.- −e−x x3 + 3x2 + 6x + 6 + C.
              o

     5. Calcular la integral     x sin xdx.
        Soluci´n.- −x cos x + sin x + C.
              o
     6. Calcular la integral     x2 cos 2xdx.
                     x2 sin 2x x cos 2x 1
        Soluci´n.-
              o               +        − sin 2x + C.
                         2        2     4
     7. Calcular la integral ex sin xdx.
                     −ex cos x + ex sin x
        Soluci´n.-
              o                           + C.
                              2
                                      3
     8. Calcular la integral     x5 ex dx.
                       3
                     ex
        Soluci´n.-
              o         (x3 − 1) + C.
                      3
17



Ejercicios de integrales definidas y c´lculo de ´reas
                                     a         a
                                   1
 1. Calcular la integral definida   0
                                       x4 dx.
                 1
    Soluci´n.- .
          o
                 5
                                   1 x
 2. Calcular la integral definida   0
                                     e dx.
   Soluci´n.- e − 1.
         o
                                   π
 3. Calcular la integral definida   2
                                   0
                                       sin xdx.
   Soluci´n.- 1.
         o
                                   1      1
 4. Calcular la integral definida   0
                                              dx.
                                       1 + x2
                π
   Soluci´n.-
         o        .
                4
 5. Hallar el ´rea de la figura comprendida entre la curva y = 4 − x2 y el eje X.
              a
                   2
    Soluci´n.- 10 .
           o
                   3
 6. Hallar el ´rea de la figura comprendida entre las curvas y 2 = 9x e y = 3x.
              a
                 1
    Soluci´n.- .
           o
                 2
 7. Hallar el ´rea de la figura limitada por la hip´rbola equil´tera xy = a2 , el eje X y las
              a                                   e           a
    rectas x = a y x = 2a.
   Soluci´n.- a2 ln 2.
         o

Ejercicios resueltos de derivadas

  • 1.
    Ejercicios de derivadase integrales Este material puede descargarse desde http://www.uv.es/~montes/biologia/matcero.pdf Departament d’Estad´ ıstica i Investigaci´ Operativa o Universitat de Val`ncia e
  • 3.
    Derivadas Reglas de derivaci´n o d Suma [f (x) + g(x)] = f (x) + g (x) dx d [kf (x)] = kf (x) dx Producto d [f (x)g(x)] = f (x)g(x) + f (x)g (x) dx d f (x) f (x)g(x) − f (x)g (x) Cociente = dx g(x) g(x)2 d {f [g(x)]} = f [g(x)]g (x) dx Regla de la cadena d {f (g[h(x)])} = f (g[h(x)])g [h(x)]h (x) dx d k d (x ) = kxk−1 [f (x)k ] = kf (x)k−1 f (x) dx dx d √ d 1/2 1 d f (x) Potencia ( x) = (x ) = √ [ f (x)] = dx dx 2 x dx 2 f (x) d 1 d −1 1 d 1 f (x) = (x ) = − 2 =− dx x dx x dx f (x) f (x)2
  • 4.
    2 Reglas de derivaci´n(continuaci´n) o o d d (sin x) = cos x [sin f (x)] = cos f (x)f (x) dx dx d d Trigonom´tricas e (cos x) = − sin x [cos f (x)] = − sin f (x)f (x) dx dx d d (tan x) = 1 + tan2 x [tan f (x)] = [1 + tan2 f (x)]f (x) dx dx d 1 d f (x) (arcsin x) = √ [arcsin f (x)] = dx 1 − x2 dx 1 − f (x)2 d −1 d −f (x) Funciones de arco (arc cos x) = √ [arc cos f (x)] = dx 1 − x2 dx 1 − f (x)2 d 1 d f (x) (arctan x) = [arctan f (x)] = dx 1 + x2 dx 1 + f (x)2 d x d f (x) (e ) = ex (e ) = ef (x) f (x) dx dx Exponenciales d x d f (x) (a ) = ax ln a (a ) = af (x) ln af (x) dx dx d 1 d f (x) (ln x) = (ln f (x)) = dx x dx f (x) Logar´ ıtmicas d 1 1 d f (x) 1 (lg x) = (lg f (x)) = dx a x ln a dx a f (x) ln a
  • 5.
    3 Ejercicios de derivadas 1. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´ a ıneas tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gr´fica y representar a las l´ ıneas tangentes. Soluci´n.- a) 3/4, b) 3. o 2. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´ a ıneas tangentes a la curva y = 1/x cuando x = 1/2 y x = 1, construir la gr´fica y representar a las l´ ıneas tangentes. Soluci´n.- a) -4, b) -1. o 3. Hallar la derivada de la funci´n y = x4 + 3x2 − 6. o Soluci´n.- y = 4x3 + 6x. o 4. Hallar la derivada de la funci´n y = 6x3 − x2 . o Soluci´n.- y = 18x2 − 2x. o x5 x2 5. Hallar la derivada de la funci´n y = o a+b − a−b . 5x4 2x Soluci´n.- y = o a+b − a−b . x3 −x2 +1 6. Hallar la derivada de la funci´n y = o 5 . 3x2 −2x Soluci´n.- y = o 5 . x2 7. Hallar la derivada de la funci´n y = 2ax3 − o b + c. 2 2x Soluci´n.- y = 6ax − o b . 7 5 8. Hallar la derivada de la funci´n y = 6x 2 + 4x 2 + 2x. o 5 3 Soluci´n.- y = 21x 2 + 10x 2 + 2. o √ √ 1 9. Hallar la derivada de la funci´n y = o 3x + 3 x + x. √ 3 1 1 Soluci´n.- y = o √ 2 x + √ 3 2 − x2 . 3 x (x+1)3 10. Hallar la derivada de la funci´n y = o 3 . x2 3(x+1)2 (x−1) Soluci´n.- y = o 5 . 2x 2 √ 3 √ 11. Hallar la derivada de la funci´n y = o x2 − 2 x + 5. 1 2 √ 1 Soluci´n.- y = o 3 3x − √ . x √ 3 ax2 b √x . 12. Hallar la derivada de la funci´n y = o √3 x + √ x x − x 2 5 7 Soluci´n.- y = 5 ax 3 − 2 bx− 2 + 1 x− 6 . o 3 3 6 13. Hallar la derivada de la funci´n y = (1 + 4x3 )(1 + 2x2 ). o Soluci´n.- y = 4x(1 + 3x + 10x3 ). o 14. Hallar la derivada de la funci´n y = x(2x − 1)(3x + 2). o Soluci´n.- y = 2(9x2 + x − 1). o
  • 6.
    4 15. Hallar la derivada de la funci´n y = (2x − 1)(x2 − 6x + 3). o Soluci´n.- y = 6x2 − 26x + 12. o 2x4 16. Hallar la derivada de la funci´n y = o b2 −x2 . 4x3 (2b2 −x2 ) Soluci´n.- y = o (b2 −x2 )2 . a−x 17. Hallar la derivada de la funci´n y = o a+x . 2a Soluci´n.- y = − (a+x)2 . o t3 18. Hallar la derivada de la funci´n f (t) = o 1+t2 . t2 (3+t2 Soluci´n.- f (t) = o (1+t2 )2 . (s+4)2 19. Hallar la derivada de la funci´n f (s) = o s+3 . (s+2)(s+4) Soluci´n.- f (s) = o (s+3)2 . x3 +1 20. Hallar la derivada de la funci´n y = o x2 −x−2 . x4 −2x3 −6x2 −2x+1 Soluci´n.- y = o (x2 −x−2)2 . 21. Hallar la derivada de la funci´n y = (2x2 − 3)2 . o Soluci´n.- y = 8x(2x2 − 3). o 22. Hallar la derivada de la funci´n y = (x2 + a2 )5 . o Soluci´n.- y = 10x(x2 + a2 )4 . o √ 23. Hallar la derivada de la funci´n y = o x2 + a2 . Soluci´n.- y = o √ x . x2 +a2 √ 24. Hallar la derivada de la funci´n y = (a + x) a − x. o a−3x Soluci´n.- y = o √ 2 a−x . 1+x 25. Hallar la derivada de la funci´n y = o 1−x . 1 Soluci´n.- y = o √ (1−x) 1−x2 . 2x2 −1 26. Hallar la derivada de la funci´n y = o √ x 1+x2 . 1+4x2 Soluci´n.- y = o 3 . x2 (1+x2 ) 2 √ 3 27. Hallar la derivada de la funci´n y = o x2 + x + 1. 2x+1 Soluci´n.- y = √ o 3 . 3 (x2 +x+1)2 √ 28. Hallar la derivada de la funci´n y = (1 + o 3 x)3 . 2 1 Soluci´n.- y = 1 + o √ 3 x .
  • 7.
    5 29. Hallar laderivada de la funci´n y = sin2 x. o Soluci´n.- y = sin 2x. o 30. Hallar la derivada de la funci´n y = 2 sin x + cos 3x. o Soluci´n.- y = 2 cos x − 3 sin 3x. o 31. Hallar la derivada de la funci´n y = tan(ax + b). o a Soluci´n.- y = o cos2 (ax+b) . sin x 32. Hallar la derivada de la funci´n y = o 1+cos x . 1 Soluci´n.- y = o 1+cos x . 33. Hallar la derivada de la funci´n y = sin 2x cos 3x. o Soluci´n.- y = 2 cos 2x cos 3x − 3 sin 2x sin 3x. o 34. Hallar la derivada de la funci´n y = cot2 5x. o Soluci´n.- y = −10 cot 5x csc2 5x. o 35. Hallar la derivada de la funci´n f (t) = t sin t + cos t. o Soluci´n.- f (t) = t cos t. o 36. Hallar la derivada de la funci´n f (t) = sin3 t cos t. o Soluci´n.- f (t) = sin2 t(3 cos2 t − sin2 t). o √ 37. Hallar la derivada de la funci´n y = a cos 2x. o Soluci´n.- y = − √sin 2x . o a cos 2x 1 38. Hallar la derivada de la funci´n y = o 2 tan2 x. Soluci´n.- y = tan x sec2 x. o 39. Hallar la derivada de la funci´n y = ln cos x. o Soluci´n.- y = − tan x. o 40. Hallar la derivada de la funci´n y = ln tan x. o 2 Soluci´n.- y = o sin 2x . 41. Hallar la derivada de la funci´n y = ln sin2 x. o Soluci´n.- y = 2 cot x. o tan x−1 42. Hallar la derivada de la funci´n y = o sec x . Soluci´n.- y = sin x + cos x. o 1+sin x 43. Hallar la derivada de la funci´n y = ln o 1−sin x . 1 Soluci´n.- y = o cos x . 44. Hallar la derivada de la funci´n f (x) = sin(ln x). o cos(ln x) Soluci´n.- f (x) = o x .
  • 8.
    6 45. Hallar la derivada de la funci´n f (x) = tan(ln x). o sec2 (ln x) Soluci´n.- f (x) = o x . 46. Hallar la derivada de la funci´n f (x) = sin(cos x). o Soluci´n.- f (x) = − sin x cos(cos x). o 1+x 47. Hallar la derivada de la funci´n y = ln 1−x . o 2 Soluci´n.- y = o 1−x2 . 48. Hallar la derivada de la funci´n y = log3 (x2 − sin x). o 2x−cos x Soluci´n.- y = o (x2 −sin x) ln 3 . 2 1+x 49. Hallar la derivada de la funci´n y = ln 1−x2 . o 4x Soluci´n.- y = o 1−x4 . 50. Hallar la derivada de la funci´n y = ln(x2 + x). o 2x+1 Soluci´n.- y = o x2 +x . 51. Hallar la derivada de la funci´n y = ln(x3 − 2x + 5). o 3x2 −2 Soluci´n.- y = o x3 −2x+5 . 52. Hallar la derivada de la funci´n y = x ln x. o Soluci´n.- y = ln x + 1. o 53. Hallar la derivada de la funci´n y = ln3 x. o 3 ln2 x Soluci´n.- y = o x . √ 54. Hallar la derivada de la funci´n y = ln(x + o 1 + x2 ). Soluci´n.- y = o √ 1 . 1+x2 55. Hallar la derivada de la funci´n y = ln(ln x). o 1 Soluci´n.- y = o x ln x . 56. Hallar la derivada de la funci´n y = e(4x+5) . o Soluci´n.- y = 4e(4x+5) . o 2 57. Hallar la derivada de la funci´n y = ax . o 2 Soluci´n.- y = 2xax ln a. o 2 58. Hallar la derivada de la funci´n y = 7(x o +2x) . 2 (x +2x) Soluci´n.- y = 2(x + 1)7 o ln 7. 59. Hallar la derivada de la funci´n y = ex (1 − x2 ). o Soluci´n.- y = ex (1 − 2x − x2 ). o ex −1 60. Hallar la derivada de la funci´n y = o ex +1 . 2ex Soluci´n.- y = o (ex +1)2 .
  • 9.
    7 61. Hallar laderivada de la funci´n y = esin x . o Soluci´n.- y = esin x cos x. o 62. Hallar la derivada de la funci´n y = atan nx . o Soluci´n.- y = natan nx sec2 nx ln a. o 63. Hallar la derivada de la funci´n y = ecos x sin x. o Soluci´n.- y = ecos x (cos x − sin2 x). o 64. Hallar la derivada de la funci´n y = ex ln(sin x). o Soluci´n.- y = ex (cot x + ln(sin x)). o 1 65. Hallar la derivada de la funci´n y = x x . o 1 1−ln x Soluci´n.- y = x x o x2 . 66. Hallar la derivada de la funci´n y = xln x . o Soluci´n.- y = xln x−1 ln x2 . o 67. Hallar la derivada de la funci´n y = xx . o Soluci´n.- y = xx (1 + ln x). o x 68. Hallar la derivada de la funci´n y = ex . o x Soluci´n.- y = ex (1 + ln x)xx . o
  • 10.
  • 11.
    Integrales Tabla de integralesinmediatas xp+1 f (x)p+1 xp dx = +C (p = −1) f (x)p f (x)dx = +C (p = −1) p+1 p+1 1 f (x) dx = ln |x| + C dx = ln |f (x)| + C x f (x) sin xdx = − cos x + C f (x) sin f (x)dx = − cos f (x) + C cos xdx = sin x + C f (x) cos f (x)dx = sin f (x) + C 1 f (x) dx = tan x + C dx = tan f (x) + C cos2 x cos2 f (x) 1 f (x) dx = − cot x + C dx = − cot f (x) + C sin2 x sin2 f (x) 1 f (x) dx = arctan x + C dx = arctan f (x) + C 1 + x2 1 + f (x)2 1 f (x) √ dx = arcsin x + C dx = arcsin f (x) + C 1 − x2 1 − f (x)2
  • 12.
    10 Tabla de integralesinmediatas (continuaci´n) o −1 −f (x) √ dx = arc cos x + C dx = arc cos f (x) + C 1 − x2 1 − f (x)2 ex dx = ex + C f (x)ef (x) dx = ef (x) + C ax af (x) ax dx = +C f (x)af (x) dx = +C ln a ln a Ejercicios de integrales indefinidas 1. Calcular la integral x5 dx. x6 Soluci´n.- o + C. 6 √ 2. Calcular la integral (x + x)dx. √ x2 2x x Soluci´n.- o + + C. 2 3 √ 3 x x 3. Calcular la integral √ − dx. x 4 √ 1 √ Soluci´n.- 6 x − x2 x + C. o 10 x2 4. Calcular la integral √ dx. x 2 2√ Soluci´n.- o x x + C. 5 1 4 5. Calcular la integral + √ + 2 dx. x2 x x 1 8 Soluci´n.- − o − √ + 2x + C. x x 1 6. Calcular la integral √ dx. 4 x 4√ 3 4 Soluci´n.- o x + C. 3
  • 13.
    11 7. Calcularla integral e5x dx. 1 Soluci´n.- e5x + C. o 5 8. Calcular la integral cos 5xdx. sin 5x Soluci´n.- o + C. 5 9. Calcular la integral sin axdx. cos ax Soluci´n.- − o + C. a ln x 10. Calcular la integral dx. x 1 2 Soluci´n.- o ln x + C. 2 1 11. Calcular la integral dx. sin2 3x cot 3x Soluci´n.- − o + C. 3 1 12. Calcular la integral dx. cos2 7x tan 7x Soluci´n.- o + C. 7 1 13. Calcular la integral dx. 3x − 7 1 Soluci´n.- o ln |3x − 7| + C. 3 1 14. Calcular la integral dx. 1−x Soluci´n.- − ln |1 − x| + C. o 1 15. Calcular la integral dx. 5 − 2x 1 Soluci´n.- − ln |5 − 2x| + C. o 2 16. Calcular la integral tan 2xdx. 1 Soluci´n.- − ln | cos 2x| + C. o 2 17. Calcular la integral sin2 x cos xdx. sin3 x Soluci´n.- o + C. 3 18. Calcular la integral cos3 x sin xdx. cos4 x Soluci´n.- − o + C. 4
  • 14.
    12 √ 19. Calcular la integral x x2 + 1dx. 1 Soluci´n.- o (x2 + 1)3 + C. 3 x 20. Calcular la integral √ dx. 2x2 + 3 1 Soluci´n.- o 2x2 + 3 + C. 2 cos x 21. Calcular la integral dx. sin2 x 1 Soluci´n.- − o + C. sin x sin x 22. Calcular la integral dx. cos3 x 1 Soluci´n.- o + C. 2 cos2 x tan x 23. Calcular la integral dx. cos2 x tan2 x Soluci´n.- o + C. 2 cot x 24. Calcular la integral dx. sin2 x cot2 x Soluci´n.- − o + C. 2 ln(x + 1) 25. Calcular la integral dx. x+1 ln2 (x + 1) Soluci´n.- o + C. 2 cos x 26. Calcular la integral √ dx. 2 sin x + 1 √ Soluci´n.- 2 sin x + 1 + C. o sin 2x 27. Calcular la integral dx. (1 + cos 2x)2 1 Soluci´n.- o + C. 2(1 + cos 2x) sin 2x 28. Calcular la integral dx. 1 + sin2 x Soluci´n.- 2 1 + sin2 x + C. o √ tan x + 1 29. Calcular la integral dx. cos2 x 2 Soluci´n.- o (tan x + 1)3 + C. 3
  • 15.
    13 ln2 x 30. Calcular la integral dx. x ln3 x Soluci´n.- o + C. 3 arcsin x 31. Calcular la integral √ dx. 1 − x2 arcsin2 x Soluci´n.- o + C. 2 x 32. Calcular la integral dx. x2 + 1 1 Soluci´n.- ln(x2 + 1) + C. o 2 x+1 33. Calcular la integral dx. x2 + 2x + 3 1 Soluci´n.- o ln(x2 + 2x + 3) + C. 2 34. Calcular la integral e2x dx. 1 Soluci´n.- e2x + C. o 2 x 35. Calcular la integral e 2 dx. x Soluci´n.- 2e 2 + C. o 36. Calcular la integral esin x cos xdx. Soluci´n.- esin x + C. o 37. Calcular la integral 3x ex dx. 3x e x Soluci´n.- o + C. ln 3 + 1 38. Calcular la integral e−3x dx. 1 Soluci´n.- − e−3x + C. o 3 2 39. Calcular la integral ex +4x+3 (x + 2)dx. 1 2 Soluci´n.- ex +4x+3 + C. o 2 1 40. Calcular la integral dx. 1 + 2x2 1 √ Soluci´n.- √ arctan( 2x) + C. o 2 1 41. Calcular la integral √ dx. 1 − 3x2 1 √ Soluci´n.- √ arcsin( 3x) + C. o 3
  • 16.
    14 1 42. Calcular la integral √ dx. 9 − x2 x Soluci´n.- arcsin o + C. 3 1 43. Calcular la integral dx. 4 + x2 1 x Soluci´n.- arctan + C. o 2 2
  • 17.
    15 Integraci´n por partes o Recordemos la f´rmula de la deriva del producto de funciones o d [u(x)v(x)] = u (x)v(x) + u(x)v (x), dx que expresada bajo forma de diferencial da lugar a d[u(x)v(x)] = d[u(x)]v(x) + u(x)d[v(x)]. De donde se obtiene, u(x)d[v(x)] = d[u(x)v(x)] − v(x)d[u(x)]. Integrando ahora ambos miembros tendremos u(x)d[v(x)] = u(x)v(x) − v(x)d[u(x)], que se escribe tambi´n en forma abreviada, e udv = uv − vdu. (1) Esta expresi´n es conocida como la f´rmula de la integraci´n por partes y es de gran utilidad o o o para la resoluci´n de integrales. Se aplica a la resoluci´n de las integrales udv a partir de o o la integral vdu que se supone m´s sencilla. La aplicaci´n de (1) exige primero identificar a o adecuadamente en el integrando las funciones u(x) y v(x). Veamos un ejemplo Ejemplo 1 Si queremos calcular la integral x3 ln xdx, observemos que la integral de x3 es inmediata y que la derivada de ln x es tambi´n muy sencilla. e As´ si asignamos ı, u = ln x y dv = x3 dx, tendremos dx x4 du = y v= + C1 , x 4 si integramos ahora x4 x3 ln xdx = ln x d + C1 4 x4 x4 dx = + C1 ln x − + C1 4 4 x x4 x3 C1 = + C1 ln x − + dx 4 4 x x4 x4 = ln x − + C. 4 16 Observemos que la primera constante de integraci´n C1 se cancela de la respuesta final (C1 ln x− o C1 ln x). Este es siempre el caso cuando integramos por partes, por ello, en la pr´ctica, nunca a incluimos una constante de integraci´n en v(x), simplemente tomaremos para v(x) cualquier o primitiva de dv(x).
  • 18.
    16 Algunos tipos deintegrales que se resuelven por partes xn ex dx u = xn dv = ex dx xn sin xdx u = xn dv = sin xdx xn cos xdx u = xn dv = cos xdx xn ln xdx u = ln x dv = xn dx arctan xdx u = arctan x dv = dx arcsin xdx u = arcsin x dv = dx ln xdx u = ln x dv = dx Ejercicios de integraci´n por partes o 1. Calcular la integral xex dx. Soluci´n.- xex − ex + C. o 2. Calcular la integral ln xdx. Soluci´n.- x ln x − x + C. o 3. Calcular la integral x2 e3x dx. x2 2x 2 Soluci´n.- e3x o − + + C. 3 9 27 4. Calcular la integral x3 e−x dx. Soluci´n.- −e−x x3 + 3x2 + 6x + 6 + C. o 5. Calcular la integral x sin xdx. Soluci´n.- −x cos x + sin x + C. o 6. Calcular la integral x2 cos 2xdx. x2 sin 2x x cos 2x 1 Soluci´n.- o + − sin 2x + C. 2 2 4 7. Calcular la integral ex sin xdx. −ex cos x + ex sin x Soluci´n.- o + C. 2 3 8. Calcular la integral x5 ex dx. 3 ex Soluci´n.- o (x3 − 1) + C. 3
  • 19.
    17 Ejercicios de integralesdefinidas y c´lculo de ´reas a a 1 1. Calcular la integral definida 0 x4 dx. 1 Soluci´n.- . o 5 1 x 2. Calcular la integral definida 0 e dx. Soluci´n.- e − 1. o π 3. Calcular la integral definida 2 0 sin xdx. Soluci´n.- 1. o 1 1 4. Calcular la integral definida 0 dx. 1 + x2 π Soluci´n.- o . 4 5. Hallar el ´rea de la figura comprendida entre la curva y = 4 − x2 y el eje X. a 2 Soluci´n.- 10 . o 3 6. Hallar el ´rea de la figura comprendida entre las curvas y 2 = 9x e y = 3x. a 1 Soluci´n.- . o 2 7. Hallar el ´rea de la figura limitada por la hip´rbola equil´tera xy = a2 , el eje X y las a e a rectas x = a y x = 2a. Soluci´n.- a2 ln 2. o