SlideShare una empresa de Scribd logo
1 de 19
Descargar para leer sin conexión
Ejercicios de derivadas e integrales




Este material puede descargarse desde http://www.uv.es/~montes/biologia/matcero.pdf

Departament d’Estad´ ıstica i Investigaci´ Operativa
                                         o
Universitat de Val`ncia
                  e
Derivadas

Reglas de derivaci´n
                  o

                        d
  Suma                    [f (x) + g(x)] = f (x) + g (x)
                       dx


                        d
                          [kf (x)] = kf (x)
                       dx
  Producto
                        d
                          [f (x)g(x)] = f (x)g(x) + f (x)g (x)
                       dx


                        d f (x)   f (x)g(x) − f (x)g (x)
  Cociente                      =
                       dx g(x)            g(x)2


                        d
                          {f [g(x)]} = f [g(x)]g (x)
                       dx
  Regla de la cadena
                        d
                          {f (g[h(x)])} = f (g[h(x)])g [h(x)]h (x)
                       dx


                        d k                                 d
                          (x ) = kxk−1                        [f (x)k ] = kf (x)k−1 f (x)
                       dx                                  dx
                        d √       d 1/2    1                d                 f (x)
  Potencia                ( x) =    (x ) = √                  [   f (x)] =
                       dx        dx       2 x              dx                2 f (x)

                        d   1        d −1       1           d   1      f (x)
                                =      (x ) = − 2                   =−
                       dx   x       dx         x           dx f (x)    f (x)2
2



Reglas de derivaci´n (continuaci´n)
                  o             o


                         d                           d
                           (sin x) = cos x             [sin f (x)] = cos f (x)f (x)
                        dx                          dx
                         d                           d
    Trigonom´tricas
            e              (cos x) = − sin x           [cos f (x)] = − sin f (x)f (x)
                        dx                          dx
                         d                           d
                           (tan x) = 1 + tan2 x        [tan f (x)] = [1 + tan2 f (x)]f (x)
                        dx                          dx


                         d                  1        d                       f (x)
                           (arcsin x) = √              [arcsin f (x)] =
                        dx                1 − x2    dx                      1 − f (x)2

                         d                  −1       d                      −f (x)
    Funciones de arco      (arc cos x) = √             [arc cos f (x)] =
                        dx                 1 − x2   dx                      1 − f (x)2

                         d                 1         d                    f (x)
                           (arctan x) =                [arctan f (x)] =
                        dx              1 + x2      dx                  1 + f (x)2


                         d x                         d f (x)
                           (e ) = ex                   (e    ) = ef (x) f (x)
                        dx                          dx
    Exponenciales
                         d x                         d f (x)
                           (a ) = ax ln a              (a    ) = af (x) ln af (x)
                        dx                          dx


                         d          1                d              f (x)
                           (ln x) =                    (ln f (x)) =
                        dx          x               dx              f (x)
    Logar´
         ıtmicas
                         d          1 1              d              f (x) 1
                           (lg x) =                    (lg f (x)) =
                        dx a        x ln a          dx a            f (x) ln a
3



Ejercicios de derivadas
  1. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´
                                     a                                                    ıneas
     tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gr´fica y representar
                                                                           a
     las l´
          ıneas tangentes.
     Soluci´n.- a) 3/4, b) 3.
           o
  2. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´
                                     a                                                    ıneas
     tangentes a la curva y = 1/x cuando x = 1/2 y x = 1, construir la gr´fica y representar
                                                                           a
     las l´
          ıneas tangentes.
     Soluci´n.- a) -4, b) -1.
           o
  3. Hallar la derivada de la funci´n y = x4 + 3x2 − 6.
                                   o
     Soluci´n.- y = 4x3 + 6x.
           o
  4. Hallar la derivada de la funci´n y = 6x3 − x2 .
                                   o
     Soluci´n.- y = 18x2 − 2x.
           o
                                                             x5              x2
  5. Hallar la derivada de la funci´n y =
                                   o                        a+b         −   a−b .
                       5x4         2x
     Soluci´n.- y =
           o           a+b    −   a−b .

                                                            x3 −x2 +1
  6. Hallar la derivada de la funci´n y =
                                   o                            5     .
                       3x2 −2x
     Soluci´n.- y =
           o              5    .
                                                                                x2
  7. Hallar la derivada de la funci´n y = 2ax3 −
                                   o                                             b      + c.
                             2        2x
     Soluci´n.- y = 6ax −
           o                           b .
                                                                7                   5
  8. Hallar la derivada de la funci´n y = 6x 2 + 4x 2 + 2x.
                                   o
                              5              3
     Soluci´n.- y = 21x 2 + 10x 2 + 2.
           o
                                                            √                   √       1
  9. Hallar la derivada de la funci´n y =
                                   o                            3x +            3
                                                                                    x + x.
                        √
                          3            1             1
     Soluci´n.- y =
           o            √
                       2 x
                              +       √
                                      3 2    −       x2 .
                                  3     x

                                                            (x+1)3
 10. Hallar la derivada de la funci´n y =
                                   o                                3       .
                                                              x2
                       3(x+1)2 (x−1)
     Soluci´n.- y =
           o                      5          .
                              2x 2
                                                            √
                                                            3         √
 11. Hallar la derivada de la funci´n y =
                                   o                            x2 − 2 x + 5.
                         1
                       2 √             1
     Soluci´n.- y =
           o           3 3x       −   √ .
                                        x
                                                                                            √
                                                                                            3
                                                            ax2              b              √x .
 12. Hallar la derivada de la funci´n y =
                                   o                        √3
                                                               x
                                                                        +    √
                                                                            x x
                                                                                        −     x
                              2                  5              7
     Soluci´n.- y = 5 ax 3 − 2 bx− 2 + 1 x− 6 .
           o        3
                             3
                                       6

 13. Hallar la derivada de la funci´n y = (1 + 4x3 )(1 + 2x2 ).
                                   o
     Soluci´n.- y = 4x(1 + 3x + 10x3 ).
           o
 14. Hallar la derivada de la funci´n y = x(2x − 1)(3x + 2).
                                   o
     Soluci´n.- y = 2(9x2 + x − 1).
           o
4



    15. Hallar la derivada de la funci´n y = (2x − 1)(x2 − 6x + 3).
                                      o
        Soluci´n.- y = 6x2 − 26x + 12.
              o
                                                  2x4
    16. Hallar la derivada de la funci´n y =
                                      o          b2 −x2 .
                          4x3 (2b2 −x2 )
        Soluci´n.- y =
              o            (b2 −x2 )2 .

                                                 a−x
    17. Hallar la derivada de la funci´n y =
                                      o          a+x .
                           2a
        Soluci´n.- y = − (a+x)2 .
              o

                                                       t3
    18. Hallar la derivada de la funci´n f (t) =
                                      o               1+t2 .
                              t2 (3+t2
        Soluci´n.- f (t) =
              o               (1+t2 )2 .

                                                      (s+4)2
    19. Hallar la derivada de la funci´n f (s) =
                                      o                 s+3 .
                               (s+2)(s+4)
        Soluci´n.- f (s) =
              o                  (s+3)2 .

                                                  x3 +1
    20. Hallar la derivada de la funci´n y =
                                      o          x2 −x−2 .
                          x4 −2x3 −6x2 −2x+1
        Soluci´n.- y =
              o               (x2 −x−2)2     .

    21. Hallar la derivada de la funci´n y = (2x2 − 3)2 .
                                      o
        Soluci´n.- y = 8x(2x2 − 3).
              o

    22. Hallar la derivada de la funci´n y = (x2 + a2 )5 .
                                      o
        Soluci´n.- y = 10x(x2 + a2 )4 .
              o
                                                 √
    23. Hallar la derivada de la funci´n y =
                                      o              x2 + a2 .
        Soluci´n.- y =
              o           √ x     .
                           x2 +a2
                                                    √
    24. Hallar la derivada de la funci´n y = (a + x) a − x.
                                      o
                           a−3x
        Soluci´n.- y =
              o            √
                          2 a−x
                                .

                                                     1+x
    25. Hallar la derivada de la funci´n y =
                                      o              1−x .
                               1
        Soluci´n.- y =
              o                √
                          (1−x) 1−x2
                                     .

                                                  2x2 −1
    26. Hallar la derivada de la funci´n y =
                                      o           √
                                                 x 1+x2
                                                         .
                              1+4x2
        Soluci´n.- y =
              o                      3   .
                          x2 (1+x2 ) 2
                                                 √
                                                 3
    27. Hallar la derivada de la funci´n y =
                                      o              x2 + x + 1.
                                2x+1
        Soluci´n.- y = √
              o        3
                                          .
                          3    (x2 +x+1)2
                                                         √
    28. Hallar la derivada de la funci´n y = (1 +
                                      o                  3
                                                             x)3 .
                                         2
                                   1
        Soluci´n.- y = 1 +
              o                   √
                                  3
                                    x
                                             .
5



29. Hallar la derivada de la funci´n y = sin2 x.
                                  o
    Soluci´n.- y = sin 2x.
          o

30. Hallar la derivada de la funci´n y = 2 sin x + cos 3x.
                                  o
    Soluci´n.- y = 2 cos x − 3 sin 3x.
          o

31. Hallar la derivada de la funci´n y = tan(ax + b).
                                  o
                            a
    Soluci´n.- y =
          o           cos2 (ax+b) .

                                             sin x
32. Hallar la derivada de la funci´n y =
                                  o         1+cos x .
                        1
    Soluci´n.- y =
          o           1+cos x .

33. Hallar la derivada de la funci´n y = sin 2x cos 3x.
                                  o
    Soluci´n.- y = 2 cos 2x cos 3x − 3 sin 2x sin 3x.
          o

34. Hallar la derivada de la funci´n y = cot2 5x.
                                  o
    Soluci´n.- y = −10 cot 5x csc2 5x.
          o

35. Hallar la derivada de la funci´n f (t) = t sin t + cos t.
                                  o
    Soluci´n.- f (t) = t cos t.
          o

36. Hallar la derivada de la funci´n f (t) = sin3 t cos t.
                                  o
    Soluci´n.- f (t) = sin2 t(3 cos2 t − sin2 t).
           o
                                            √
37. Hallar la derivada de la funci´n y = a cos 2x.
                                  o
    Soluci´n.- y = − √sin 2x .
          o          a
                       cos 2x

                                            1
38. Hallar la derivada de la funci´n y =
                                  o         2   tan2 x.
    Soluci´n.- y = tan x sec2 x.
          o

39. Hallar la derivada de la funci´n y = ln cos x.
                                  o
    Soluci´n.- y = − tan x.
          o

40. Hallar la derivada de la funci´n y = ln tan x.
                                  o
                         2
    Soluci´n.- y =
          o           sin 2x .

41. Hallar la derivada de la funci´n y = ln sin2 x.
                                  o
    Soluci´n.- y = 2 cot x.
          o
                                            tan x−1
42. Hallar la derivada de la funci´n y =
                                  o           sec x .
    Soluci´n.- y = sin x + cos x.
          o
                                                   1+sin x
43. Hallar la derivada de la funci´n y = ln
                                  o                1−sin x .
                        1
    Soluci´n.- y =
          o           cos x .

44. Hallar la derivada de la funci´n f (x) = sin(ln x).
                                  o
                          cos(ln x)
    Soluci´n.- f (x) =
          o                   x     .
6



    45. Hallar la derivada de la funci´n f (x) = tan(ln x).
                                      o
                               sec2 (ln x)
        Soluci´n.- f (x) =
              o                     x      .

    46. Hallar la derivada de la funci´n f (x) = sin(cos x).
                                      o
        Soluci´n.- f (x) = − sin x cos(cos x).
              o
                                                1+x
    47. Hallar la derivada de la funci´n y = ln 1−x .
                                      o
                            2
        Soluci´n.- y =
              o           1−x2 .

    48. Hallar la derivada de la funci´n y = log3 (x2 − sin x).
                                      o
                            2x−cos x
        Soluci´n.- y =
              o           (x2 −sin x) ln 3 .

                                                               2
                                                1+x
    49. Hallar la derivada de la funci´n y = ln 1−x2 .
                                      o
                           4x
        Soluci´n.- y =
              o           1−x4 .

    50. Hallar la derivada de la funci´n y = ln(x2 + x).
                                      o
                          2x+1
        Soluci´n.- y =
              o           x2 +x .

    51. Hallar la derivada de la funci´n y = ln(x3 − 2x + 5).
                                      o
                           3x2 −2
        Soluci´n.- y =
              o           x3 −2x+5 .

    52. Hallar la derivada de la funci´n y = x ln x.
                                      o
        Soluci´n.- y = ln x + 1.
              o

    53. Hallar la derivada de la funci´n y = ln3 x.
                                      o
                          3 ln2 x
        Soluci´n.- y =
              o              x .
                                                                   √
    54. Hallar la derivada de la funci´n y = ln(x +
                                      o                                 1 + x2 ).
        Soluci´n.- y =
              o           √ 1   .
                           1+x2

    55. Hallar la derivada de la funci´n y = ln(ln x).
                                      o
                             1
        Soluci´n.- y =
              o           x ln x .

    56. Hallar la derivada de la funci´n y = e(4x+5) .
                                      o
        Soluci´n.- y = 4e(4x+5) .
              o
                                                         2
    57. Hallar la derivada de la funci´n y = ax .
                                      o
                                2
        Soluci´n.- y = 2xax ln a.
              o
                                                         2
    58. Hallar la derivada de la funci´n y = 7(x
                                      o                      +2x)
                                                                    .
                                          2
                                       (x +2x)
        Soluci´n.- y = 2(x + 1)7
              o                                  ln 7.

    59. Hallar la derivada de la funci´n y = ex (1 − x2 ).
                                      o
        Soluci´n.- y = ex (1 − 2x − x2 ).
              o
                                                     ex −1
    60. Hallar la derivada de la funci´n y =
                                      o              ex +1 .
                            2ex
        Soluci´n.- y =
              o           (ex +1)2 .
7



61. Hallar la derivada de la funci´n y = esin x .
                                  o
    Soluci´n.- y = esin x cos x.
          o
62. Hallar la derivada de la funci´n y = atan nx .
                                  o
    Soluci´n.- y = natan nx sec2 nx ln a.
          o
63. Hallar la derivada de la funci´n y = ecos x sin x.
                                  o
    Soluci´n.- y = ecos x (cos x − sin2 x).
          o
64. Hallar la derivada de la funci´n y = ex ln(sin x).
                                  o
    Soluci´n.- y = ex (cot x + ln(sin x)).
          o
                                              1
65. Hallar la derivada de la funci´n y = x x .
                                  o
                        1   1−ln x
    Soluci´n.- y = x x
          o                   x2     .
66. Hallar la derivada de la funci´n y = xln x .
                                  o
    Soluci´n.- y = xln x−1 ln x2 .
          o
67. Hallar la derivada de la funci´n y = xx .
                                  o
    Soluci´n.- y = xx (1 + ln x).
          o
                                              x
68. Hallar la derivada de la funci´n y = ex .
                                  o
                        x
    Soluci´n.- y = ex (1 + ln x)xx .
          o
8
Integrales

Tabla de integrales inmediatas


                xp+1                                      f (x)p+1
      xp dx =        +C     (p = −1)   f (x)p f (x)dx =            +C      (p = −1)
                p+1                                         p+1


      1                                f (x)
        dx = ln |x| + C                      dx = ln |f (x)| + C
      x                                f (x)



      sin xdx = − cos x + C            f (x) sin f (x)dx = − cos f (x) + C



      cos xdx = sin x + C              f (x) cos f (x)dx = sin f (x) + C



        1                                f (x)
             dx = tan x + C                       dx = tan f (x) + C
      cos2 x                           cos2 f (x)


         1                               f (x)
             dx = − cot x + C                     dx = − cot f (x) + C
      sin2 x                           sin2 f (x)


         1                               f (x)
             dx = arctan x + C                    dx = arctan f (x) + C
      1 + x2                           1 + f (x)2


            1                             f (x)
      √          dx = arcsin x + C                    dx = arcsin f (x) + C
          1 − x2                         1 − f (x)2
10



Tabla de integrales inmediatas (continuaci´n)
                                          o


                       −1                                 −f (x)
                  √          dx = arc cos x + C                        dx = arc cos f (x) + C
                      1 − x2                              1 − f (x)2



                  ex dx = ex + C                        f (x)ef (x) dx = ef (x) + C



                             ax                                            af (x)
                  ax dx =        +C                     f (x)af (x) dx =          +C
                            ln a                                            ln a




Ejercicios de integrales indefinidas
     1. Calcular la integral    x5 dx.
                      x6
        Soluci´n.-
              o          + C.
                      6
                                   √
     2. Calcular la integral (x + x)dx.
                              √
                     x2   2x x
        Soluci´n.-
              o         +       + C.
                     2        3
                                      √
                                 3   x x
     3. Calcular la integral    √ −               dx.
                                  x   4
                      √       1 √
        Soluci´n.- 6 x − x2 x + C.
              o
                             10
                                x2
     4. Calcular la integral    √ dx.
                                 x
                      2 2√
        Soluci´n.-
              o         x x + C.
                      5
                                   1    4
     5. Calcular la integral          + √ + 2 dx.
                                   x2  x x
                       1    8
        Soluci´n.- −
              o          − √ + 2x + C.
                       x     x
                                 1
     6. Calcular la integral    √ dx.
                                4
                                  x
                      4√ 3
                        4
        Soluci´n.-
              o           x + C.
                      3
11



 7. Calcular la integral e5x dx.
                 1
    Soluci´n.- e5x + C.
          o
                 5
 8. Calcular la integral   cos 5xdx.
                 sin 5x
    Soluci´n.-
          o             + C.
                    5
 9. Calcular la integral sin axdx.
                   cos ax
    Soluci´n.- −
          o               + C.
                     a
                           ln x
10. Calcular la integral        dx.
                            x
                 1 2
    Soluci´n.-
          o        ln x + C.
                 2
                              1
11. Calcular la integral           dx.
                           sin2 3x
                   cot 3x
    Soluci´n.- −
          o               + C.
                     3
                              1
12. Calcular la integral           dx.
                           cos2 7x
                 tan 7x
    Soluci´n.-
          o             + C.
                   7
                             1
13. Calcular la integral          dx.
                           3x − 7
                 1
    Soluci´n.-
          o        ln |3x − 7| + C.
                 3
                            1
14. Calcular la integral       dx.
                          1−x
    Soluci´n.- − ln |1 − x| + C.
          o
                              1
15. Calcular la integral          dx.
                           5 − 2x
                1
    Soluci´n.- − ln |5 − 2x| + C.
          o
                2
16. Calcular la integral   tan 2xdx.
                1
    Soluci´n.- − ln | cos 2x| + C.
          o
                2
17. Calcular la integral   sin2 x cos xdx.
                 sin3 x
    Soluci´n.-
          o             + C.
                    3
18. Calcular la integral   cos3 x sin xdx.
                   cos4 x
    Soluci´n.- −
          o               + C.
                     4
12


                              √
 19. Calcular la integral    x x2 + 1dx.
                  1
     Soluci´n.-
           o           (x2 + 1)3 + C.
                  3
                                     x
 20. Calcular la integral     √            dx.
                                   2x2 + 3
                  1
     Soluci´n.-
           o           2x2 + 3 + C.
                  2
                              cos x
 21. Calcular la integral            dx.
                              sin2 x
                        1
     Soluci´n.- −
           o                + C.
                      sin x
                               sin x
 22. Calcular la integral            dx.
                              cos3 x
                     1
     Soluci´n.-
           o               + C.
                  2 cos2 x
                              tan x
 23. Calcular la integral            dx.
                              cos2 x
                  tan2 x
     Soluci´n.-
           o             + C.
                    2
                              cot x
 24. Calcular la integral            dx.
                              sin2 x
                      cot2 x
     Soluci´n.- −
           o                 + C.
                        2
                              ln(x + 1)
 25. Calcular la integral               dx.
                                x+1
                  ln2 (x + 1)
     Soluci´n.-
           o                  + C.
                       2
                                 cos x
 26. Calcular la integral √                dx.
                               2 sin x + 1
                  √
     Soluci´n.- 2 sin x + 1 + C.
           o
                                  sin 2x
 27. Calcular la integral                   dx.
                              (1 + cos 2x)2
                        1
     Soluci´n.-
           o                    + C.
                  2(1 + cos 2x)
                                    sin 2x
 28. Calcular la integral                       dx.
                                   1 + sin2 x
     Soluci´n.- 2 1 + sin2 x + C.
           o
                            √
                              tan x + 1
 29. Calcular la integral               dx.
                               cos2 x
                  2
     Soluci´n.-
           o         (tan x + 1)3 + C.
                  3
13



                             ln2 x
30. Calcular la integral           dx.
                               x
                 ln3 x
    Soluci´n.-
          o            + C.
                   3
                             arcsin x
31. Calcular la integral     √        dx.
                               1 − x2
                 arcsin2 x
    Soluci´n.-
          o                + C.
                     2
                             x
32. Calcular la integral          dx.
                           x2 + 1
                 1
    Soluci´n.- ln(x2 + 1) + C.
          o
                 2
                                x+1
33. Calcular la integral                 dx.
                             x2 + 2x + 3
                 1
    Soluci´n.-
          o        ln(x2 + 2x + 3) + C.
                 2
34. Calcular la integral e2x dx.
                 1
    Soluci´n.- e2x + C.
          o
                 2
                              x
35. Calcular la integral   e 2 dx.
                   x
    Soluci´n.- 2e 2 + C.
          o

36. Calcular la integral   esin x cos xdx.
    Soluci´n.- esin x + C.
          o

37. Calcular la integral   3x ex dx.
                   3x e x
    Soluci´n.-
          o               + C.
                 ln 3 + 1
38. Calcular la integral e−3x dx.
                   1
    Soluci´n.- − e−3x + C.
          o
                   3
                               2
39. Calcular la integral ex +4x+3 (x + 2)dx.
                 1 2
    Soluci´n.- ex +4x+3 + C.
          o
                 2
                          1
40. Calcular la integral       dx.
                       1 + 2x2
                1       √
    Soluci´n.- √ arctan( 2x) + C.
          o
                 2
                           1
41. Calcular la integral     √   dx.
                         1 − 3x2
                1       √
    Soluci´n.- √ arcsin( 3x) + C.
          o
                 3
14


                                  1
 42. Calcular la integral   √          dx.
                                9 − x2
                         x
     Soluci´n.- arcsin
           o               + C.
                         3
                          1
 43. Calcular la integral     dx.
                       4 + x2
               1      x
     Soluci´n.- arctan + C.
           o
               2      2
15



Integraci´n por partes
         o
   Recordemos la f´rmula de la deriva del producto de funciones
                  o
                            d
                              [u(x)v(x)] = u (x)v(x) + u(x)v (x),
                           dx
que expresada bajo forma de diferencial da lugar a
                           d[u(x)v(x)] = d[u(x)]v(x) + u(x)d[v(x)].
De donde se obtiene,
                           u(x)d[v(x)] = d[u(x)v(x)] − v(x)d[u(x)].
Integrando ahora ambos miembros tendremos

                            u(x)d[v(x)] = u(x)v(x) −        v(x)d[u(x)],

que se escribe tambi´n en forma abreviada,
                    e

                                        udv = uv −        vdu.                               (1)

Esta expresi´n es conocida como la f´rmula de la integraci´n por partes y es de gran utilidad
            o                         o                     o
para la resoluci´n de integrales. Se aplica a la resoluci´n de las integrales udv a partir de
                o                                        o
la integral vdu que se supone m´s sencilla. La aplicaci´n de (1) exige primero identificar
                                    a                      o
adecuadamente en el integrando las funciones u(x) y v(x). Veamos un ejemplo
Ejemplo 1 Si queremos calcular la integral

                                             x3 ln xdx,

observemos que la integral de x3 es inmediata y que la derivada de ln x es tambi´n muy sencilla.
                                                                                e
As´ si asignamos
  ı,
                                   u = ln x y dv = x3 dx,
tendremos
                                        dx             x4
                                 du =        y    v=      + C1 ,
                                        x              4
si integramos ahora
                                                  x4
                       x3 ln xdx =       ln x d      + C1
                                                  4

                                         x4                      x4        dx
                                  =         + C1 ln x −             + C1
                                         4                       4         x

                                         x4                      x3   C1
                                  =         + C1 ln x −             +      dx
                                         4                       4    x

                                      x4        x4
                                  =      ln x −    + C.
                                       4        16
Observemos que la primera constante de integraci´n C1 se cancela de la respuesta final (C1 ln x−
                                                o
C1 ln x). Este es siempre el caso cuando integramos por partes, por ello, en la pr´ctica, nunca
                                                                                  a
incluimos una constante de integraci´n en v(x), simplemente tomaremos para v(x) cualquier
                                     o
primitiva de dv(x).
16



Algunos tipos de integrales que se resuelven por partes


        xn ex dx      u = xn              dv = ex dx     xn sin xdx   u = xn     dv = sin xdx


        xn cos xdx    u = xn              dv = cos xdx   xn ln xdx    u = ln x   dv = xn dx


        arctan xdx u = arctan x           dv = dx        arcsin xdx u = arcsin x dv = dx


        ln xdx        u = ln x            dv = dx



Ejercicios de integraci´n por partes
                       o
     1. Calcular la integral     xex dx.
        Soluci´n.- xex − ex + C.
              o

     2. Calcular la integral     ln xdx.
        Soluci´n.- x ln x − x + C.
              o
     3. Calcular la integral     x2 e3x dx.
                           x2   2x   2
        Soluci´n.- e3x
              o               −    +            + C.
                           3     9   27
     4. Calcular la integral     x3 e−x dx.
        Soluci´n.- −e−x x3 + 3x2 + 6x + 6 + C.
              o

     5. Calcular la integral     x sin xdx.
        Soluci´n.- −x cos x + sin x + C.
              o
     6. Calcular la integral     x2 cos 2xdx.
                     x2 sin 2x x cos 2x 1
        Soluci´n.-
              o               +        − sin 2x + C.
                         2        2     4
     7. Calcular la integral ex sin xdx.
                     −ex cos x + ex sin x
        Soluci´n.-
              o                           + C.
                              2
                                      3
     8. Calcular la integral     x5 ex dx.
                       3
                     ex
        Soluci´n.-
              o         (x3 − 1) + C.
                      3
17



Ejercicios de integrales definidas y c´lculo de ´reas
                                     a         a
                                   1
 1. Calcular la integral definida   0
                                       x4 dx.
                 1
    Soluci´n.- .
          o
                 5
                                   1 x
 2. Calcular la integral definida   0
                                     e dx.
   Soluci´n.- e − 1.
         o
                                   π
 3. Calcular la integral definida   2
                                   0
                                       sin xdx.
   Soluci´n.- 1.
         o
                                   1      1
 4. Calcular la integral definida   0
                                              dx.
                                       1 + x2
                π
   Soluci´n.-
         o        .
                4
 5. Hallar el ´rea de la figura comprendida entre la curva y = 4 − x2 y el eje X.
              a
                   2
    Soluci´n.- 10 .
           o
                   3
 6. Hallar el ´rea de la figura comprendida entre las curvas y 2 = 9x e y = 3x.
              a
                 1
    Soluci´n.- .
           o
                 2
 7. Hallar el ´rea de la figura limitada por la hip´rbola equil´tera xy = a2 , el eje X y las
              a                                   e           a
    rectas x = a y x = 2a.
   Soluci´n.- a2 ln 2.
         o

Más contenido relacionado

La actualidad más candente

Cálculo de primitivas
Cálculo de primitivasCálculo de primitivas
Cálculo de primitivasbdeotto
 
Función raíz cuadrada
Función raíz cuadradaFunción raíz cuadrada
Función raíz cuadradasitayanis
 
Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples manoleter
 
Soluciones derivadas
Soluciones derivadasSoluciones derivadas
Soluciones derivadasklorofila
 
Tabla de integrales 2
Tabla de integrales 2Tabla de integrales 2
Tabla de integrales 2EDWARD ORTEGA
 
Ejercicios cap 003
Ejercicios cap 003Ejercicios cap 003
Ejercicios cap 003Bleakness
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealalgebra
 
Aplicaciones integral
Aplicaciones integralAplicaciones integral
Aplicaciones integral10lozada
 
Ecuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integranteEcuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integranteFlightshox
 
Concepto geométrico de la derivada
Concepto geométrico de la derivadaConcepto geométrico de la derivada
Concepto geométrico de la derivadainsutecvirtual
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binariaJaime Medrano
 
Cap 9 función de una variable real
Cap 9 función de una variable realCap 9 función de una variable real
Cap 9 función de una variable realnivelacion008
 
VECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALVECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALMario Muruato
 
Ejercicios de antiderivadas
Ejercicios de antiderivadasEjercicios de antiderivadas
Ejercicios de antiderivadasAlan Lopez
 
Rotacional de un campo vectorial
Rotacional de un campo vectorialRotacional de un campo vectorial
Rotacional de un campo vectorialEmma
 
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3shirleyrojas2108
 
Ejercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO IEjercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO IKátherin Romero F
 

La actualidad más candente (20)

Integral indefinida
Integral indefinidaIntegral indefinida
Integral indefinida
 
Cálculo de primitivas
Cálculo de primitivasCálculo de primitivas
Cálculo de primitivas
 
Guiasimplex
GuiasimplexGuiasimplex
Guiasimplex
 
Función raíz cuadrada
Función raíz cuadradaFunción raíz cuadrada
Función raíz cuadrada
 
Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples
 
Soluciones derivadas
Soluciones derivadasSoluciones derivadas
Soluciones derivadas
 
Tabla de integrales 2
Tabla de integrales 2Tabla de integrales 2
Tabla de integrales 2
 
Ejercicios cap 003
Ejercicios cap 003Ejercicios cap 003
Ejercicios cap 003
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia lineal
 
Aplicaciones integral
Aplicaciones integralAplicaciones integral
Aplicaciones integral
 
Ecuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integranteEcuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integrante
 
Concepto geométrico de la derivada
Concepto geométrico de la derivadaConcepto geométrico de la derivada
Concepto geométrico de la derivada
 
Programación lineal entera y binaria
Programación lineal entera y binariaProgramación lineal entera y binaria
Programación lineal entera y binaria
 
Cap 9 función de una variable real
Cap 9 función de una variable realCap 9 función de una variable real
Cap 9 función de una variable real
 
VECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMALVECTOR TANGENTE NORMAL Y BINORMAL
VECTOR TANGENTE NORMAL Y BINORMAL
 
Ejercicios de antiderivadas
Ejercicios de antiderivadasEjercicios de antiderivadas
Ejercicios de antiderivadas
 
Rotacional de un campo vectorial
Rotacional de un campo vectorialRotacional de un campo vectorial
Rotacional de un campo vectorial
 
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
Ejemplos metodo-de-lagrange1-ajustar-a-mat-3
 
Circunferencia analitica
Circunferencia analiticaCircunferencia analitica
Circunferencia analitica
 
Ejercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO IEjercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO I
 

Destacado

Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadasBeatrizBarrera
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadenaAna Cristina
 
Ejercicios resueltos derivadas trigonométricas
Ejercicios resueltos derivadas trigonométricasEjercicios resueltos derivadas trigonométricas
Ejercicios resueltos derivadas trigonométricasJosé
 
Trabajo colaborativo 2_unidad2 (1)
Trabajo colaborativo 2_unidad2 (1)Trabajo colaborativo 2_unidad2 (1)
Trabajo colaborativo 2_unidad2 (1)Adier Velasquez
 
Calculo diferencial clase 3-derivadas
Calculo diferencial  clase 3-derivadasCalculo diferencial  clase 3-derivadas
Calculo diferencial clase 3-derivadasSilvia Sequeda
 
Portafolio de calculo
Portafolio de calculoPortafolio de calculo
Portafolio de calculoCess Pino
 
Parciales Resueltos, Primer Examen Parcial, Matematica
Parciales Resueltos, Primer Examen Parcial, Matematica Parciales Resueltos, Primer Examen Parcial, Matematica
Parciales Resueltos, Primer Examen Parcial, Matematica InfoUdo.com.ve
 
Soluciones limites
Soluciones limitesSoluciones limites
Soluciones limitesklorofila
 
Derivada de las Funciones Trigonométricas Inversas (trabajo final)
Derivada de las Funciones Trigonométricas Inversas (trabajo final)Derivada de las Funciones Trigonométricas Inversas (trabajo final)
Derivada de las Funciones Trigonométricas Inversas (trabajo final)Miguel Leonardo Sánchez Fajardo
 
2 parcial de matematica ia
2 parcial de matematica ia2 parcial de matematica ia
2 parcial de matematica iafavalenc
 
Ejercicios resueltos de matrices - Matrices conmutable, idempotente, nilpoten...
Ejercicios resueltos de matrices -	Matrices conmutable, idempotente, nilpoten...Ejercicios resueltos de matrices -	Matrices conmutable, idempotente, nilpoten...
Ejercicios resueltos de matrices - Matrices conmutable, idempotente, nilpoten...algebra
 
Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadasGeny Cárdenas
 
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...algebra
 
Ejercicios de derivada
Ejercicios de derivadaEjercicios de derivada
Ejercicios de derivadaJosé
 

Destacado (20)

Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadas
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Ejercicios resueltos derivadas trigonométricas
Ejercicios resueltos derivadas trigonométricasEjercicios resueltos derivadas trigonométricas
Ejercicios resueltos derivadas trigonométricas
 
Problemas rsueltos pl
Problemas rsueltos plProblemas rsueltos pl
Problemas rsueltos pl
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 
Trabajo colaborativo 2_unidad2 (1)
Trabajo colaborativo 2_unidad2 (1)Trabajo colaborativo 2_unidad2 (1)
Trabajo colaborativo 2_unidad2 (1)
 
Calculo diferencial clase 3-derivadas
Calculo diferencial  clase 3-derivadasCalculo diferencial  clase 3-derivadas
Calculo diferencial clase 3-derivadas
 
Portafolio de calculo
Portafolio de calculoPortafolio de calculo
Portafolio de calculo
 
Parciales Resueltos, Primer Examen Parcial, Matematica
Parciales Resueltos, Primer Examen Parcial, Matematica Parciales Resueltos, Primer Examen Parcial, Matematica
Parciales Resueltos, Primer Examen Parcial, Matematica
 
Soluciones limites
Soluciones limitesSoluciones limites
Soluciones limites
 
Derivada de las Funciones Trigonométricas Inversas (trabajo final)
Derivada de las Funciones Trigonométricas Inversas (trabajo final)Derivada de las Funciones Trigonométricas Inversas (trabajo final)
Derivada de las Funciones Trigonométricas Inversas (trabajo final)
 
Calculo I La Regla De La Cadena
Calculo I La Regla De La CadenaCalculo I La Regla De La Cadena
Calculo I La Regla De La Cadena
 
2 parcial de matematica ia
2 parcial de matematica ia2 parcial de matematica ia
2 parcial de matematica ia
 
Derivada
DerivadaDerivada
Derivada
 
Ejercicios resueltos de matrices - Matrices conmutable, idempotente, nilpoten...
Ejercicios resueltos de matrices -	Matrices conmutable, idempotente, nilpoten...Ejercicios resueltos de matrices -	Matrices conmutable, idempotente, nilpoten...
Ejercicios resueltos de matrices - Matrices conmutable, idempotente, nilpoten...
 
Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadas
 
Derivadas
DerivadasDerivadas
Derivadas
 
44
4444
44
 
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
Ejercicios resueltos matriz conmutable, idempotente, nilpotente...
 
Ejercicios de derivada
Ejercicios de derivadaEjercicios de derivada
Ejercicios de derivada
 

Similar a Ejercicios resueltos de derivadas

Derivadas e integrales
Derivadas e integralesDerivadas e integrales
Derivadas e integralesIUTOMS
 
Reglas de la derivación
Reglas de la derivaciónReglas de la derivación
Reglas de la derivaciónMartin Peralta
 
Las derivadas
Las derivadasLas derivadas
Las derivadasAlinneAL
 
Derivadas ejercicos 1
Derivadas   ejercicos 1Derivadas   ejercicos 1
Derivadas ejercicos 1roberteello
 
Repasoexamenfinal
RepasoexamenfinalRepasoexamenfinal
Repasoexamenfinalvirizarr
 
Apunte unidad derivadas
Apunte unidad derivadasApunte unidad derivadas
Apunte unidad derivadasandrealais
 
Tema 3 (Problemas)
Tema 3  (Problemas)Tema 3  (Problemas)
Tema 3 (Problemas)jhbenito
 
Integrales area electricidad, electronica y telecomunicaciones [muy bueno]
Integrales   area electricidad, electronica y telecomunicaciones [muy bueno]Integrales   area electricidad, electronica y telecomunicaciones [muy bueno]
Integrales area electricidad, electronica y telecomunicaciones [muy bueno]meltoguardado
 
Ejercicios cal-integral-2013
Ejercicios cal-integral-2013Ejercicios cal-integral-2013
Ejercicios cal-integral-2013Fermin Aguilar
 

Similar a Ejercicios resueltos de derivadas (20)

Derivadas e integrales
Derivadas e integralesDerivadas e integrales
Derivadas e integrales
 
Reglas de la derivación
Reglas de la derivaciónReglas de la derivación
Reglas de la derivación
 
Las derivadas
Las derivadasLas derivadas
Las derivadas
 
Derivadaelias
DerivadaeliasDerivadaelias
Derivadaelias
 
1 cal cder
1 cal cder1 cal cder
1 cal cder
 
1 cal cder
1 cal cder1 cal cder
1 cal cder
 
Integrales indefinidas
Integrales indefinidasIntegrales indefinidas
Integrales indefinidas
 
Derivas resueltas
Derivas resueltasDerivas resueltas
Derivas resueltas
 
Derivadas ejercicos 1
Derivadas   ejercicos 1Derivadas   ejercicos 1
Derivadas ejercicos 1
 
Repasoexamenfinal
RepasoexamenfinalRepasoexamenfinal
Repasoexamenfinal
 
Apunte unidad derivadas
Apunte unidad derivadasApunte unidad derivadas
Apunte unidad derivadas
 
Integral5
Integral5Integral5
Integral5
 
Derivadas
DerivadasDerivadas
Derivadas
 
matematica
matematicamatematica
matematica
 
Sol06
Sol06Sol06
Sol06
 
Tema 3 (Problemas)
Tema 3  (Problemas)Tema 3  (Problemas)
Tema 3 (Problemas)
 
Integral por partes
Integral por partesIntegral por partes
Integral por partes
 
Derivadas
DerivadasDerivadas
Derivadas
 
Integrales area electricidad, electronica y telecomunicaciones [muy bueno]
Integrales   area electricidad, electronica y telecomunicaciones [muy bueno]Integrales   area electricidad, electronica y telecomunicaciones [muy bueno]
Integrales area electricidad, electronica y telecomunicaciones [muy bueno]
 
Ejercicios cal-integral-2013
Ejercicios cal-integral-2013Ejercicios cal-integral-2013
Ejercicios cal-integral-2013
 

Más de WILLIAM CORTES BUITRAGO (13)

Industrial ethernet
Industrial ethernetIndustrial ethernet
Industrial ethernet
 
Industrial ethernet01
Industrial ethernet01Industrial ethernet01
Industrial ethernet01
 
Industrial ethernet 02
Industrial ethernet 02Industrial ethernet 02
Industrial ethernet 02
 
Tipologia de electricidad
Tipologia de electricidadTipologia de electricidad
Tipologia de electricidad
 
Tipologia de electricidad
Tipologia de electricidadTipologia de electricidad
Tipologia de electricidad
 
Ubicación guia didactica
Ubicación guia didacticaUbicación guia didactica
Ubicación guia didactica
 
Guia alumno
Guia alumnoGuia alumno
Guia alumno
 
Presentación trabajo siete
Presentación trabajo sietePresentación trabajo siete
Presentación trabajo siete
 
Dwf 1098[1]
Dwf 1098[1]Dwf 1098[1]
Dwf 1098[1]
 
Curso cctv seguridad actual
Curso cctv seguridad actualCurso cctv seguridad actual
Curso cctv seguridad actual
 
Lab d1-00-2
Lab d1-00-2Lab d1-00-2
Lab d1-00-2
 
Catalogo capacitacion 2008 schneider smart ing
Catalogo capacitacion 2008 schneider smart ingCatalogo capacitacion 2008 schneider smart ing
Catalogo capacitacion 2008 schneider smart ing
 
Dip automatizacionycontrol
Dip automatizacionycontrolDip automatizacionycontrol
Dip automatizacionycontrol
 

Último

4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptxnelsontobontrujillo
 
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptxGOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptxJaimeAlvarado78
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasFlor Idalia Espinoza Ortega
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteinmaculadatorressanc
 
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptxnelsontobontrujillo
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfVerenice Del Rio
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióPere Miquel Rosselló Espases
 
Época colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la épocaÉpoca colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la épocacecifranco1981
 
Estudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado BásicoEstudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado Básicomaxgamesofficial15
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...Chema R.
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdfDemetrio Ccesa Rayme
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfandioclex
 
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdfInformacionesCMI
 
Síndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuaniSíndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuanishflorezg
 
EL CARDENALITO Lengua y Literatura de 6 grado
EL CARDENALITO Lengua y Literatura de 6 gradoEL CARDENALITO Lengua y Literatura de 6 grado
EL CARDENALITO Lengua y Literatura de 6 gradomartanuez15
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfNELLYKATTY
 

Último (20)

Motivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en JesúsMotivados por la esperanza. Esperanza en Jesús
Motivados por la esperanza. Esperanza en Jesús
 
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
4. MATERIALES QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptxGOBIERNO DE MANUEL ODRIA   EL OCHENIO.pptx
GOBIERNO DE MANUEL ODRIA EL OCHENIO.pptx
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemas
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
flujo de materia y energía ecosistemas.
flujo de materia y  energía ecosistemas.flujo de materia y  energía ecosistemas.
flujo de materia y energía ecosistemas.
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
Época colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la épocaÉpoca colonial: vestimenta, costumbres y juegos de la época
Época colonial: vestimenta, costumbres y juegos de la época
 
Estudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado BásicoEstudios Sociales libro 8vo grado Básico
Estudios Sociales libro 8vo grado Básico
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
tema 6 2eso 2024. Ciencias Sociales. El final de la Edad Media en la Penínsul...
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
Los caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdfLos caminos del saber matematicas 7°.pdf
Los caminos del saber matematicas 7°.pdf
 
Sesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdfSesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdf
 
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
 
Síndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuaniSíndrome piramidal 2024 según alvarez, farrera y wuani
Síndrome piramidal 2024 según alvarez, farrera y wuani
 
EL CARDENALITO Lengua y Literatura de 6 grado
EL CARDENALITO Lengua y Literatura de 6 gradoEL CARDENALITO Lengua y Literatura de 6 grado
EL CARDENALITO Lengua y Literatura de 6 grado
 
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdfPasos para enviar una tarea en SIANET - sólo estudiantes.pdf
Pasos para enviar una tarea en SIANET - sólo estudiantes.pdf
 

Ejercicios resueltos de derivadas

  • 1. Ejercicios de derivadas e integrales Este material puede descargarse desde http://www.uv.es/~montes/biologia/matcero.pdf Departament d’Estad´ ıstica i Investigaci´ Operativa o Universitat de Val`ncia e
  • 2.
  • 3. Derivadas Reglas de derivaci´n o d Suma [f (x) + g(x)] = f (x) + g (x) dx d [kf (x)] = kf (x) dx Producto d [f (x)g(x)] = f (x)g(x) + f (x)g (x) dx d f (x) f (x)g(x) − f (x)g (x) Cociente = dx g(x) g(x)2 d {f [g(x)]} = f [g(x)]g (x) dx Regla de la cadena d {f (g[h(x)])} = f (g[h(x)])g [h(x)]h (x) dx d k d (x ) = kxk−1 [f (x)k ] = kf (x)k−1 f (x) dx dx d √ d 1/2 1 d f (x) Potencia ( x) = (x ) = √ [ f (x)] = dx dx 2 x dx 2 f (x) d 1 d −1 1 d 1 f (x) = (x ) = − 2 =− dx x dx x dx f (x) f (x)2
  • 4. 2 Reglas de derivaci´n (continuaci´n) o o d d (sin x) = cos x [sin f (x)] = cos f (x)f (x) dx dx d d Trigonom´tricas e (cos x) = − sin x [cos f (x)] = − sin f (x)f (x) dx dx d d (tan x) = 1 + tan2 x [tan f (x)] = [1 + tan2 f (x)]f (x) dx dx d 1 d f (x) (arcsin x) = √ [arcsin f (x)] = dx 1 − x2 dx 1 − f (x)2 d −1 d −f (x) Funciones de arco (arc cos x) = √ [arc cos f (x)] = dx 1 − x2 dx 1 − f (x)2 d 1 d f (x) (arctan x) = [arctan f (x)] = dx 1 + x2 dx 1 + f (x)2 d x d f (x) (e ) = ex (e ) = ef (x) f (x) dx dx Exponenciales d x d f (x) (a ) = ax ln a (a ) = af (x) ln af (x) dx dx d 1 d f (x) (ln x) = (ln f (x)) = dx x dx f (x) Logar´ ıtmicas d 1 1 d f (x) 1 (lg x) = (lg f (x)) = dx a x ln a dx a f (x) ln a
  • 5. 3 Ejercicios de derivadas 1. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´ a ıneas tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gr´fica y representar a las l´ ıneas tangentes. Soluci´n.- a) 3/4, b) 3. o 2. Determinar las tangentes de los ´ngulos que forman con el eje positivo de las x las l´ a ıneas tangentes a la curva y = 1/x cuando x = 1/2 y x = 1, construir la gr´fica y representar a las l´ ıneas tangentes. Soluci´n.- a) -4, b) -1. o 3. Hallar la derivada de la funci´n y = x4 + 3x2 − 6. o Soluci´n.- y = 4x3 + 6x. o 4. Hallar la derivada de la funci´n y = 6x3 − x2 . o Soluci´n.- y = 18x2 − 2x. o x5 x2 5. Hallar la derivada de la funci´n y = o a+b − a−b . 5x4 2x Soluci´n.- y = o a+b − a−b . x3 −x2 +1 6. Hallar la derivada de la funci´n y = o 5 . 3x2 −2x Soluci´n.- y = o 5 . x2 7. Hallar la derivada de la funci´n y = 2ax3 − o b + c. 2 2x Soluci´n.- y = 6ax − o b . 7 5 8. Hallar la derivada de la funci´n y = 6x 2 + 4x 2 + 2x. o 5 3 Soluci´n.- y = 21x 2 + 10x 2 + 2. o √ √ 1 9. Hallar la derivada de la funci´n y = o 3x + 3 x + x. √ 3 1 1 Soluci´n.- y = o √ 2 x + √ 3 2 − x2 . 3 x (x+1)3 10. Hallar la derivada de la funci´n y = o 3 . x2 3(x+1)2 (x−1) Soluci´n.- y = o 5 . 2x 2 √ 3 √ 11. Hallar la derivada de la funci´n y = o x2 − 2 x + 5. 1 2 √ 1 Soluci´n.- y = o 3 3x − √ . x √ 3 ax2 b √x . 12. Hallar la derivada de la funci´n y = o √3 x + √ x x − x 2 5 7 Soluci´n.- y = 5 ax 3 − 2 bx− 2 + 1 x− 6 . o 3 3 6 13. Hallar la derivada de la funci´n y = (1 + 4x3 )(1 + 2x2 ). o Soluci´n.- y = 4x(1 + 3x + 10x3 ). o 14. Hallar la derivada de la funci´n y = x(2x − 1)(3x + 2). o Soluci´n.- y = 2(9x2 + x − 1). o
  • 6. 4 15. Hallar la derivada de la funci´n y = (2x − 1)(x2 − 6x + 3). o Soluci´n.- y = 6x2 − 26x + 12. o 2x4 16. Hallar la derivada de la funci´n y = o b2 −x2 . 4x3 (2b2 −x2 ) Soluci´n.- y = o (b2 −x2 )2 . a−x 17. Hallar la derivada de la funci´n y = o a+x . 2a Soluci´n.- y = − (a+x)2 . o t3 18. Hallar la derivada de la funci´n f (t) = o 1+t2 . t2 (3+t2 Soluci´n.- f (t) = o (1+t2 )2 . (s+4)2 19. Hallar la derivada de la funci´n f (s) = o s+3 . (s+2)(s+4) Soluci´n.- f (s) = o (s+3)2 . x3 +1 20. Hallar la derivada de la funci´n y = o x2 −x−2 . x4 −2x3 −6x2 −2x+1 Soluci´n.- y = o (x2 −x−2)2 . 21. Hallar la derivada de la funci´n y = (2x2 − 3)2 . o Soluci´n.- y = 8x(2x2 − 3). o 22. Hallar la derivada de la funci´n y = (x2 + a2 )5 . o Soluci´n.- y = 10x(x2 + a2 )4 . o √ 23. Hallar la derivada de la funci´n y = o x2 + a2 . Soluci´n.- y = o √ x . x2 +a2 √ 24. Hallar la derivada de la funci´n y = (a + x) a − x. o a−3x Soluci´n.- y = o √ 2 a−x . 1+x 25. Hallar la derivada de la funci´n y = o 1−x . 1 Soluci´n.- y = o √ (1−x) 1−x2 . 2x2 −1 26. Hallar la derivada de la funci´n y = o √ x 1+x2 . 1+4x2 Soluci´n.- y = o 3 . x2 (1+x2 ) 2 √ 3 27. Hallar la derivada de la funci´n y = o x2 + x + 1. 2x+1 Soluci´n.- y = √ o 3 . 3 (x2 +x+1)2 √ 28. Hallar la derivada de la funci´n y = (1 + o 3 x)3 . 2 1 Soluci´n.- y = 1 + o √ 3 x .
  • 7. 5 29. Hallar la derivada de la funci´n y = sin2 x. o Soluci´n.- y = sin 2x. o 30. Hallar la derivada de la funci´n y = 2 sin x + cos 3x. o Soluci´n.- y = 2 cos x − 3 sin 3x. o 31. Hallar la derivada de la funci´n y = tan(ax + b). o a Soluci´n.- y = o cos2 (ax+b) . sin x 32. Hallar la derivada de la funci´n y = o 1+cos x . 1 Soluci´n.- y = o 1+cos x . 33. Hallar la derivada de la funci´n y = sin 2x cos 3x. o Soluci´n.- y = 2 cos 2x cos 3x − 3 sin 2x sin 3x. o 34. Hallar la derivada de la funci´n y = cot2 5x. o Soluci´n.- y = −10 cot 5x csc2 5x. o 35. Hallar la derivada de la funci´n f (t) = t sin t + cos t. o Soluci´n.- f (t) = t cos t. o 36. Hallar la derivada de la funci´n f (t) = sin3 t cos t. o Soluci´n.- f (t) = sin2 t(3 cos2 t − sin2 t). o √ 37. Hallar la derivada de la funci´n y = a cos 2x. o Soluci´n.- y = − √sin 2x . o a cos 2x 1 38. Hallar la derivada de la funci´n y = o 2 tan2 x. Soluci´n.- y = tan x sec2 x. o 39. Hallar la derivada de la funci´n y = ln cos x. o Soluci´n.- y = − tan x. o 40. Hallar la derivada de la funci´n y = ln tan x. o 2 Soluci´n.- y = o sin 2x . 41. Hallar la derivada de la funci´n y = ln sin2 x. o Soluci´n.- y = 2 cot x. o tan x−1 42. Hallar la derivada de la funci´n y = o sec x . Soluci´n.- y = sin x + cos x. o 1+sin x 43. Hallar la derivada de la funci´n y = ln o 1−sin x . 1 Soluci´n.- y = o cos x . 44. Hallar la derivada de la funci´n f (x) = sin(ln x). o cos(ln x) Soluci´n.- f (x) = o x .
  • 8. 6 45. Hallar la derivada de la funci´n f (x) = tan(ln x). o sec2 (ln x) Soluci´n.- f (x) = o x . 46. Hallar la derivada de la funci´n f (x) = sin(cos x). o Soluci´n.- f (x) = − sin x cos(cos x). o 1+x 47. Hallar la derivada de la funci´n y = ln 1−x . o 2 Soluci´n.- y = o 1−x2 . 48. Hallar la derivada de la funci´n y = log3 (x2 − sin x). o 2x−cos x Soluci´n.- y = o (x2 −sin x) ln 3 . 2 1+x 49. Hallar la derivada de la funci´n y = ln 1−x2 . o 4x Soluci´n.- y = o 1−x4 . 50. Hallar la derivada de la funci´n y = ln(x2 + x). o 2x+1 Soluci´n.- y = o x2 +x . 51. Hallar la derivada de la funci´n y = ln(x3 − 2x + 5). o 3x2 −2 Soluci´n.- y = o x3 −2x+5 . 52. Hallar la derivada de la funci´n y = x ln x. o Soluci´n.- y = ln x + 1. o 53. Hallar la derivada de la funci´n y = ln3 x. o 3 ln2 x Soluci´n.- y = o x . √ 54. Hallar la derivada de la funci´n y = ln(x + o 1 + x2 ). Soluci´n.- y = o √ 1 . 1+x2 55. Hallar la derivada de la funci´n y = ln(ln x). o 1 Soluci´n.- y = o x ln x . 56. Hallar la derivada de la funci´n y = e(4x+5) . o Soluci´n.- y = 4e(4x+5) . o 2 57. Hallar la derivada de la funci´n y = ax . o 2 Soluci´n.- y = 2xax ln a. o 2 58. Hallar la derivada de la funci´n y = 7(x o +2x) . 2 (x +2x) Soluci´n.- y = 2(x + 1)7 o ln 7. 59. Hallar la derivada de la funci´n y = ex (1 − x2 ). o Soluci´n.- y = ex (1 − 2x − x2 ). o ex −1 60. Hallar la derivada de la funci´n y = o ex +1 . 2ex Soluci´n.- y = o (ex +1)2 .
  • 9. 7 61. Hallar la derivada de la funci´n y = esin x . o Soluci´n.- y = esin x cos x. o 62. Hallar la derivada de la funci´n y = atan nx . o Soluci´n.- y = natan nx sec2 nx ln a. o 63. Hallar la derivada de la funci´n y = ecos x sin x. o Soluci´n.- y = ecos x (cos x − sin2 x). o 64. Hallar la derivada de la funci´n y = ex ln(sin x). o Soluci´n.- y = ex (cot x + ln(sin x)). o 1 65. Hallar la derivada de la funci´n y = x x . o 1 1−ln x Soluci´n.- y = x x o x2 . 66. Hallar la derivada de la funci´n y = xln x . o Soluci´n.- y = xln x−1 ln x2 . o 67. Hallar la derivada de la funci´n y = xx . o Soluci´n.- y = xx (1 + ln x). o x 68. Hallar la derivada de la funci´n y = ex . o x Soluci´n.- y = ex (1 + ln x)xx . o
  • 10. 8
  • 11. Integrales Tabla de integrales inmediatas xp+1 f (x)p+1 xp dx = +C (p = −1) f (x)p f (x)dx = +C (p = −1) p+1 p+1 1 f (x) dx = ln |x| + C dx = ln |f (x)| + C x f (x) sin xdx = − cos x + C f (x) sin f (x)dx = − cos f (x) + C cos xdx = sin x + C f (x) cos f (x)dx = sin f (x) + C 1 f (x) dx = tan x + C dx = tan f (x) + C cos2 x cos2 f (x) 1 f (x) dx = − cot x + C dx = − cot f (x) + C sin2 x sin2 f (x) 1 f (x) dx = arctan x + C dx = arctan f (x) + C 1 + x2 1 + f (x)2 1 f (x) √ dx = arcsin x + C dx = arcsin f (x) + C 1 − x2 1 − f (x)2
  • 12. 10 Tabla de integrales inmediatas (continuaci´n) o −1 −f (x) √ dx = arc cos x + C dx = arc cos f (x) + C 1 − x2 1 − f (x)2 ex dx = ex + C f (x)ef (x) dx = ef (x) + C ax af (x) ax dx = +C f (x)af (x) dx = +C ln a ln a Ejercicios de integrales indefinidas 1. Calcular la integral x5 dx. x6 Soluci´n.- o + C. 6 √ 2. Calcular la integral (x + x)dx. √ x2 2x x Soluci´n.- o + + C. 2 3 √ 3 x x 3. Calcular la integral √ − dx. x 4 √ 1 √ Soluci´n.- 6 x − x2 x + C. o 10 x2 4. Calcular la integral √ dx. x 2 2√ Soluci´n.- o x x + C. 5 1 4 5. Calcular la integral + √ + 2 dx. x2 x x 1 8 Soluci´n.- − o − √ + 2x + C. x x 1 6. Calcular la integral √ dx. 4 x 4√ 3 4 Soluci´n.- o x + C. 3
  • 13. 11 7. Calcular la integral e5x dx. 1 Soluci´n.- e5x + C. o 5 8. Calcular la integral cos 5xdx. sin 5x Soluci´n.- o + C. 5 9. Calcular la integral sin axdx. cos ax Soluci´n.- − o + C. a ln x 10. Calcular la integral dx. x 1 2 Soluci´n.- o ln x + C. 2 1 11. Calcular la integral dx. sin2 3x cot 3x Soluci´n.- − o + C. 3 1 12. Calcular la integral dx. cos2 7x tan 7x Soluci´n.- o + C. 7 1 13. Calcular la integral dx. 3x − 7 1 Soluci´n.- o ln |3x − 7| + C. 3 1 14. Calcular la integral dx. 1−x Soluci´n.- − ln |1 − x| + C. o 1 15. Calcular la integral dx. 5 − 2x 1 Soluci´n.- − ln |5 − 2x| + C. o 2 16. Calcular la integral tan 2xdx. 1 Soluci´n.- − ln | cos 2x| + C. o 2 17. Calcular la integral sin2 x cos xdx. sin3 x Soluci´n.- o + C. 3 18. Calcular la integral cos3 x sin xdx. cos4 x Soluci´n.- − o + C. 4
  • 14. 12 √ 19. Calcular la integral x x2 + 1dx. 1 Soluci´n.- o (x2 + 1)3 + C. 3 x 20. Calcular la integral √ dx. 2x2 + 3 1 Soluci´n.- o 2x2 + 3 + C. 2 cos x 21. Calcular la integral dx. sin2 x 1 Soluci´n.- − o + C. sin x sin x 22. Calcular la integral dx. cos3 x 1 Soluci´n.- o + C. 2 cos2 x tan x 23. Calcular la integral dx. cos2 x tan2 x Soluci´n.- o + C. 2 cot x 24. Calcular la integral dx. sin2 x cot2 x Soluci´n.- − o + C. 2 ln(x + 1) 25. Calcular la integral dx. x+1 ln2 (x + 1) Soluci´n.- o + C. 2 cos x 26. Calcular la integral √ dx. 2 sin x + 1 √ Soluci´n.- 2 sin x + 1 + C. o sin 2x 27. Calcular la integral dx. (1 + cos 2x)2 1 Soluci´n.- o + C. 2(1 + cos 2x) sin 2x 28. Calcular la integral dx. 1 + sin2 x Soluci´n.- 2 1 + sin2 x + C. o √ tan x + 1 29. Calcular la integral dx. cos2 x 2 Soluci´n.- o (tan x + 1)3 + C. 3
  • 15. 13 ln2 x 30. Calcular la integral dx. x ln3 x Soluci´n.- o + C. 3 arcsin x 31. Calcular la integral √ dx. 1 − x2 arcsin2 x Soluci´n.- o + C. 2 x 32. Calcular la integral dx. x2 + 1 1 Soluci´n.- ln(x2 + 1) + C. o 2 x+1 33. Calcular la integral dx. x2 + 2x + 3 1 Soluci´n.- o ln(x2 + 2x + 3) + C. 2 34. Calcular la integral e2x dx. 1 Soluci´n.- e2x + C. o 2 x 35. Calcular la integral e 2 dx. x Soluci´n.- 2e 2 + C. o 36. Calcular la integral esin x cos xdx. Soluci´n.- esin x + C. o 37. Calcular la integral 3x ex dx. 3x e x Soluci´n.- o + C. ln 3 + 1 38. Calcular la integral e−3x dx. 1 Soluci´n.- − e−3x + C. o 3 2 39. Calcular la integral ex +4x+3 (x + 2)dx. 1 2 Soluci´n.- ex +4x+3 + C. o 2 1 40. Calcular la integral dx. 1 + 2x2 1 √ Soluci´n.- √ arctan( 2x) + C. o 2 1 41. Calcular la integral √ dx. 1 − 3x2 1 √ Soluci´n.- √ arcsin( 3x) + C. o 3
  • 16. 14 1 42. Calcular la integral √ dx. 9 − x2 x Soluci´n.- arcsin o + C. 3 1 43. Calcular la integral dx. 4 + x2 1 x Soluci´n.- arctan + C. o 2 2
  • 17. 15 Integraci´n por partes o Recordemos la f´rmula de la deriva del producto de funciones o d [u(x)v(x)] = u (x)v(x) + u(x)v (x), dx que expresada bajo forma de diferencial da lugar a d[u(x)v(x)] = d[u(x)]v(x) + u(x)d[v(x)]. De donde se obtiene, u(x)d[v(x)] = d[u(x)v(x)] − v(x)d[u(x)]. Integrando ahora ambos miembros tendremos u(x)d[v(x)] = u(x)v(x) − v(x)d[u(x)], que se escribe tambi´n en forma abreviada, e udv = uv − vdu. (1) Esta expresi´n es conocida como la f´rmula de la integraci´n por partes y es de gran utilidad o o o para la resoluci´n de integrales. Se aplica a la resoluci´n de las integrales udv a partir de o o la integral vdu que se supone m´s sencilla. La aplicaci´n de (1) exige primero identificar a o adecuadamente en el integrando las funciones u(x) y v(x). Veamos un ejemplo Ejemplo 1 Si queremos calcular la integral x3 ln xdx, observemos que la integral de x3 es inmediata y que la derivada de ln x es tambi´n muy sencilla. e As´ si asignamos ı, u = ln x y dv = x3 dx, tendremos dx x4 du = y v= + C1 , x 4 si integramos ahora x4 x3 ln xdx = ln x d + C1 4 x4 x4 dx = + C1 ln x − + C1 4 4 x x4 x3 C1 = + C1 ln x − + dx 4 4 x x4 x4 = ln x − + C. 4 16 Observemos que la primera constante de integraci´n C1 se cancela de la respuesta final (C1 ln x− o C1 ln x). Este es siempre el caso cuando integramos por partes, por ello, en la pr´ctica, nunca a incluimos una constante de integraci´n en v(x), simplemente tomaremos para v(x) cualquier o primitiva de dv(x).
  • 18. 16 Algunos tipos de integrales que se resuelven por partes xn ex dx u = xn dv = ex dx xn sin xdx u = xn dv = sin xdx xn cos xdx u = xn dv = cos xdx xn ln xdx u = ln x dv = xn dx arctan xdx u = arctan x dv = dx arcsin xdx u = arcsin x dv = dx ln xdx u = ln x dv = dx Ejercicios de integraci´n por partes o 1. Calcular la integral xex dx. Soluci´n.- xex − ex + C. o 2. Calcular la integral ln xdx. Soluci´n.- x ln x − x + C. o 3. Calcular la integral x2 e3x dx. x2 2x 2 Soluci´n.- e3x o − + + C. 3 9 27 4. Calcular la integral x3 e−x dx. Soluci´n.- −e−x x3 + 3x2 + 6x + 6 + C. o 5. Calcular la integral x sin xdx. Soluci´n.- −x cos x + sin x + C. o 6. Calcular la integral x2 cos 2xdx. x2 sin 2x x cos 2x 1 Soluci´n.- o + − sin 2x + C. 2 2 4 7. Calcular la integral ex sin xdx. −ex cos x + ex sin x Soluci´n.- o + C. 2 3 8. Calcular la integral x5 ex dx. 3 ex Soluci´n.- o (x3 − 1) + C. 3
  • 19. 17 Ejercicios de integrales definidas y c´lculo de ´reas a a 1 1. Calcular la integral definida 0 x4 dx. 1 Soluci´n.- . o 5 1 x 2. Calcular la integral definida 0 e dx. Soluci´n.- e − 1. o π 3. Calcular la integral definida 2 0 sin xdx. Soluci´n.- 1. o 1 1 4. Calcular la integral definida 0 dx. 1 + x2 π Soluci´n.- o . 4 5. Hallar el ´rea de la figura comprendida entre la curva y = 4 − x2 y el eje X. a 2 Soluci´n.- 10 . o 3 6. Hallar el ´rea de la figura comprendida entre las curvas y 2 = 9x e y = 3x. a 1 Soluci´n.- . o 2 7. Hallar el ´rea de la figura limitada por la hip´rbola equil´tera xy = a2 , el eje X y las a e a rectas x = a y x = 2a. Soluci´n.- a2 ln 2. o