SlideShare una empresa de Scribd logo
42
PATRONES Y ECUACIONES
• Uso de ecuaciones cuadráticas o de segundo grado para modelar situaciones y
resolverlas usando la factorización.
CONOCIMIENTOS PREVIOS
MULTIPLICACIÓN DE DOS BINOMIOS. (x + y)(x + y) ó (x + 6)(x + 6)
PROBLEMA: La carátula de un libro que tiene forma cuadrada, mide por lado x+ 6 cm.
¿Cuál es el área de su carátula?
Al elevar un binomio al cuadrado nos resulta un trinomio cuadrado perfecto: x² + 12x + 36
ACTIVIDADES DE CLASE
1.- Resuelve las siguientes multiplicaciones.
(x + 3)(x + 3) = _________________________
(x + 8)(x + 8) = _________________________
(x + 10)(x + 10) = _______________________
(x + 1)(x + 1) = _________________________
(x + 12)(x + 12) = ________________________
2.- Completa la siguiente tabla.
BINOMIO AL CUADRADO
RESULTADO.TRINOMIO
CUADRADO PERFECTO
TÉRMINO
INDEPENDIENTE
TÉRMINO
LINEAL
(x + 5) (x + 5) x² + 10x + 25 25 10x
(x + 2) (x + 2)
(x + 7) (x + 7)
(x + 6) (x +6)
(x + 14) (x + 14)
(x - 5) (x - 5)
(x - 7) (x - 7)
(x - 14) (x - 14)
BLOQUE 2
6
x
x + 6
+
36
Para resolver este problema multiplicamos (x + 6) (x + 6)
x + 6) (x + 6) es lo mismo que (x + 6)².
Realizando la multiplicación tenemos:
x + 6
x + 6
x² + 6x
6x + 36
x² + 12x + 36 (x + 6)(x + 6) = x² + 6x + 6x + 36
x² + 12x + 36
42
FACTORIZACIÓN DE UN TRINOMIO CUADRADO PERFECTO
PROBLEMA: La carátula de un libro de forma cuadrada, mide de área x² + 12x + 36.
¿Cuánto mide cada uno de sus lados?
Al factorizar un trinomio cuadrado que no es perfecto, usamos el mismo procedimiento:
EJEMPLO 1: Factorizar el trinomio cuadrado: x² + 8x + 12 =
Raíz cuadrada de x² = x
Dos números que multiplicados de 12 y que sumados de 8: El +6 y el +2
6 x 2 = 12 6 + 2 = 8
Factorización de x² + 8x + 12 = (x + 6) (x + 2)
EJEMPLO 2: Factorizar el trinomio x² + 4x – 96 = (x + 12) (x – 8)
(12)(-8) = - 96 12 – 8 = 4
ACTIVIDADES DE CLASE
1.- Responde a las siguientes preguntas.
a) ¿Cuáles son los dos números que multiplicados da 15 y sumados da 8? ____ y _____
Comprobación: (___) (___) = 24 ____ + ____ = 8
b) ¿Cuáles son los dos números que multiplicados da 24 y sumados da 11? ____ y _____
Comprobación: (___) (___) = 11 ____ + ____ = 11
c) ¿Cuáles son los dos números que multiplicados da 18 y sumados da 9? ____ y _____
Comprobación: (___) (___) = ____ ____ + ____ = ____
d) ¿Cuáles son los dos números que multiplicados da -12 y sumados da 4? ____ y _____
Comprobación: (___) (___) = ____ ____ + ____ = 8
e) ¿Cuáles son los dos números que multiplicados da -15 y sumados da -8? ____ y _____
Comprobación: (___) (___) = ____ ____ + ____ = ____
x² + 12x + 36
Para resolver este problema lo que hacemos es factorizar el trinomio cuadrado
perfecto x² + 12x + 36.
Factorizar significa que lo vamos a regresar a su forma original, es decir, que lo
vamos a indicar por medio de dos factores.
Para factorizar el trinomio x² + 12x + 36 hacemos lo siguiente:
Sacamos raíz cuadrada al término x² = x
Buscamos dos números que multiplicados nos dé 36 y que sumados dos dé 12.
Estos dos números son el 6 y el 6. Porque (6)(6) = 36 6 + 6 = 12
Escribimos los dos factores con los resultados obtenidos: (x + 6) (x + 6)
42
2.- Completa la siguiente tabla.
FACTORES RESULTADO
(x + 2)(x + 2) x² + 4x + 4
(x + 4)(x + 4)
(x + 5)(x + 5)
(x + 2)(x + 4)
(x + 7)(x + 3)
(x + 5)(x + 9)
x² + 18x + 81
x² + 14x + 49
x² + 6x + 9
x² + 8x + 15
x² + 14x + 49
x² + 10x + 24
x² + 7x + 10
x² + 15x + 56
3.- Completa como el ejemplo la siguiente tabla para factorizar el trinomio.
TRINOMIO PRIMER
FACTOR
SEGUNDO
FACTOR
FACTORIZACIÓN
x² + 14x + 33 (x + 11) (x + 3) (x + 11) (x + 3)
x² + 9x + 18
x² + 8x + 15
x² + 11x + 24
x² + 13x + 40
x² + 13x + 30
x² + 10x + 21
x² + 12x + 27
x² + 5x + 4
x² + 18x + 80
4.- Completa como el ejemplo la siguiente tabla, hasta llegar a la factorización de cada
trinomio cuadrado.
TRINOMIO PRIMER
FACTOR
SEGUNDO
FACTOR
FACTORIZACIÓN
x² - 4x – 32 (x – 8) (x + 4) (x – 8) (x + 4)
x² - 6x + 8
x² - 16x + 63
x² - 13x + 30
x² + 7x – 18
x² - 12x + 27
Raíz cuadrada de x² = x
Dos números que multiplicados den 81 y
sumados den 18: +9 y +9
FACTORIZACIÓN TOTAL
33 3
11 11
1
Dos números que
multiplicados den 33 y
sumados den 14: 11 y 3
42
ECUACIONES COMPLETAS DE SEGUNDO GRADO POR FACTORIZACIÓN.
Una ecuación de segundo grado es completa cuando tiene los tres términos: El término
cuadrático, el término lineal y el independiente: x² + 8x – 20 = 0. En ocasiones estas
ecuaciones las podemos resolver usando la factorización como lo veremos en el siguiente
ejemplo:
PROBLEMA: La siguiente figura representa a una caja de cerillos cuya área es de
x² + 8x + 15 cm y dicha área es igual a 35 cm². ¿Cuántos centímetros mide de largo y de
ancho si sabemos que el largo vale x + 5 y su ancho x + 3 centímetros?
x La ecuación que resulta es: x² + 8x + 15 = 35
+ x² + 8x + 15 = 35
3 Igualamos a cero: x² + 8x + 15 – 35 = 0
x + 5 Reducimos términos: x² + 8x – 20 = 0
Resolvemos la ecuación de la siguiente manera:
x² + 8x – 20 = 0
(x + 10)(x – 2) = 0
x + 10 = 0
x = -10
x – 2 = 0
x = 2
Como no existen longitudes negativas, entonces el valor que satisface el problema es
x = 2. Por lo tanto el largo mide 7cm y el ancho 5 cm.
ACTIVIDADES DE CLASE
1.- Resuelve las siguientes ecuaciones de segundo grado completas por factorización.
x² + 8x + 15 = 0 x² + 9x + 20 = 0 x² + 9x + 18 = 0
Factorizamos el trinomio de segundo grado
sacando raíz a x² y buscando dos números que
multiplicados den -20 y sumados den 8.
El factor x + 10 lo igualamos a 0 y despejamos x
para encontrar el primer valor de la ecuación.
El factor x – 2 lo igualamos a cero y despejamos x para
encontrar el segundo valor de la ecuación.
20 2 2
10 2
5 5 10
1
(10)(2) = 20
42
x² - 4x – 32 = 0 x² + 10x + 21 = 0 x² - 6x + 8 = 0
x² - 16x + 63 = 0 x² - 13x + 30 = 0 x² + 7x = 18
x² + 7x + 12 = 0 x² -14x + 49 = 0 x² + 5x - 126 = 0
x² + 9x + 20 = 0 x² + 5x + 6 = 0 x² + 9x + 14 = 0
x² + 5x – 24 = 0 x² +22x + 120 = 0 x² +5x – 14 = 0
42
2.- Resuelve los siguientes problemas.
PROBLEMA 1.- El cuadrado de un número
menos el doble del mismo número es igual
a 48. ¿Cuál es ese número?... …….______
PROBLEMA 3.- ¿Cuál es la medida por lado de cada una de las siguientes figuras?
x + 6
x + 2A = 140
A = 56
x + 5
x + 4
PROBLEMA 2.- El cuadrado de un número
menos el triple del mismo número es igual a
10.
¿Cuál es ese número?.....................
PROBLEMA 4.- Pienso un número. Si lo
elevo al cuadrado, le sumo dos veces el
mismo número y le resto 15, me da como
resultado 0.
¿Cuál es ese número?……….….______
PROBLEMA 5.- Pienso un número. Si lo
elevo al cuadrado, le sumo 9 veces el
mismo número y le aumento 18, me da
como resultado 0.
¿Cuál es ese número?..................._____
42
PATRONES Y ECUACIONES
• Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas usando la
factorización.
CONOCIMIENTOS PREVIOS
FACOTRIZACIÓN POR FACTOR COMÚN
PROBLEMA: La superficie de la tapa de una caja de zapatos mide (15x² + 5x) cm².
¿Cuál es la medida de su largo y de su ancho?
Para resolver el problema factorizamos lo que mide de área, es
decir, encontramos dos factores que multiplicados nos den 15x² + 5x.
El binomio 15x² + 5x se factoriza de la siguiente manera:
Vemos que la expresión 15x² + 5x contiene un factor común que es 5x.
Es factor común porque lo podemos encontrar en los dos términos del binomio:
15x² = 5x(3x) 5x = 5x(1)
Cuando ya encontramos el factor común se encuentra el otro factor.
15x² + 5x = 5x( 3x + 1) 5x(3x) = 15² 5x(1) = 5x
Otro ejemplo: Factorizar el binomio x² + x
x² + x = x(x + 1)
ACTIVIDADES DE CLASE
1.- Factoriza los siguientes binomios.
x² + 6x = x² + 10x = m² + 12m =
x² - 8x = x² - 4x = x² + 9x =
2x² + 4x = 3x² + 6x = 6x² + 24x =
4x² - 32x = 15x² - 15x = 5x² - 65x =
2.- ¿Cuál es la factorización del binomio 8x² + 4x?....................................................... (___)
a) x(8 + 4x) b) 4x(2x + 1) c) 4x(2 + 4) d) x(8x + 4)
15x² + 5x
42
3.- ¿Cuál es la factorización del binomio 5x² - 25x?...................................................... (___)
a) x(5 - 25x) b) x(5x - 1) c) 5x(5- 25) d) 5x(x - 5)
4.- ¿Cuál es la factorización del binomio a² + a?.......................................................... (___)
a) a(a + 1) b) a(a - 1) c) a(1 + 1) d) a²(a + a)
5.- ¿Cuál es la factorización del binomio x² - 4x?.......................................................... (___)
a) x(x + 4) b) x(x - 4) c) x(1 + 4) d) x²(x + 4)
ECUACIONES DE SEGUNDO GRADO INCOMPLETAS POR FACTORIZACIÓN
Existen ecuaciones de segundo grado o cuadráticas que se pueden resolver usando la
factorización, por medio del factor común.
Estas ecuaciones son incompletas de la forma: Ax² + bx = 0
PROBLEMA: El cuadrado de un número es igual al triple del mismo número.
¿Cuál es ese número?
La ecuación que resulta es: x² = 3x
Se resuelve de la siguiente manera:
x² = 3x
x² - 3x = 0 Igualamos a 0, cambiando 3x al primer miembro con signo contrario.
x(x - 3) = 0 Factorizamos por medio de factor común el binomio x² - 3x.
x = 0 El factor x lo igualamos a 0 para obtener el primer valor.
x – 3 = 0 El factor x – 3 lo igualamos a cero y despejamos la x.
x = 3 Tenemos el segundo valor de la ecuación.
ACTIVIDADES DE CLASE
1.- Resuelve por factorización las siguientes ecuaciones de segundo grado incompletas.
x² - 8x = 0 3x² - 6x = 0 x² - 5x = 0 4x² - 32x = 0
Se llaman incompletas porque les
falta el término independiente o
sea el numérico: 2x² - 8x = 0
42
4x² - 24x = 0 x² - 16x = 0 2x² - 6x = 0 5x² = 25x
2.- Resuelve los siguientes problemas. Identifica primero la ecuación que debes usar de
las tres que se presentan. Toma los resultados enteros de cada ecuación.
PROBLEMA 1.- El área de un cuadrado es
igual a 9 veces la medida de su lado.
¿Cuál es la medida de su lado?.. …..______
• x² = 9 • x² = 9x • x = 9x
PROBLEMA 2.- El cuádruple del área de un
cuadrado es igual a 16 veces la medida de su
lado.
¿Cuánto mide por lado el cuadrado? ______
• 4x² = 16x • x² = 16 • 4x = 16x
42
3.- Resuelve los siguientes problemas.
FIGURAS Y CUERPOS GEOMÉTRICOS
• Análisis de las propiedades de la rotación y de la traslación de figuras.
TRASLACIÓN
PROBLEMA: En un cartel como el de enseguida que se está elaborando, se ha dibujado
una figura geométrica F. Aplica una traslación a la figura que se ha dado.
F
PROBLEMA 1.- El cuadrado de un número
es igual a 6 veces el mismo número. ¿Cuál
es ese número? _______
PROBLEMA 2.- El doble del área de un
cuadrado es igual a 12 veces la medida de su
lado. ¿Cuál es la medida del lado del
cuadrado? _______________
Una traslación es el desplazamiento de una figura
en la misma dirección a lo largo de una recta.
La figura la podemos desplazar hacia la derecha,
hacia la izquierda, hacia arriba, hacia abajo, etc.
La figura conserva la misma orientación, la misma
posición, misma forma y mismo tamaño.
42
ACTIVIDADES DE CLASE
1.- Aplica una traslación a cada una de las siguientes figuras según la distancia y la
dirección que se indica por la flecha.
¿Cómo es el tamaño y la forma de las parejas de figuras?____________
¿Cómo son los ángulos de cada pareja de figuras?____________
¿Qué es lo único que cambia en la traslación?
¿Son paralelas las flechas?______
2.- Aplica una traslación a cada una de las siguientes figuras. Utiliza escuadras para el
trazo de las paralelas a la recta dada.
SIMETRÍA AXIAL O REFLEXIVA
La simetría axial recibe este nombre porque la transformación se hace en base a una
recta llamada eje de simetría. La simetría axial es una reflexión.
PROBLEMA: Dada la figura ABCD y el eje de simetría m, traza su simétrica y llámala
figura A’B’C’D'.
Todas las flechas son paralelas
D
C
B
A
Al doblar la figura sobre su eje de
simetría, la forma de la figura
original coincide exactamente con
la figura que se refleja.
Esto se puede demostrar con la
reflexión de la figura en un
espejo.
C´
A
D
C
m
Todos los trazos auxiliares deben ser perpendiculares
con el eje de simetría y partir cada uno de los vértices
de la figura original.
42
Si observamos las figuras tenemos que:
a) Conservan su forma, igualdad de lados y de ángulos.
d) Conserva colinealidad, ya que, si los puntos A y B se encuentran alineados, también
están alineados los puntos A´ y B´.
ACTIVIDADES DE CLASE
1.- Traza una figura simétrica a la siguiente con respecto al eje de simetría dado.
2.- Dadas las siguientes figuras, traza a cada una su simétrica de acuerdo con el eje de
simetría m que se da. Aplica una reflexión.
m
A´
D´
B´B
m
Esta medida la puedes
tomar con el compás.
42
l
m
3.- Traza la figura simétrica del siguiente triángulo y contesta las preguntas.
4.- Completa las siguientes figuras, para que la recta m sea eje de simetría de la figura
que resulta.
5.- Las reflexiones son movimientos en el plano, o transformaciones geométricas que son
aplicadas sucesivamente a una figura, sin modificarla.
Enseguida realiza al triángulo reflexiones de acuerdo a los ejes l y m que se cortan
formando un ángulo de 90°.
m
C
B
A
34°
56°
¿Cuánto medirá en ángulo A´?_______
¿Cuánto medirá el ángulo B´?________
¿Cuánto medirá el lado A´C?________
¿Cuánto medirá el lado BC?________
Si el área del triángulo ABC es 15 u²,
¿cuánto medirá el área del triángulo A
´BC?____________
mm
¿Qué figura se formó?__________________
42
l m
m
Esta figura es una traslación
de la primera. Tienen ambas
la misma orientación.
6.- Realiza enseguida dos transformaciones seguidas, con base a los ejes de simetría l y
m que son paralelos. Contesta enseguida las preguntas que se hacen.
a) ¿Cuáles figuras coinciden en su orientación? ________________________________
_______________________________________________________________________
b) ¿Qué observas en las distancias entre la primera figura y la última?_______________
_______________________________________________________________________
c) ¿Se conservan las distancias y los ángulos? __________________________________
d) ¿Es ésta una reflexión donde todos los puntos se mueven en la misma dirección y a la
misma distancia?______
7.- Realiza las siguientes reflexiones con respecto a los ejes de simetría m y n.
42
n
a) ¿Cuáles figuras coinciden en su orientación? ________________________________
_______________________________________
SIMETRÍA CENTRAL
La simetría central es la que se realiza con respecto a un punto llamado centro de
simetría. Una simetría central es una rotación.
PROBLEMA: Dado el triángulo ABC y el centro de simetría O, traza su simétrico y llámalo
A’B’C’.
OA = OA’
OB = OB’
OC = OC’
La figura gira.
Rotación.
O
C´
A´B´C
BA
•
La distancia OB puedes tomarla con
el compás y luego marcar la
distancia OB´.
42
Si observamos vemos que:
a) Las figuras conservan su forma y la igualdad de sus ángulos.
b) AB es paralelo con el segmento A´B´.
ACTIVIDADES DE CLASE
1.- Traza en los dos casos, los simétricos del triángulo ABC y del cuadrado ABCD, con
respecto al centro de simetría O y contesta las preguntas que se te hacen.
•
•
a) ¿Cómo son las figuras, iguales o diferentes? _____________________
b) Todos los segmentos y sus simétricos, ¿son paralelos o perpendiculares? __________
2.- Con respecto al punto O, aplica al trapecio y al rombo una rotación de 180°.
•
C
B
A
O
O
D
A B
C
D
A
B
C
O
42
•
3.- Realiza al triángulo y al pentágono una rotación con respecto al centro de simetría O.
•
FIGURAS Y CUERPOS GEOMÉTRICOS
• Construcción de diseños que combinan la simetría axial y central, la rotación y la
traslación de figuras.
ACTIVIDADES DE CLASE
1.- Se va a pintar una de las paredes de la escuela, aplicando una reflexión respecto al
eje de simetría “m” a la figura ya dibujada y enseguida una rotación respecto al centro de
simetría “O” a cada una de las dos figuras resultantes. Realiza el dibujo enseguida.
O
O
m
42
O
O
•
2.- Realiza al siguiente triángulo la traslación y las rotaciones indicadas.
•
MEDIDA
• Análisis de las relaciones entre las áreas de los cuadrados que se construyen sobre los
lados de un triángulo rectángulo.
TEOREMA DE PITÁGORAS
PROBLEMA: La recámara rectangular de una casa mide 4 metros de largo por 3 metros
de ancho. ¿Cuánto mide la diagonal de la recámara?
Si al rectángulo que forma la recámara le trazamos una diagonal, nos resultan dos
triángulos rectángulos como los siguientes:
4
Cateto menor 3 m
4 m
Cateto mayor
HipotenusaPara encontrar la medida
de la diagonal de la
recámara, trabajamos solo
con uno de los triángulos.
3
42
Para resolver problemas con triángulos rectángulos podemos aplicar la relación
pitagórica: c² = a² + b²
Esta relación se establece entre las áreas de los cuadrados que se construyen sobre la
base de cada uno de los lados del triángulo rectángulo.
c² = a² + b²
La diagonal de la recámara la encontramos de la siguiente manera:
c² = 4² + 3²
c² = 16 + 9
c² = 25
c = √25
c = 5
ACTIVIDADES DE CLASE
1.- Aplicando el teorema de Pitágoras analiza el siguiente triángulo rectángulo y contesta.
¿Cuánto mide el cateto mayor? _________
¿Cuánto mide el cateto menor? __________
¿Cuánto mide su hipotenusa? _________
¿Cuánto medirá el área del cuadrado que se construya sobre la hipotenusa? _________
¿Cuánto medirá el área del cuadrado que se construya sobre el cateto mayor? ________
¿Cuánto medirá el área del cuadrado que se construya sobre el cateto menor? ________
7 8 9
4 5 6
1 2 3
22 23 24 25
18 19 20 21
14 15 16 17
10 11 12 13
25242322
14
17
16
15
21
20
19
1810 11 12 13
A = 25 m²
A = 16 m²
A = 9 m²
6 u
10 u
8 u
a
b
c
TEOREMA DE PITÁGORAS
“En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los
cuadrados de los catetos”.
4
3
c
Cuadrados de los
2 catetos
(completa hasta el
25)
42
Completa lo siguiente tomando y aplica el teorema de Pitágoras en el triángulo anterior:
10² = ______ + ______
10² = ______ + ______
100 = _______
2.- Haz lo que se te pide enseguida para que demuestres el teorema de Pitágoras.
Dibuja los cuadrados a los catetos y a la hipotenusa del siguiente triángulo rectángulo y
demuestra que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los
catetos. Utiliza las mismas unidades cuadradas de los catetos en la hipotenusa.
MEDIDA
• Explicitación y uso del teorema de Pitágoras.
ACTIVIDADES DE CLASE
1.- Encuentra la medida que falta en cada uno de los siguientes triángulos rectángulos.
8
8
8
c
36
15
c
c
40
42
c12
9
42
2.- Encuentra cuánto mide la diagonal de la ventana y del cuadro del campo de beisbol.
3.- Encuentra la medida del segmento AB y el perímetro del cuadrado de la derecha.
4.- Resuelve los siguientes problemas.
F. A. P. Villa
27.43 m
A
B
27.43 m
15 cm
8 cm
a
5345
b
15
17
PROBLEMA 1.- La distancia del Palacio de
Gobierno a la estatua de Pancho Villa es de
1700 metros y de ésta a la estatua de la
Felipe Ángeles hay una distancia de 800
metros. ¿Qué distancia en línea recta
recorrerá un helicóptero al pasar sobre el
Palacio de Gobierno hasta pasar sobre la
estatua de Felipe Ángeles
PROBLEMA 2.- Los jardines de la Plaza del
Seguro de Nombre de Dios tienen forma
triangular como se muestra enseguida:
Si el cateto menor
de cada parte de
los jardines mide 32
metros y el cateto
mayor mide 50
metros. ¿Cuánto
mide el tercer lado?
42
P.G.
2 m
5 m
PROBLEMA 3.- ¿Cuánto mide el
perímetro de un triángulo rectángulo cuyos
catetos miden 4 cm y 6 cm
respectivamente?
PROBLEMA 4.- ¿Cuánto mide la diagonal
de un rectángulo de 15 cm de largo y 8 cm de
ancho?
PROBLEMA 5.- Encuentra la medida del
ancho de la pared de una casa
construida de la siguiente forma.
PROBLEMA 6.- Un avión ha recorrido 1800
metros a partir del despegue y se encuentra
a 800 metros de altura sobre la horizontal.
¿Qué distancia horizontal ha recorrido desde
el punto de donde despegó?
42
Fed. 2
Fed.8
Fed.5
3.2 km
1.5 km
30 cm 15 cm
PROBLEMA 7.- Una puerta del archivero de
las oficinas de la escuela mide 60 cm de alto
por 32 cm de ancho. ¿Cuánto mide cada una
de sus diagonales?
PROBLEMA 8.- ¿Cuánto mide cada una de
las diagonales que se encuentran diseñadas
en la siguiente ventana?
PROBLEMA 9.- La siguiente figura ilustra la
ubicación y distancias aproximadas de las
escuelas secundarias federales 2, 5 y 8.
¿Cuál es la distancia aproximada entre la
federal 5 y la federal 8?
PROBLEMA 10.- La torre de la antena de
televisión de Chihuahua mide 60 m de altura,
y está sostenida por 4 cables cuyas bases
están a 20 m del pie de la torre de la
antena. Si los cables llegan hasta el punto
más alto de la torre, ¿cuánto mide de largo
cada cable?
PROBLEMA 11.- El vidrio de una ventana
que tiene forma rectangular mide 60 cm de
base y su diagonal mide 68 cm. ¿Cuál es la
medida de la altura del vidrio?
PROBLEMA 12.- La Guía de Clase de
Matemáticas mide 28 cm de largo por 21 cm de
ancho. ¿Cuál es la medida de su diagonal?
42
NOCIONES DE PROBABILIDAD
• Cálculo de la probabilidad de la ocurrencia de dos eventos mutuamente excluyentes y de
eventos complementarios (regla de la suma).
REGLA DE LA SUMA.
PROBLEMA: ¿Cuál es la probabilidad de obtener 2 o 5 al lanzar un dado?
Resolvemos por partes el problema:
Primero: ¿Cuál es la probabilidad de de obtener 2 puntos al lanzar un dado?.............
Enseguida: ¿Cuál es la probabilidad de obtener 5 puntos par al lanzar un dado?..............
Por último: ¿Cuál es la probabilidad de obtener 2 o 5 al lanzar un dado?..............
Para calcular una probabilidad, necesitamos obtener el espacio muestral (E).
El espacio muestral está constituido por todos los datos posibles de un evento.
1.- Lanzar un dado: E = {1, 2, 3, 4, 5, 6} 6 casos.
42
REGLA DE LA SUMA
La probabilidad de obtener 2 puntos es:
La probabilidad de obtener 5 puntos es:
Entonces: + = =
Conclusión: La probabilidad de obtener 2 o 5 es
El conectivo “o” nos indica que se puede obtener cualquiera de los dos números; 2 o 5.
REGLA DE LA SUMA (CONECTIVO O)
Si dos o más eventos son mutuamente excluyentes, la probabilidad total de que ocurra
uno “u” otro se obtiene sumando la probabilidad de cada evento.
ACTIVIDADES DE CLASE
1.- Resuelve o contesta lo que se pide enseguida.
a) Escribe el espacio muestral del evento que consiste en lanzar un dado: E = ______
b) ¿Cuál es la probabilidad de que al lanzar un dado caiga 3?............
c) ¿Cuál es la probabilidad de que al lanzar un dado caiga 4?............
d) ¿Cuál es la probabilidad de que al lanzar un dado caiga 3 o 4? ………..
2.- Considera el experimento de lanzar una moneda.
¿Cuál es la probabilidad de obtener águila?..............
¿Cuál es la probabilidad de obtener sello?...............
¿Cuál es la probabilidad de obtener águila o sello?..............
3.- Supongamos que se realiza el experimento de lanzar un dado.
¿Cuántos números en total tiene el dado (E)?..............
¿Cuántos números son pares?..............
¿Cuál es la probabilidad de que salga un número par?.............
¿Cuál es la probabilidad de que salga un número impar?..............
1
6
1
6
1
6
1
6
2
6
1
3
1
3
Estos dos eventos son mutuamente
excluyentes porque el elemento de uno
es diferente al elemento del otro. En
uno es el 2 y en el otro el 5.
42
¿Cuál es la probabilidad de que salga un número par o impar?................
¿Cuál es la probabilidad de que salga un número par o menor que 3?...............
4.- Resuelve el siguiente problema.
En el juego con un dado en el que están participando Luz y Pedro, Luz con los puntos 4,
5, o 6 que obtenga en el dado puede ganar, en cambio Pedro gana sacando 5 o 6.
a) ¿Cuál es la probabilidad de ganar de Luz?.............
b) ¿Cuál es la probabilidad de ganar de Pedro?..............
d) ¿Cuál es la probabilidad de que gane Luz o Pedro?..............
5.- Considera el experimento de sacar al azar, de una urna que tiene 5 canicas rojas, 3
verdes y 2 blancas.
Calcula las siguientes probabilidades aplicando la regla de la suma como en el ejemplo.
a) Probabilidad (Canica roja o blanca) = + =
b) Probabilidad (Canica roja o verde) =
c) Probabilidad (Canica blanca o verde) =
d) Probabilidad (Canica roja o verde o blanca) =
e) Probabilidad (Canica blanca o roja o verde) =
f) Probabilidad (Canica roja o no blanca) =
6.- Supongamos que se realiza el experimento de lanzar un dado.
¿Cuál es la probabilidad de que caiga un número menor que 3 o un número mayor que
4?...............
¿Cuál es la probabilidad de que caiga un número mayor que 4 o un número mayor que
5?...............
7.- Considera el experimento de sacar al azar de una urna que tiene 3 bolas azules, 2
blancas y 1 negra.
Calcula las siguientes probabilidades aplicando la regla de la suma.
a) Probabilidad (bola azul o bola blanca) =
b) Probabilidad (bola azul o bola negra) =
5
10
2
10
7
10
42
c) Probabilidad (bola blanca o bola negra) =
d) Probabilidad (bola azul o bola blanca o bola negra) =
e) Probabilidad (bola azul o bola negra o bola blanca) =
f) Probabilidad (bola azul o bola no negra) =
8.- Si Iván lanza dos dados y pretende que le caiga un 4 o un 6. ¿Cuál es la probabilidad
de que ocurra esto?..............
9.- Se lanzan al mismo tiempo un dado y una moneda. ¿Cuál es la probabilidad de que
caiga águila o el número 5?............
10.- Supongamos que se realiza una rifa para la que se elaboran 20 boletos.
a) ¿Cuál es el espacio muestral del evento?________
b) ¿Cuál es la probabilidad de que salga premiado el número 5?.............
c) ¿Cuál es la probabilidad de que salga premiado el número 10?.............
d) ¿Cuál es la probabilidad de que salga premiado el 5 o el 10?..............
e) Si una persona compró los números 12, 13 y 14.
¿Cuál es la probabilidad de que se saque la rifa el 12, el 13 o el 14?.........

Más contenido relacionado

La actualidad más candente

Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...
Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...
Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...JAVIER SOLIS NOYOLA
 
T.P.Factorizacion de polinomios
T.P.Factorizacion de polinomiosT.P.Factorizacion de polinomios
T.P.Factorizacion de polinomioscomercial 31
 
Tp factorizacion de polinomios
Tp factorizacion de polinomiosTp factorizacion de polinomios
Tp factorizacion de polinomiospauvromero
 
Ejercicios tipo prueba racionales
Ejercicios tipo prueba racionalesEjercicios tipo prueba racionales
Ejercicios tipo prueba racionalesMayra Alejandra
 
Dominó productos notables
Dominó productos notablesDominó productos notables
Dominó productos notablesJhoeros Kstiyjos
 
Guía de matemáticas para 3 grado bloque 4
Guía de matemáticas para 3 grado bloque 4Guía de matemáticas para 3 grado bloque 4
Guía de matemáticas para 3 grado bloque 4JEDANNIE Apellidos
 
Guía de matemáticas de 3 grado bloque 2
Guía de matemáticas de 3 grado bloque 2Guía de matemáticas de 3 grado bloque 2
Guía de matemáticas de 3 grado bloque 2JEDANNIE Apellidos
 
Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.Yesica Munayco Morán
 
Multiplicación monomio por monomio
Multiplicación monomio por monomioMultiplicación monomio por monomio
Multiplicación monomio por monomioLiily Sanchez
 
Polinomios aritmeticos
Polinomios aritmeticosPolinomios aritmeticos
Polinomios aritmeticosmonica botiva
 
100 problemas maravillosos de matemáticas - Libro 16
100 problemas maravillosos de matemáticas - Libro 16100 problemas maravillosos de matemáticas - Libro 16
100 problemas maravillosos de matemáticas - Libro 16José Mari Melgarejo Lanero
 
Evaluacion estilo prueba saber 7° p1
Evaluacion estilo prueba saber 7° p1Evaluacion estilo prueba saber 7° p1
Evaluacion estilo prueba saber 7° p1criollitoyque
 
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2Taller problemas de aplicación sistemas de ecuaciones lineales 2x2
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2Ana Maria Luna
 
Ejercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomiosEjercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomiosAngy Paola Lopez Diago
 
Problemas ecuaciones primer grado
Problemas ecuaciones primer gradoProblemas ecuaciones primer grado
Problemas ecuaciones primer gradoMaría Pizarro
 
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primaria
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primariaSm matematicas-refuerzo-y-ampliacion-tercero-de-primaria
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primariaYolanda Martin Martin
 
Ejercicios de Radicación de números enteros
Ejercicios de Radicación de números enterosEjercicios de Radicación de números enteros
Ejercicios de Radicación de números enterosgutidiego
 

La actualidad más candente (20)

Taller n°1. de geometria grado séptimo
Taller n°1. de geometria grado séptimoTaller n°1. de geometria grado séptimo
Taller n°1. de geometria grado séptimo
 
Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...
Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...
Acertijo de la CATRINA con ecuaciones simultaneas (sistema de ecuaciones line...
 
T.P.Factorizacion de polinomios
T.P.Factorizacion de polinomiosT.P.Factorizacion de polinomios
T.P.Factorizacion de polinomios
 
Tp factorizacion de polinomios
Tp factorizacion de polinomiosTp factorizacion de polinomios
Tp factorizacion de polinomios
 
Ejercicios tipo prueba racionales
Ejercicios tipo prueba racionalesEjercicios tipo prueba racionales
Ejercicios tipo prueba racionales
 
Dominó productos notables
Dominó productos notablesDominó productos notables
Dominó productos notables
 
Guía de matemáticas para 3 grado bloque 4
Guía de matemáticas para 3 grado bloque 4Guía de matemáticas para 3 grado bloque 4
Guía de matemáticas para 3 grado bloque 4
 
Guía de matemáticas de 3 grado bloque 2
Guía de matemáticas de 3 grado bloque 2Guía de matemáticas de 3 grado bloque 2
Guía de matemáticas de 3 grado bloque 2
 
Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.
 
actividad clases de expresiones algebraicas
actividad clases de expresiones algebraicasactividad clases de expresiones algebraicas
actividad clases de expresiones algebraicas
 
Domino de factorizació
Domino de factorizacióDomino de factorizació
Domino de factorizació
 
Multiplicación monomio por monomio
Multiplicación monomio por monomioMultiplicación monomio por monomio
Multiplicación monomio por monomio
 
Polinomios aritmeticos
Polinomios aritmeticosPolinomios aritmeticos
Polinomios aritmeticos
 
100 problemas maravillosos de matemáticas - Libro 16
100 problemas maravillosos de matemáticas - Libro 16100 problemas maravillosos de matemáticas - Libro 16
100 problemas maravillosos de matemáticas - Libro 16
 
Evaluacion estilo prueba saber 7° p1
Evaluacion estilo prueba saber 7° p1Evaluacion estilo prueba saber 7° p1
Evaluacion estilo prueba saber 7° p1
 
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2Taller problemas de aplicación sistemas de ecuaciones lineales 2x2
Taller problemas de aplicación sistemas de ecuaciones lineales 2x2
 
Ejercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomiosEjercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomios
 
Problemas ecuaciones primer grado
Problemas ecuaciones primer gradoProblemas ecuaciones primer grado
Problemas ecuaciones primer grado
 
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primaria
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primariaSm matematicas-refuerzo-y-ampliacion-tercero-de-primaria
Sm matematicas-refuerzo-y-ampliacion-tercero-de-primaria
 
Ejercicios de Radicación de números enteros
Ejercicios de Radicación de números enterosEjercicios de Radicación de números enteros
Ejercicios de Radicación de números enteros
 

Destacado

Guía de clase primero bloque 4
Guía de clase primero bloque 4Guía de clase primero bloque 4
Guía de clase primero bloque 4JEDANNIE Apellidos
 
Trazando mi propio dest- maestro 2
Trazando mi propio dest- maestro 2Trazando mi propio dest- maestro 2
Trazando mi propio dest- maestro 2JEDANNIE Apellidos
 
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque II
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque IIDESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque II
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque IIJEDANNIE Apellidos
 
Baldor -geom. p --y-- trigonometria
Baldor  -geom. p --y-- trigonometriaBaldor  -geom. p --y-- trigonometria
Baldor -geom. p --y-- trigonometriaJEDANNIE Apellidos
 
Guía de clase, Bloque 4 segundo grado
Guía de clase, Bloque 4 segundo gradoGuía de clase, Bloque 4 segundo grado
Guía de clase, Bloque 4 segundo gradoJEDANNIE Apellidos
 
Guía de clase, Bloque 3 segundo grado
Guía de clase, Bloque 3 segundo gradoGuía de clase, Bloque 3 segundo grado
Guía de clase, Bloque 3 segundo gradoJEDANNIE Apellidos
 
Guía de clase Bloque 1 segundo grado
Guía de clase Bloque 1 segundo gradoGuía de clase Bloque 1 segundo grado
Guía de clase Bloque 1 segundo gradoJEDANNIE Apellidos
 
Mi cuaderno para estudiar Ciencias # Química
Mi cuaderno para estudiar Ciencias # Química Mi cuaderno para estudiar Ciencias # Química
Mi cuaderno para estudiar Ciencias # Química JEDANNIE Apellidos
 
Guia interactiva version examen 1°
Guia interactiva version examen 1°Guia interactiva version examen 1°
Guia interactiva version examen 1°JEDANNIE Apellidos
 
Matemáticas II - ecuaciones cuadráticas
Matemáticas II - ecuaciones cuadráticasMatemáticas II - ecuaciones cuadráticas
Matemáticas II - ecuaciones cuadráticasanalaura_fdz
 
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3JEDANNIE Apellidos
 
Guía de matemáticas Bloque 1 segundo garado
Guía de matemáticas Bloque 1 segundo garadoGuía de matemáticas Bloque 1 segundo garado
Guía de matemáticas Bloque 1 segundo garadoJEDANNIE Apellidos
 
Lineamientos para la construcción de reactivos de opción múltiple
Lineamientos para la construcción de reactivos de opción múltipleLineamientos para la construcción de reactivos de opción múltiple
Lineamientos para la construcción de reactivos de opción múltipleJEDANNIE Apellidos
 
Guía de clase primero bloque 2
Guía de clase primero bloque 2Guía de clase primero bloque 2
Guía de clase primero bloque 2JEDANNIE Apellidos
 
Guía de clase primero bloque 5
Guía de clase primero bloque 5Guía de clase primero bloque 5
Guía de clase primero bloque 5JEDANNIE Apellidos
 
Guía de matemáticas para 3 grado bloque 5
Guía de matemáticas para 3 grado bloque 5Guía de matemáticas para 3 grado bloque 5
Guía de matemáticas para 3 grado bloque 5JEDANNIE Apellidos
 

Destacado (20)

Guía primero bloque 1
Guía primero bloque 1Guía primero bloque 1
Guía primero bloque 1
 
Guía de clase primero bloque 4
Guía de clase primero bloque 4Guía de clase primero bloque 4
Guía de clase primero bloque 4
 
Trazando mi propio dest- maestro 2
Trazando mi propio dest- maestro 2Trazando mi propio dest- maestro 2
Trazando mi propio dest- maestro 2
 
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque II
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque IIDESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque II
DESCUBRIENDO CHIHUAHUA A TRAVÉS DE LA HISTORIA Bloque II
 
EVALUAR
EVALUAREVALUAR
EVALUAR
 
Baldor -geom. p --y-- trigonometria
Baldor  -geom. p --y-- trigonometriaBaldor  -geom. p --y-- trigonometria
Baldor -geom. p --y-- trigonometria
 
Guía de clase, Bloque 4 segundo grado
Guía de clase, Bloque 4 segundo gradoGuía de clase, Bloque 4 segundo grado
Guía de clase, Bloque 4 segundo grado
 
Guía de clase, Bloque 3 segundo grado
Guía de clase, Bloque 3 segundo gradoGuía de clase, Bloque 3 segundo grado
Guía de clase, Bloque 3 segundo grado
 
Guía de clase Bloque 1 segundo grado
Guía de clase Bloque 1 segundo gradoGuía de clase Bloque 1 segundo grado
Guía de clase Bloque 1 segundo grado
 
Mi cuaderno para estudiar Ciencias # Química
Mi cuaderno para estudiar Ciencias # Química Mi cuaderno para estudiar Ciencias # Química
Mi cuaderno para estudiar Ciencias # Química
 
Guia interactiva version examen 1°
Guia interactiva version examen 1°Guia interactiva version examen 1°
Guia interactiva version examen 1°
 
Cuadernillo tutoria 1
Cuadernillo tutoria 1Cuadernillo tutoria 1
Cuadernillo tutoria 1
 
Matemáticas II - ecuaciones cuadráticas
Matemáticas II - ecuaciones cuadráticasMatemáticas II - ecuaciones cuadráticas
Matemáticas II - ecuaciones cuadráticas
 
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3
CUADERNILLO DE TRABAJOS EN EL AULA CIENCIAS 3
 
Guía de matemáticas Bloque 1 segundo garado
Guía de matemáticas Bloque 1 segundo garadoGuía de matemáticas Bloque 1 segundo garado
Guía de matemáticas Bloque 1 segundo garado
 
Lineamientos para la construcción de reactivos de opción múltiple
Lineamientos para la construcción de reactivos de opción múltipleLineamientos para la construcción de reactivos de opción múltiple
Lineamientos para la construcción de reactivos de opción múltiple
 
Guía de clase primero bloque 2
Guía de clase primero bloque 2Guía de clase primero bloque 2
Guía de clase primero bloque 2
 
Guía de clase primero bloque 5
Guía de clase primero bloque 5Guía de clase primero bloque 5
Guía de clase primero bloque 5
 
Guía de matemáticas para 3 grado bloque 5
Guía de matemáticas para 3 grado bloque 5Guía de matemáticas para 3 grado bloque 5
Guía de matemáticas para 3 grado bloque 5
 
Enlace 2011-2°grado
Enlace 2011-2°gradoEnlace 2011-2°grado
Enlace 2011-2°grado
 

Similar a Guía de clase, bloque 2, tercer grado

2.1 patrones y ecuaciones
2.1 patrones y ecuaciones2.1 patrones y ecuaciones
2.1 patrones y ecuacionesGonzalodb
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2matematicasec29
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2matematicasec29
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2matematicasec29
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer gradoRigo Huayhua
 
Expresiones algrebaicas
Expresiones algrebaicasExpresiones algrebaicas
Expresiones algrebaicasdanielapia12
 
Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)anamariawyatt1
 
ecuasiones de segundo grado
ecuasiones de segundo gradoecuasiones de segundo grado
ecuasiones de segundo gradomatematicasec29
 
10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticasCecy Felix
 
10 ecuaciones-de-primer-grado-de-secundaria
10 ecuaciones-de-primer-grado-de-secundaria10 ecuaciones-de-primer-grado-de-secundaria
10 ecuaciones-de-primer-grado-de-secundariaalbertocusihuaman
 
Ecuaciones De Segundo Grado
Ecuaciones De Segundo Grado Ecuaciones De Segundo Grado
Ecuaciones De Segundo Grado LucianoGil10
 

Similar a Guía de clase, bloque 2, tercer grado (20)

ECUACIONES CUADRATICAS
ECUACIONES CUADRATICASECUACIONES CUADRATICAS
ECUACIONES CUADRATICAS
 
2.1 patrones y ecuaciones
2.1 patrones y ecuaciones2.1 patrones y ecuaciones
2.1 patrones y ecuaciones
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2
 
Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2Ecuaciones De Segundo Grado Definiciones 2
Ecuaciones De Segundo Grado Definiciones 2
 
Ecuaciones de segundo grado
Ecuaciones de segundo gradoEcuaciones de segundo grado
Ecuaciones de segundo grado
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Expresiones algrebaicas
Expresiones algrebaicasExpresiones algrebaicas
Expresiones algrebaicas
 
Practica
PracticaPractica
Practica
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)Informe de matematica ( expresiones algebraicas)
Informe de matematica ( expresiones algebraicas)
 
ecuasiones de segundo grado
ecuasiones de segundo gradoecuasiones de segundo grado
ecuasiones de segundo grado
 
10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas
 
Funciones cuadráticas
Funciones cuadráticasFunciones cuadráticas
Funciones cuadráticas
 
Semana4 m2-del 5 al 9 dic
Semana4 m2-del 5 al 9 dicSemana4 m2-del 5 al 9 dic
Semana4 m2-del 5 al 9 dic
 
10 ecuaciones-de-primer-grado-de-secundaria
10 ecuaciones-de-primer-grado-de-secundaria10 ecuaciones-de-primer-grado-de-secundaria
10 ecuaciones-de-primer-grado-de-secundaria
 
Ecuaciones 002
Ecuaciones 002Ecuaciones 002
Ecuaciones 002
 
Ecua cuadratica
Ecua cuadraticaEcua cuadratica
Ecua cuadratica
 
Ecuaciones De Segundo Grado
Ecuaciones De Segundo Grado Ecuaciones De Segundo Grado
Ecuaciones De Segundo Grado
 

Más de JEDANNIE Apellidos

ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLE
ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLEELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLE
ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLEJEDANNIE Apellidos
 
Guía de clase, bloque 5, tercer grado
Guía de clase, bloque 5, tercer gradoGuía de clase, bloque 5, tercer grado
Guía de clase, bloque 5, tercer gradoJEDANNIE Apellidos
 
Guía de clase, bloque 4, tercer grado
Guía de clase, bloque 4, tercer gradoGuía de clase, bloque 4, tercer grado
Guía de clase, bloque 4, tercer gradoJEDANNIE Apellidos
 
Guía de clase primero bloque 3
Guía de clase primero bloque 3Guía de clase primero bloque 3
Guía de clase primero bloque 3JEDANNIE Apellidos
 
Rubrica para evaluar_exposiciones
Rubrica para evaluar_exposicionesRubrica para evaluar_exposiciones
Rubrica para evaluar_exposicionesJEDANNIE Apellidos
 
Rubrica de reporte de laboratorio
Rubrica de reporte de laboratorioRubrica de reporte de laboratorio
Rubrica de reporte de laboratorioJEDANNIE Apellidos
 
EVALUACION DEL DESEMPEÑO EN LOS PROYECTOS
EVALUACION DEL DESEMPEÑO EN LOS  PROYECTOSEVALUACION DEL DESEMPEÑO EN LOS  PROYECTOS
EVALUACION DEL DESEMPEÑO EN LOS PROYECTOSJEDANNIE Apellidos
 
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULAR
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULARLA INTEGRACIÓN EDUCATIVA EN EL AULA REGULAR
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULARJEDANNIE Apellidos
 
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...JEDANNIE Apellidos
 

Más de JEDANNIE Apellidos (20)

TAXONOMÍA DE BLOOM 4
TAXONOMÍA DE BLOOM 4TAXONOMÍA DE BLOOM 4
TAXONOMÍA DE BLOOM 4
 
TAXONOMÍA DE BLOOM 3
TAXONOMÍA DE BLOOM 3TAXONOMÍA DE BLOOM 3
TAXONOMÍA DE BLOOM 3
 
TAXONOMÍA DE BLOOM 2
TAXONOMÍA DE BLOOM 2 TAXONOMÍA DE BLOOM 2
TAXONOMÍA DE BLOOM 2
 
TAXONOMÍA DE BLOOM
TAXONOMÍA DE BLOOMTAXONOMÍA DE BLOOM
TAXONOMÍA DE BLOOM
 
Resumen Acuerdo 12/05/18
Resumen Acuerdo 12/05/18Resumen Acuerdo 12/05/18
Resumen Acuerdo 12/05/18
 
Resumen Acuerdo 11/05/18
Resumen Acuerdo 11/05/18Resumen Acuerdo 11/05/18
Resumen Acuerdo 11/05/18
 
Resumen Acuerdo 10/05/18
Resumen Acuerdo 10/05/18Resumen Acuerdo 10/05/18
Resumen Acuerdo 10/05/18
 
Acuerdo 12/05/18
Acuerdo  12/05/18Acuerdo  12/05/18
Acuerdo 12/05/18
 
Acuerdo 11/05/18
Acuerdo 11/05/18Acuerdo 11/05/18
Acuerdo 11/05/18
 
Acuerdo 10/05/18
Acuerdo 10/05/18Acuerdo 10/05/18
Acuerdo 10/05/18
 
ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLE
ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLEELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLE
ELABORACIÓN DE REACTIVOS DE OPCIÓN MÚLTIPLE
 
Guía de clase, bloque 5, tercer grado
Guía de clase, bloque 5, tercer gradoGuía de clase, bloque 5, tercer grado
Guía de clase, bloque 5, tercer grado
 
Guía de clase, bloque 4, tercer grado
Guía de clase, bloque 4, tercer gradoGuía de clase, bloque 4, tercer grado
Guía de clase, bloque 4, tercer grado
 
Guía de clase primero bloque 3
Guía de clase primero bloque 3Guía de clase primero bloque 3
Guía de clase primero bloque 3
 
Rubrica para evaluar_exposiciones
Rubrica para evaluar_exposicionesRubrica para evaluar_exposiciones
Rubrica para evaluar_exposiciones
 
Rubrica de reporte de laboratorio
Rubrica de reporte de laboratorioRubrica de reporte de laboratorio
Rubrica de reporte de laboratorio
 
Normas del salòn de clase
Normas del salòn de claseNormas del salòn de clase
Normas del salòn de clase
 
EVALUACION DEL DESEMPEÑO EN LOS PROYECTOS
EVALUACION DEL DESEMPEÑO EN LOS  PROYECTOSEVALUACION DEL DESEMPEÑO EN LOS  PROYECTOS
EVALUACION DEL DESEMPEÑO EN LOS PROYECTOS
 
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULAR
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULARLA INTEGRACIÓN EDUCATIVA EN EL AULA REGULAR
LA INTEGRACIÓN EDUCATIVA EN EL AULA REGULAR
 
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...
GUIA DE ESTUDIO PARA EL CONCURSO DE OPOSICIÓN PARA LA PROMOCIÓN A CARGO CON F...
 

Último

Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webinformatica4
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxPabloPazmio14
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaEdurne Navarro Bueno
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docxpedroplanassilva498
 
Cuadro Sinóptico Arquitectura Barroca Historia
Cuadro Sinóptico Arquitectura Barroca HistoriaCuadro Sinóptico Arquitectura Barroca Historia
Cuadro Sinóptico Arquitectura Barroca HistoriaIsauraImbrondone
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...harolbustamante1
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativoharolbustamante1
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)portafoliodigitalyos
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdfnataliavera27
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónDanielGrajeda7
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxvanessaavasquez212
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )portafoliodigitalyos
 

Último (20)

Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio web
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx
22 Feria Gambetta, en Pedro Planas 29 mayo 2024 (1).docx
 
3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
Cuadro Sinóptico Arquitectura Barroca Historia
Cuadro Sinóptico Arquitectura Barroca HistoriaCuadro Sinóptico Arquitectura Barroca Historia
Cuadro Sinóptico Arquitectura Barroca Historia
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOSTRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
TRABAJO CON TRES O MAS FRACCIONES PARA NIÑOS
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
 
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
32 LECTURAS CORTAS PARA NIÑOS.pdf · versión 1.pdf
 
6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico6.Deícticos Dos_Enfermería_EspanolAcademico
6.Deícticos Dos_Enfermería_EspanolAcademico
 
Proceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu RemodelaciónProceso de gestión de obras - Aquí tu Remodelación
Proceso de gestión de obras - Aquí tu Remodelación
 
Proyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptxProyecto integrador Vereda Cujacal Centro.pptx
Proyecto integrador Vereda Cujacal Centro.pptx
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 

Guía de clase, bloque 2, tercer grado

  • 1. 42 PATRONES Y ECUACIONES • Uso de ecuaciones cuadráticas o de segundo grado para modelar situaciones y resolverlas usando la factorización. CONOCIMIENTOS PREVIOS MULTIPLICACIÓN DE DOS BINOMIOS. (x + y)(x + y) ó (x + 6)(x + 6) PROBLEMA: La carátula de un libro que tiene forma cuadrada, mide por lado x+ 6 cm. ¿Cuál es el área de su carátula? Al elevar un binomio al cuadrado nos resulta un trinomio cuadrado perfecto: x² + 12x + 36 ACTIVIDADES DE CLASE 1.- Resuelve las siguientes multiplicaciones. (x + 3)(x + 3) = _________________________ (x + 8)(x + 8) = _________________________ (x + 10)(x + 10) = _______________________ (x + 1)(x + 1) = _________________________ (x + 12)(x + 12) = ________________________ 2.- Completa la siguiente tabla. BINOMIO AL CUADRADO RESULTADO.TRINOMIO CUADRADO PERFECTO TÉRMINO INDEPENDIENTE TÉRMINO LINEAL (x + 5) (x + 5) x² + 10x + 25 25 10x (x + 2) (x + 2) (x + 7) (x + 7) (x + 6) (x +6) (x + 14) (x + 14) (x - 5) (x - 5) (x - 7) (x - 7) (x - 14) (x - 14) BLOQUE 2 6 x x + 6 + 36 Para resolver este problema multiplicamos (x + 6) (x + 6) x + 6) (x + 6) es lo mismo que (x + 6)². Realizando la multiplicación tenemos: x + 6 x + 6 x² + 6x 6x + 36 x² + 12x + 36 (x + 6)(x + 6) = x² + 6x + 6x + 36 x² + 12x + 36
  • 2. 42 FACTORIZACIÓN DE UN TRINOMIO CUADRADO PERFECTO PROBLEMA: La carátula de un libro de forma cuadrada, mide de área x² + 12x + 36. ¿Cuánto mide cada uno de sus lados? Al factorizar un trinomio cuadrado que no es perfecto, usamos el mismo procedimiento: EJEMPLO 1: Factorizar el trinomio cuadrado: x² + 8x + 12 = Raíz cuadrada de x² = x Dos números que multiplicados de 12 y que sumados de 8: El +6 y el +2 6 x 2 = 12 6 + 2 = 8 Factorización de x² + 8x + 12 = (x + 6) (x + 2) EJEMPLO 2: Factorizar el trinomio x² + 4x – 96 = (x + 12) (x – 8) (12)(-8) = - 96 12 – 8 = 4 ACTIVIDADES DE CLASE 1.- Responde a las siguientes preguntas. a) ¿Cuáles son los dos números que multiplicados da 15 y sumados da 8? ____ y _____ Comprobación: (___) (___) = 24 ____ + ____ = 8 b) ¿Cuáles son los dos números que multiplicados da 24 y sumados da 11? ____ y _____ Comprobación: (___) (___) = 11 ____ + ____ = 11 c) ¿Cuáles son los dos números que multiplicados da 18 y sumados da 9? ____ y _____ Comprobación: (___) (___) = ____ ____ + ____ = ____ d) ¿Cuáles son los dos números que multiplicados da -12 y sumados da 4? ____ y _____ Comprobación: (___) (___) = ____ ____ + ____ = 8 e) ¿Cuáles son los dos números que multiplicados da -15 y sumados da -8? ____ y _____ Comprobación: (___) (___) = ____ ____ + ____ = ____ x² + 12x + 36 Para resolver este problema lo que hacemos es factorizar el trinomio cuadrado perfecto x² + 12x + 36. Factorizar significa que lo vamos a regresar a su forma original, es decir, que lo vamos a indicar por medio de dos factores. Para factorizar el trinomio x² + 12x + 36 hacemos lo siguiente: Sacamos raíz cuadrada al término x² = x Buscamos dos números que multiplicados nos dé 36 y que sumados dos dé 12. Estos dos números son el 6 y el 6. Porque (6)(6) = 36 6 + 6 = 12 Escribimos los dos factores con los resultados obtenidos: (x + 6) (x + 6)
  • 3. 42 2.- Completa la siguiente tabla. FACTORES RESULTADO (x + 2)(x + 2) x² + 4x + 4 (x + 4)(x + 4) (x + 5)(x + 5) (x + 2)(x + 4) (x + 7)(x + 3) (x + 5)(x + 9) x² + 18x + 81 x² + 14x + 49 x² + 6x + 9 x² + 8x + 15 x² + 14x + 49 x² + 10x + 24 x² + 7x + 10 x² + 15x + 56 3.- Completa como el ejemplo la siguiente tabla para factorizar el trinomio. TRINOMIO PRIMER FACTOR SEGUNDO FACTOR FACTORIZACIÓN x² + 14x + 33 (x + 11) (x + 3) (x + 11) (x + 3) x² + 9x + 18 x² + 8x + 15 x² + 11x + 24 x² + 13x + 40 x² + 13x + 30 x² + 10x + 21 x² + 12x + 27 x² + 5x + 4 x² + 18x + 80 4.- Completa como el ejemplo la siguiente tabla, hasta llegar a la factorización de cada trinomio cuadrado. TRINOMIO PRIMER FACTOR SEGUNDO FACTOR FACTORIZACIÓN x² - 4x – 32 (x – 8) (x + 4) (x – 8) (x + 4) x² - 6x + 8 x² - 16x + 63 x² - 13x + 30 x² + 7x – 18 x² - 12x + 27 Raíz cuadrada de x² = x Dos números que multiplicados den 81 y sumados den 18: +9 y +9 FACTORIZACIÓN TOTAL 33 3 11 11 1 Dos números que multiplicados den 33 y sumados den 14: 11 y 3
  • 4. 42 ECUACIONES COMPLETAS DE SEGUNDO GRADO POR FACTORIZACIÓN. Una ecuación de segundo grado es completa cuando tiene los tres términos: El término cuadrático, el término lineal y el independiente: x² + 8x – 20 = 0. En ocasiones estas ecuaciones las podemos resolver usando la factorización como lo veremos en el siguiente ejemplo: PROBLEMA: La siguiente figura representa a una caja de cerillos cuya área es de x² + 8x + 15 cm y dicha área es igual a 35 cm². ¿Cuántos centímetros mide de largo y de ancho si sabemos que el largo vale x + 5 y su ancho x + 3 centímetros? x La ecuación que resulta es: x² + 8x + 15 = 35 + x² + 8x + 15 = 35 3 Igualamos a cero: x² + 8x + 15 – 35 = 0 x + 5 Reducimos términos: x² + 8x – 20 = 0 Resolvemos la ecuación de la siguiente manera: x² + 8x – 20 = 0 (x + 10)(x – 2) = 0 x + 10 = 0 x = -10 x – 2 = 0 x = 2 Como no existen longitudes negativas, entonces el valor que satisface el problema es x = 2. Por lo tanto el largo mide 7cm y el ancho 5 cm. ACTIVIDADES DE CLASE 1.- Resuelve las siguientes ecuaciones de segundo grado completas por factorización. x² + 8x + 15 = 0 x² + 9x + 20 = 0 x² + 9x + 18 = 0 Factorizamos el trinomio de segundo grado sacando raíz a x² y buscando dos números que multiplicados den -20 y sumados den 8. El factor x + 10 lo igualamos a 0 y despejamos x para encontrar el primer valor de la ecuación. El factor x – 2 lo igualamos a cero y despejamos x para encontrar el segundo valor de la ecuación. 20 2 2 10 2 5 5 10 1 (10)(2) = 20
  • 5. 42 x² - 4x – 32 = 0 x² + 10x + 21 = 0 x² - 6x + 8 = 0 x² - 16x + 63 = 0 x² - 13x + 30 = 0 x² + 7x = 18 x² + 7x + 12 = 0 x² -14x + 49 = 0 x² + 5x - 126 = 0 x² + 9x + 20 = 0 x² + 5x + 6 = 0 x² + 9x + 14 = 0 x² + 5x – 24 = 0 x² +22x + 120 = 0 x² +5x – 14 = 0
  • 6. 42 2.- Resuelve los siguientes problemas. PROBLEMA 1.- El cuadrado de un número menos el doble del mismo número es igual a 48. ¿Cuál es ese número?... …….______ PROBLEMA 3.- ¿Cuál es la medida por lado de cada una de las siguientes figuras? x + 6 x + 2A = 140 A = 56 x + 5 x + 4 PROBLEMA 2.- El cuadrado de un número menos el triple del mismo número es igual a 10. ¿Cuál es ese número?..................... PROBLEMA 4.- Pienso un número. Si lo elevo al cuadrado, le sumo dos veces el mismo número y le resto 15, me da como resultado 0. ¿Cuál es ese número?……….….______ PROBLEMA 5.- Pienso un número. Si lo elevo al cuadrado, le sumo 9 veces el mismo número y le aumento 18, me da como resultado 0. ¿Cuál es ese número?..................._____
  • 7. 42 PATRONES Y ECUACIONES • Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas usando la factorización. CONOCIMIENTOS PREVIOS FACOTRIZACIÓN POR FACTOR COMÚN PROBLEMA: La superficie de la tapa de una caja de zapatos mide (15x² + 5x) cm². ¿Cuál es la medida de su largo y de su ancho? Para resolver el problema factorizamos lo que mide de área, es decir, encontramos dos factores que multiplicados nos den 15x² + 5x. El binomio 15x² + 5x se factoriza de la siguiente manera: Vemos que la expresión 15x² + 5x contiene un factor común que es 5x. Es factor común porque lo podemos encontrar en los dos términos del binomio: 15x² = 5x(3x) 5x = 5x(1) Cuando ya encontramos el factor común se encuentra el otro factor. 15x² + 5x = 5x( 3x + 1) 5x(3x) = 15² 5x(1) = 5x Otro ejemplo: Factorizar el binomio x² + x x² + x = x(x + 1) ACTIVIDADES DE CLASE 1.- Factoriza los siguientes binomios. x² + 6x = x² + 10x = m² + 12m = x² - 8x = x² - 4x = x² + 9x = 2x² + 4x = 3x² + 6x = 6x² + 24x = 4x² - 32x = 15x² - 15x = 5x² - 65x = 2.- ¿Cuál es la factorización del binomio 8x² + 4x?....................................................... (___) a) x(8 + 4x) b) 4x(2x + 1) c) 4x(2 + 4) d) x(8x + 4) 15x² + 5x
  • 8. 42 3.- ¿Cuál es la factorización del binomio 5x² - 25x?...................................................... (___) a) x(5 - 25x) b) x(5x - 1) c) 5x(5- 25) d) 5x(x - 5) 4.- ¿Cuál es la factorización del binomio a² + a?.......................................................... (___) a) a(a + 1) b) a(a - 1) c) a(1 + 1) d) a²(a + a) 5.- ¿Cuál es la factorización del binomio x² - 4x?.......................................................... (___) a) x(x + 4) b) x(x - 4) c) x(1 + 4) d) x²(x + 4) ECUACIONES DE SEGUNDO GRADO INCOMPLETAS POR FACTORIZACIÓN Existen ecuaciones de segundo grado o cuadráticas que se pueden resolver usando la factorización, por medio del factor común. Estas ecuaciones son incompletas de la forma: Ax² + bx = 0 PROBLEMA: El cuadrado de un número es igual al triple del mismo número. ¿Cuál es ese número? La ecuación que resulta es: x² = 3x Se resuelve de la siguiente manera: x² = 3x x² - 3x = 0 Igualamos a 0, cambiando 3x al primer miembro con signo contrario. x(x - 3) = 0 Factorizamos por medio de factor común el binomio x² - 3x. x = 0 El factor x lo igualamos a 0 para obtener el primer valor. x – 3 = 0 El factor x – 3 lo igualamos a cero y despejamos la x. x = 3 Tenemos el segundo valor de la ecuación. ACTIVIDADES DE CLASE 1.- Resuelve por factorización las siguientes ecuaciones de segundo grado incompletas. x² - 8x = 0 3x² - 6x = 0 x² - 5x = 0 4x² - 32x = 0 Se llaman incompletas porque les falta el término independiente o sea el numérico: 2x² - 8x = 0
  • 9. 42 4x² - 24x = 0 x² - 16x = 0 2x² - 6x = 0 5x² = 25x 2.- Resuelve los siguientes problemas. Identifica primero la ecuación que debes usar de las tres que se presentan. Toma los resultados enteros de cada ecuación. PROBLEMA 1.- El área de un cuadrado es igual a 9 veces la medida de su lado. ¿Cuál es la medida de su lado?.. …..______ • x² = 9 • x² = 9x • x = 9x PROBLEMA 2.- El cuádruple del área de un cuadrado es igual a 16 veces la medida de su lado. ¿Cuánto mide por lado el cuadrado? ______ • 4x² = 16x • x² = 16 • 4x = 16x
  • 10. 42 3.- Resuelve los siguientes problemas. FIGURAS Y CUERPOS GEOMÉTRICOS • Análisis de las propiedades de la rotación y de la traslación de figuras. TRASLACIÓN PROBLEMA: En un cartel como el de enseguida que se está elaborando, se ha dibujado una figura geométrica F. Aplica una traslación a la figura que se ha dado. F PROBLEMA 1.- El cuadrado de un número es igual a 6 veces el mismo número. ¿Cuál es ese número? _______ PROBLEMA 2.- El doble del área de un cuadrado es igual a 12 veces la medida de su lado. ¿Cuál es la medida del lado del cuadrado? _______________ Una traslación es el desplazamiento de una figura en la misma dirección a lo largo de una recta. La figura la podemos desplazar hacia la derecha, hacia la izquierda, hacia arriba, hacia abajo, etc. La figura conserva la misma orientación, la misma posición, misma forma y mismo tamaño.
  • 11. 42 ACTIVIDADES DE CLASE 1.- Aplica una traslación a cada una de las siguientes figuras según la distancia y la dirección que se indica por la flecha. ¿Cómo es el tamaño y la forma de las parejas de figuras?____________ ¿Cómo son los ángulos de cada pareja de figuras?____________ ¿Qué es lo único que cambia en la traslación? ¿Son paralelas las flechas?______ 2.- Aplica una traslación a cada una de las siguientes figuras. Utiliza escuadras para el trazo de las paralelas a la recta dada. SIMETRÍA AXIAL O REFLEXIVA La simetría axial recibe este nombre porque la transformación se hace en base a una recta llamada eje de simetría. La simetría axial es una reflexión. PROBLEMA: Dada la figura ABCD y el eje de simetría m, traza su simétrica y llámala figura A’B’C’D'. Todas las flechas son paralelas D C B A Al doblar la figura sobre su eje de simetría, la forma de la figura original coincide exactamente con la figura que se refleja. Esto se puede demostrar con la reflexión de la figura en un espejo. C´ A D C m Todos los trazos auxiliares deben ser perpendiculares con el eje de simetría y partir cada uno de los vértices de la figura original.
  • 12. 42 Si observamos las figuras tenemos que: a) Conservan su forma, igualdad de lados y de ángulos. d) Conserva colinealidad, ya que, si los puntos A y B se encuentran alineados, también están alineados los puntos A´ y B´. ACTIVIDADES DE CLASE 1.- Traza una figura simétrica a la siguiente con respecto al eje de simetría dado. 2.- Dadas las siguientes figuras, traza a cada una su simétrica de acuerdo con el eje de simetría m que se da. Aplica una reflexión. m A´ D´ B´B m Esta medida la puedes tomar con el compás.
  • 13. 42 l m 3.- Traza la figura simétrica del siguiente triángulo y contesta las preguntas. 4.- Completa las siguientes figuras, para que la recta m sea eje de simetría de la figura que resulta. 5.- Las reflexiones son movimientos en el plano, o transformaciones geométricas que son aplicadas sucesivamente a una figura, sin modificarla. Enseguida realiza al triángulo reflexiones de acuerdo a los ejes l y m que se cortan formando un ángulo de 90°. m C B A 34° 56° ¿Cuánto medirá en ángulo A´?_______ ¿Cuánto medirá el ángulo B´?________ ¿Cuánto medirá el lado A´C?________ ¿Cuánto medirá el lado BC?________ Si el área del triángulo ABC es 15 u², ¿cuánto medirá el área del triángulo A ´BC?____________ mm ¿Qué figura se formó?__________________
  • 14. 42 l m m Esta figura es una traslación de la primera. Tienen ambas la misma orientación. 6.- Realiza enseguida dos transformaciones seguidas, con base a los ejes de simetría l y m que son paralelos. Contesta enseguida las preguntas que se hacen. a) ¿Cuáles figuras coinciden en su orientación? ________________________________ _______________________________________________________________________ b) ¿Qué observas en las distancias entre la primera figura y la última?_______________ _______________________________________________________________________ c) ¿Se conservan las distancias y los ángulos? __________________________________ d) ¿Es ésta una reflexión donde todos los puntos se mueven en la misma dirección y a la misma distancia?______ 7.- Realiza las siguientes reflexiones con respecto a los ejes de simetría m y n.
  • 15. 42 n a) ¿Cuáles figuras coinciden en su orientación? ________________________________ _______________________________________ SIMETRÍA CENTRAL La simetría central es la que se realiza con respecto a un punto llamado centro de simetría. Una simetría central es una rotación. PROBLEMA: Dado el triángulo ABC y el centro de simetría O, traza su simétrico y llámalo A’B’C’. OA = OA’ OB = OB’ OC = OC’ La figura gira. Rotación. O C´ A´B´C BA • La distancia OB puedes tomarla con el compás y luego marcar la distancia OB´.
  • 16. 42 Si observamos vemos que: a) Las figuras conservan su forma y la igualdad de sus ángulos. b) AB es paralelo con el segmento A´B´. ACTIVIDADES DE CLASE 1.- Traza en los dos casos, los simétricos del triángulo ABC y del cuadrado ABCD, con respecto al centro de simetría O y contesta las preguntas que se te hacen. • • a) ¿Cómo son las figuras, iguales o diferentes? _____________________ b) Todos los segmentos y sus simétricos, ¿son paralelos o perpendiculares? __________ 2.- Con respecto al punto O, aplica al trapecio y al rombo una rotación de 180°. • C B A O O D A B C D A B C O
  • 17. 42 • 3.- Realiza al triángulo y al pentágono una rotación con respecto al centro de simetría O. • FIGURAS Y CUERPOS GEOMÉTRICOS • Construcción de diseños que combinan la simetría axial y central, la rotación y la traslación de figuras. ACTIVIDADES DE CLASE 1.- Se va a pintar una de las paredes de la escuela, aplicando una reflexión respecto al eje de simetría “m” a la figura ya dibujada y enseguida una rotación respecto al centro de simetría “O” a cada una de las dos figuras resultantes. Realiza el dibujo enseguida. O O m
  • 18. 42 O O • 2.- Realiza al siguiente triángulo la traslación y las rotaciones indicadas. • MEDIDA • Análisis de las relaciones entre las áreas de los cuadrados que se construyen sobre los lados de un triángulo rectángulo. TEOREMA DE PITÁGORAS PROBLEMA: La recámara rectangular de una casa mide 4 metros de largo por 3 metros de ancho. ¿Cuánto mide la diagonal de la recámara? Si al rectángulo que forma la recámara le trazamos una diagonal, nos resultan dos triángulos rectángulos como los siguientes: 4 Cateto menor 3 m 4 m Cateto mayor HipotenusaPara encontrar la medida de la diagonal de la recámara, trabajamos solo con uno de los triángulos. 3
  • 19. 42 Para resolver problemas con triángulos rectángulos podemos aplicar la relación pitagórica: c² = a² + b² Esta relación se establece entre las áreas de los cuadrados que se construyen sobre la base de cada uno de los lados del triángulo rectángulo. c² = a² + b² La diagonal de la recámara la encontramos de la siguiente manera: c² = 4² + 3² c² = 16 + 9 c² = 25 c = √25 c = 5 ACTIVIDADES DE CLASE 1.- Aplicando el teorema de Pitágoras analiza el siguiente triángulo rectángulo y contesta. ¿Cuánto mide el cateto mayor? _________ ¿Cuánto mide el cateto menor? __________ ¿Cuánto mide su hipotenusa? _________ ¿Cuánto medirá el área del cuadrado que se construya sobre la hipotenusa? _________ ¿Cuánto medirá el área del cuadrado que se construya sobre el cateto mayor? ________ ¿Cuánto medirá el área del cuadrado que se construya sobre el cateto menor? ________ 7 8 9 4 5 6 1 2 3 22 23 24 25 18 19 20 21 14 15 16 17 10 11 12 13 25242322 14 17 16 15 21 20 19 1810 11 12 13 A = 25 m² A = 16 m² A = 9 m² 6 u 10 u 8 u a b c TEOREMA DE PITÁGORAS “En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos”. 4 3 c Cuadrados de los 2 catetos (completa hasta el 25)
  • 20. 42 Completa lo siguiente tomando y aplica el teorema de Pitágoras en el triángulo anterior: 10² = ______ + ______ 10² = ______ + ______ 100 = _______ 2.- Haz lo que se te pide enseguida para que demuestres el teorema de Pitágoras. Dibuja los cuadrados a los catetos y a la hipotenusa del siguiente triángulo rectángulo y demuestra que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. Utiliza las mismas unidades cuadradas de los catetos en la hipotenusa. MEDIDA • Explicitación y uso del teorema de Pitágoras. ACTIVIDADES DE CLASE 1.- Encuentra la medida que falta en cada uno de los siguientes triángulos rectángulos. 8 8 8 c 36 15 c c 40 42 c12 9
  • 21. 42 2.- Encuentra cuánto mide la diagonal de la ventana y del cuadro del campo de beisbol. 3.- Encuentra la medida del segmento AB y el perímetro del cuadrado de la derecha. 4.- Resuelve los siguientes problemas. F. A. P. Villa 27.43 m A B 27.43 m 15 cm 8 cm a 5345 b 15 17 PROBLEMA 1.- La distancia del Palacio de Gobierno a la estatua de Pancho Villa es de 1700 metros y de ésta a la estatua de la Felipe Ángeles hay una distancia de 800 metros. ¿Qué distancia en línea recta recorrerá un helicóptero al pasar sobre el Palacio de Gobierno hasta pasar sobre la estatua de Felipe Ángeles PROBLEMA 2.- Los jardines de la Plaza del Seguro de Nombre de Dios tienen forma triangular como se muestra enseguida: Si el cateto menor de cada parte de los jardines mide 32 metros y el cateto mayor mide 50 metros. ¿Cuánto mide el tercer lado?
  • 22. 42 P.G. 2 m 5 m PROBLEMA 3.- ¿Cuánto mide el perímetro de un triángulo rectángulo cuyos catetos miden 4 cm y 6 cm respectivamente? PROBLEMA 4.- ¿Cuánto mide la diagonal de un rectángulo de 15 cm de largo y 8 cm de ancho? PROBLEMA 5.- Encuentra la medida del ancho de la pared de una casa construida de la siguiente forma. PROBLEMA 6.- Un avión ha recorrido 1800 metros a partir del despegue y se encuentra a 800 metros de altura sobre la horizontal. ¿Qué distancia horizontal ha recorrido desde el punto de donde despegó?
  • 23. 42 Fed. 2 Fed.8 Fed.5 3.2 km 1.5 km 30 cm 15 cm PROBLEMA 7.- Una puerta del archivero de las oficinas de la escuela mide 60 cm de alto por 32 cm de ancho. ¿Cuánto mide cada una de sus diagonales? PROBLEMA 8.- ¿Cuánto mide cada una de las diagonales que se encuentran diseñadas en la siguiente ventana? PROBLEMA 9.- La siguiente figura ilustra la ubicación y distancias aproximadas de las escuelas secundarias federales 2, 5 y 8. ¿Cuál es la distancia aproximada entre la federal 5 y la federal 8? PROBLEMA 10.- La torre de la antena de televisión de Chihuahua mide 60 m de altura, y está sostenida por 4 cables cuyas bases están a 20 m del pie de la torre de la antena. Si los cables llegan hasta el punto más alto de la torre, ¿cuánto mide de largo cada cable? PROBLEMA 11.- El vidrio de una ventana que tiene forma rectangular mide 60 cm de base y su diagonal mide 68 cm. ¿Cuál es la medida de la altura del vidrio? PROBLEMA 12.- La Guía de Clase de Matemáticas mide 28 cm de largo por 21 cm de ancho. ¿Cuál es la medida de su diagonal?
  • 24. 42 NOCIONES DE PROBABILIDAD • Cálculo de la probabilidad de la ocurrencia de dos eventos mutuamente excluyentes y de eventos complementarios (regla de la suma). REGLA DE LA SUMA. PROBLEMA: ¿Cuál es la probabilidad de obtener 2 o 5 al lanzar un dado? Resolvemos por partes el problema: Primero: ¿Cuál es la probabilidad de de obtener 2 puntos al lanzar un dado?............. Enseguida: ¿Cuál es la probabilidad de obtener 5 puntos par al lanzar un dado?.............. Por último: ¿Cuál es la probabilidad de obtener 2 o 5 al lanzar un dado?.............. Para calcular una probabilidad, necesitamos obtener el espacio muestral (E). El espacio muestral está constituido por todos los datos posibles de un evento. 1.- Lanzar un dado: E = {1, 2, 3, 4, 5, 6} 6 casos.
  • 25. 42 REGLA DE LA SUMA La probabilidad de obtener 2 puntos es: La probabilidad de obtener 5 puntos es: Entonces: + = = Conclusión: La probabilidad de obtener 2 o 5 es El conectivo “o” nos indica que se puede obtener cualquiera de los dos números; 2 o 5. REGLA DE LA SUMA (CONECTIVO O) Si dos o más eventos son mutuamente excluyentes, la probabilidad total de que ocurra uno “u” otro se obtiene sumando la probabilidad de cada evento. ACTIVIDADES DE CLASE 1.- Resuelve o contesta lo que se pide enseguida. a) Escribe el espacio muestral del evento que consiste en lanzar un dado: E = ______ b) ¿Cuál es la probabilidad de que al lanzar un dado caiga 3?............ c) ¿Cuál es la probabilidad de que al lanzar un dado caiga 4?............ d) ¿Cuál es la probabilidad de que al lanzar un dado caiga 3 o 4? ……….. 2.- Considera el experimento de lanzar una moneda. ¿Cuál es la probabilidad de obtener águila?.............. ¿Cuál es la probabilidad de obtener sello?............... ¿Cuál es la probabilidad de obtener águila o sello?.............. 3.- Supongamos que se realiza el experimento de lanzar un dado. ¿Cuántos números en total tiene el dado (E)?.............. ¿Cuántos números son pares?.............. ¿Cuál es la probabilidad de que salga un número par?............. ¿Cuál es la probabilidad de que salga un número impar?.............. 1 6 1 6 1 6 1 6 2 6 1 3 1 3 Estos dos eventos son mutuamente excluyentes porque el elemento de uno es diferente al elemento del otro. En uno es el 2 y en el otro el 5.
  • 26. 42 ¿Cuál es la probabilidad de que salga un número par o impar?................ ¿Cuál es la probabilidad de que salga un número par o menor que 3?............... 4.- Resuelve el siguiente problema. En el juego con un dado en el que están participando Luz y Pedro, Luz con los puntos 4, 5, o 6 que obtenga en el dado puede ganar, en cambio Pedro gana sacando 5 o 6. a) ¿Cuál es la probabilidad de ganar de Luz?............. b) ¿Cuál es la probabilidad de ganar de Pedro?.............. d) ¿Cuál es la probabilidad de que gane Luz o Pedro?.............. 5.- Considera el experimento de sacar al azar, de una urna que tiene 5 canicas rojas, 3 verdes y 2 blancas. Calcula las siguientes probabilidades aplicando la regla de la suma como en el ejemplo. a) Probabilidad (Canica roja o blanca) = + = b) Probabilidad (Canica roja o verde) = c) Probabilidad (Canica blanca o verde) = d) Probabilidad (Canica roja o verde o blanca) = e) Probabilidad (Canica blanca o roja o verde) = f) Probabilidad (Canica roja o no blanca) = 6.- Supongamos que se realiza el experimento de lanzar un dado. ¿Cuál es la probabilidad de que caiga un número menor que 3 o un número mayor que 4?............... ¿Cuál es la probabilidad de que caiga un número mayor que 4 o un número mayor que 5?............... 7.- Considera el experimento de sacar al azar de una urna que tiene 3 bolas azules, 2 blancas y 1 negra. Calcula las siguientes probabilidades aplicando la regla de la suma. a) Probabilidad (bola azul o bola blanca) = b) Probabilidad (bola azul o bola negra) = 5 10 2 10 7 10
  • 27. 42 c) Probabilidad (bola blanca o bola negra) = d) Probabilidad (bola azul o bola blanca o bola negra) = e) Probabilidad (bola azul o bola negra o bola blanca) = f) Probabilidad (bola azul o bola no negra) = 8.- Si Iván lanza dos dados y pretende que le caiga un 4 o un 6. ¿Cuál es la probabilidad de que ocurra esto?.............. 9.- Se lanzan al mismo tiempo un dado y una moneda. ¿Cuál es la probabilidad de que caiga águila o el número 5?............ 10.- Supongamos que se realiza una rifa para la que se elaboran 20 boletos. a) ¿Cuál es el espacio muestral del evento?________ b) ¿Cuál es la probabilidad de que salga premiado el número 5?............. c) ¿Cuál es la probabilidad de que salga premiado el número 10?............. d) ¿Cuál es la probabilidad de que salga premiado el 5 o el 10?.............. e) Si una persona compró los números 12, 13 y 14. ¿Cuál es la probabilidad de que se saque la rifa el 12, el 13 o el 14?.........