El vídeo tutorial enseña a calcular la integral de la función f(x) = (1 - x^2)e^(-x) utilizando el método de integración por partes, determinando su primitiva que pasa por el punto (-1,0). Se desglosan los pasos para resolver la integral, que involucra varias aplicaciones del método, y se llega a la solución final. La primitiva resultante es f(x) = e^(-x)(x^2 + 2x + 1) + k, donde se determina k igual a 0 para satisfacer la condición del punto dado.