SlideShare una empresa de Scribd logo
INTRODUCCION AL ALGEBRA Es la rama de las matemáticas que estudia la cantidad considerada del modo mas posible. El concepto de la cantidad en algebra es mucho mas amplio que en aritmética las cantidades se representan por números y estos expresan valores determinados.   En algebra para logara la generalización, las cantidades se representan por medio de letras, las cuales se pueden representar todos los valores así a representar el valor que nosotros le asignemos.
NOTACION CIENTIFICA Es la rama de la matemática que estudia la cantidad considerada del modo mas general posible.
LENGUAJE ALGEBRAICO El lenguaje algebraico utiliza letras en combinación con números y signos y además las trata con números en operaciones y propiedades se llama lenguaje algebraico.  El  lenguaje es mas preciso que el lenguaje numérico  permite expresar relaciones y propiedades numéricas. Si queremos representar la mitad de un numero seria:                                     X/2
Ocho menos algún otro numero:                        8-X  Para representar el doble de la suma de dos números seria:                         2  (A+B)  La Resta de tres números:                           A-B-C
LEY DE SIGNOS Par indicar las operaciones algebraicas fundamentales (adición sustracción multiplicación y división). Se emplea en general los mismos signos de aritmética la regla de signos para multiplicar es la siguiente Mas por mas= a mas Menos por menos= a mas Menos por mas= a menos  Mas por menos= a menos
SIGNOS DE AGRUPACION Recordemos siempre que cuando delante de un numero no hay signo se entiende que su signo es positivo. Los distintos signos de agrupación estos son los paréntesis los corchetes y las llaves aunque también puedan encontrarse en uso las barras verticales.                        (  )   [  ]  {}
Colocar el signo positivo garantiza que las cantidades que ingresan no reciben alteración alguna Esto se lleva acabo colocando el signo positivo delante del signo de agrupación izquierdo y dentro se quedan los números con su signo sin agrupación.
Términos semejantes Se llaman términos semejantes aquellos que tienen la misma o las mismas literales y están elevados a la misma potencia. Ejemplo:                                        7a² y 3a² Son términos semejantes.                                       10a² y 4b  No son términos semejantes
RESTA ALGEBRAICA O SUSTRACCION  La resta algebraica es la operación binaria que tiene como objetivo hallar un sumando desconocido  Se dice finalizado o completa si todos los términos semejantes entre minuendo y sustraendo han sido totalmente simplificados. Ejemplo:                                     -3a²  5a² = -2a²
Suma o adición algebraica                                              A+B= AB La suma algebraica es la operación binaria que tiene como objetivo el reunir dos o mas sumas (expresiones algebraicas) es una sola expresión llamada suma o adición  Se dice finalizada la operación cuando todos los términos semejantes han sido simplificados correctamente.
MULTIPLICACION Para la multiplicación algebraica se mantienen las mismas leyes que para la multiplicación aritmética, las cuales son el producto de dos o más potencias de la misma base es igual a la base elevada a la suma de las potencias. (xm) (xn) = xm + n  el coeficiente del producto de dos o más expresiones algebraicas es igual al producto de los coeficientes de los factores. (4x) (5y) = 4 · 5 · x · y = 20xy
MULTIPLICACION DE MONIMIOS Se le llama multiplicación de monomios a la multiplicación de un solo término por otro término  Reglas: Se multiplica él termino del multiplicando por él termino del multiplicador. Se suman los exponentes de las literales iguales. Se escriben las literales diferentes en un solo término resultado. Se coloca el signo de acuerdo con las reglas de los signos vistas anteriormente.
MULTIPLICACION DE POLINOMIOS Multiplicación de monomios con polinomios Se le llama multiplicación de monomios con polinomios cuando un solo factor se encuentra multiplicando a un polinomio Reglas: Se multiplica el término del monomio por cada término del polinomio, sumando los exponentes de las literales iguales. Se coloca el signo de acuerdo con las reglas de los signos vistas anteriormente Se encuentra la suma algebraica de los productos parciales.
MULTIPLICACION CONSECUTIVA Producto continuado de polinomios. Es cuando son más de dos los polinomios a multiplicar. Procedimiento Se efectúa la multiplicación de dos factores cualquiera  Se multiplica el resultado de la operación anterior con el tercer factor y así se sigue sucesivamente. Ejemplo                    z(5 – z)(z + 2)(z - 9) Lo desarrollaremos de dos maneras  Primera forma (factor por factor)
DIVISION ALGEBRAICA Es la operación que tiene por objeto, dado el producto de dos factores dividendo y uno de los factores divisor encontrar otro factor llamado cociente: D = d · C Donde:                          D es el Dividendo (producto de  los factores “d” y “C”)                        d es el divisor (factor conocido)                        C es el cociente (factor desconocido) Los factores “D”, “d” y “C” pueden ser números, monomios o polinomios.
REGLAS PARA DIVIDIR  Si el resultado es negativo si la cantidad de factores negativos es impar, de lo contrario es positivo. PARA LOS COEFICIENTES  el coeficiente del cociente es el cociente de dividir el coeficiente del dividendo entre el coeficiente del divisor.                           mx ÷ nxy = (m ÷ n)(x ÷ xy)   PARA LAS POTENCIAS : la división  de dos o más potencias de la misma base es igual a la   base elevada a la diferencia de las potencias. resulta útil y cómodo colocar la división como una expresión fraccionaria.

Más contenido relacionado

La actualidad más candente

Ejercicios binomio de newton y triangulo de pascal
Ejercicios binomio de newton y triangulo de pascalEjercicios binomio de newton y triangulo de pascal
Ejercicios binomio de newton y triangulo de pascal
Sergio Patiño Palacio
 
Factorizacion de trinomios de la forma ax2+bx+c
Factorizacion de trinomios  de la forma ax2+bx+cFactorizacion de trinomios  de la forma ax2+bx+c
Factorizacion de trinomios de la forma ax2+bx+c
santyecca
 
ECUACIONES DE SEGUNDO GRADO
ECUACIONES DE SEGUNDO GRADOECUACIONES DE SEGUNDO GRADO
ECUACIONES DE SEGUNDO GRADO
matematicasec29
 
Lenguaje algebraico
Lenguaje algebraicoLenguaje algebraico
Lenguaje algebraico
Maria Angélica Jiménez
 
Ecuaciones con radicales_resueltas
Ecuaciones con radicales_resueltasEcuaciones con radicales_resueltas
Ecuaciones con radicales_resueltas
Xavier Bejas
 
Números enteros
Números enterosNúmeros enteros
Números enteros
Lucila Paz
 
14003263 problemas-resueltos-de-conjuntos
14003263 problemas-resueltos-de-conjuntos14003263 problemas-resueltos-de-conjuntos
14003263 problemas-resueltos-de-conjuntos
Carlos Alberto Mongui
 
Razones y proporciones ppt
Razones y proporciones pptRazones y proporciones ppt
Razones y proporciones ppt
Rodrigo Cruz Cruz
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
asteteli
 
Funciones Trigonométricas
 Funciones Trigonométricas Funciones Trigonométricas
Funciones Trigonométricas
Aldana Gomez
 
129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometricarjaimeramos
 
Evaluacion de funcion cuadratica
Evaluacion de funcion cuadraticaEvaluacion de funcion cuadratica
Evaluacion de funcion cuadratica
Jairo de Jesus Tovar Hernandez
 
Teoria numeros complejos
Teoria numeros complejosTeoria numeros complejos
Teoria numeros complejos
belplater
 
3 Operaciones Binarias
3  Operaciones Binarias3  Operaciones Binarias
3 Operaciones Binarias
Alfa Velásquez Espinoza
 
Unidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre PolinomiosUnidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre Polinomios
Rosa Cristina De Pena Olivares
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
Victor Alegre
 
Monomios
MonomiosMonomios
Monomios
Juliana Isola
 
Problemas con expresiones algebraicas
Problemas con expresiones algebraicasProblemas con expresiones algebraicas
Problemas con expresiones algebraicas
LINA ELIZABETH MIÑANO YUPANQUI
 
Presentacion sistemas de ecuaciones
Presentacion sistemas de ecuacionesPresentacion sistemas de ecuaciones
Presentacion sistemas de ecuaciones
Beatriz Fernández
 
Conjuntos numéricos y propiedades
Conjuntos numéricos y propiedadesConjuntos numéricos y propiedades
Conjuntos numéricos y propiedades
blancavallejo
 

La actualidad más candente (20)

Ejercicios binomio de newton y triangulo de pascal
Ejercicios binomio de newton y triangulo de pascalEjercicios binomio de newton y triangulo de pascal
Ejercicios binomio de newton y triangulo de pascal
 
Factorizacion de trinomios de la forma ax2+bx+c
Factorizacion de trinomios  de la forma ax2+bx+cFactorizacion de trinomios  de la forma ax2+bx+c
Factorizacion de trinomios de la forma ax2+bx+c
 
ECUACIONES DE SEGUNDO GRADO
ECUACIONES DE SEGUNDO GRADOECUACIONES DE SEGUNDO GRADO
ECUACIONES DE SEGUNDO GRADO
 
Lenguaje algebraico
Lenguaje algebraicoLenguaje algebraico
Lenguaje algebraico
 
Ecuaciones con radicales_resueltas
Ecuaciones con radicales_resueltasEcuaciones con radicales_resueltas
Ecuaciones con radicales_resueltas
 
Números enteros
Números enterosNúmeros enteros
Números enteros
 
14003263 problemas-resueltos-de-conjuntos
14003263 problemas-resueltos-de-conjuntos14003263 problemas-resueltos-de-conjuntos
14003263 problemas-resueltos-de-conjuntos
 
Razones y proporciones ppt
Razones y proporciones pptRazones y proporciones ppt
Razones y proporciones ppt
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
 
Funciones Trigonométricas
 Funciones Trigonométricas Funciones Trigonométricas
Funciones Trigonométricas
 
129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica129 ejercicios resueltos sobre identidades trigonometrica
129 ejercicios resueltos sobre identidades trigonometrica
 
Evaluacion de funcion cuadratica
Evaluacion de funcion cuadraticaEvaluacion de funcion cuadratica
Evaluacion de funcion cuadratica
 
Teoria numeros complejos
Teoria numeros complejosTeoria numeros complejos
Teoria numeros complejos
 
3 Operaciones Binarias
3  Operaciones Binarias3  Operaciones Binarias
3 Operaciones Binarias
 
Unidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre PolinomiosUnidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre Polinomios
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
 
Monomios
MonomiosMonomios
Monomios
 
Problemas con expresiones algebraicas
Problemas con expresiones algebraicasProblemas con expresiones algebraicas
Problemas con expresiones algebraicas
 
Presentacion sistemas de ecuaciones
Presentacion sistemas de ecuacionesPresentacion sistemas de ecuaciones
Presentacion sistemas de ecuaciones
 
Conjuntos numéricos y propiedades
Conjuntos numéricos y propiedadesConjuntos numéricos y propiedades
Conjuntos numéricos y propiedades
 

Destacado

Introduccion al algebra con 25 diapositivas
Introduccion al algebra con 25 diapositivasIntroduccion al algebra con 25 diapositivas
Introduccion al algebra con 25 diapositivas
azarelcel
 
Resumen teoria de conjuntos
Resumen teoria de conjuntosResumen teoria de conjuntos
Resumen teoria de conjuntos
Bibiana Gualoto
 
ÁLGEBRA
ÁLGEBRAÁLGEBRA
Introducción a la teoría de conjuntos
Introducción a la teoría de conjuntosIntroducción a la teoría de conjuntos
Introducción a la teoría de conjuntos
sofistrickland
 
El algebra
El algebraEl algebra
El algebra
jessy17
 
Algebra
AlgebraAlgebra
Algebra
Jaime
 
El algebra
El algebraEl algebra
El algebra
Kyan Rodriguez
 
Trabajo final de algebra
Trabajo final de algebraTrabajo final de algebra
Trabajo final de algebra
cocopop
 
Introducción al algebra a debutantes flojos
Introducción al algebra a debutantes flojosIntroducción al algebra a debutantes flojos
Introducción al algebra a debutantes flojos
Karla Armendariz
 

Destacado (9)

Introduccion al algebra con 25 diapositivas
Introduccion al algebra con 25 diapositivasIntroduccion al algebra con 25 diapositivas
Introduccion al algebra con 25 diapositivas
 
Resumen teoria de conjuntos
Resumen teoria de conjuntosResumen teoria de conjuntos
Resumen teoria de conjuntos
 
ÁLGEBRA
ÁLGEBRAÁLGEBRA
ÁLGEBRA
 
Introducción a la teoría de conjuntos
Introducción a la teoría de conjuntosIntroducción a la teoría de conjuntos
Introducción a la teoría de conjuntos
 
El algebra
El algebraEl algebra
El algebra
 
Algebra
AlgebraAlgebra
Algebra
 
El algebra
El algebraEl algebra
El algebra
 
Trabajo final de algebra
Trabajo final de algebraTrabajo final de algebra
Trabajo final de algebra
 
Introducción al algebra a debutantes flojos
Introducción al algebra a debutantes flojosIntroducción al algebra a debutantes flojos
Introducción al algebra a debutantes flojos
 

Similar a Introduccion al algebra

álgebra. mariangel torrellas.pdf
álgebra. mariangel torrellas.pdfálgebra. mariangel torrellas.pdf
álgebra. mariangel torrellas.pdf
MariangelTorrellas
 
Expresiones Algebraicas TRABAJO IN0404.pdf
Expresiones Algebraicas TRABAJO IN0404.pdfExpresiones Algebraicas TRABAJO IN0404.pdf
Expresiones Algebraicas TRABAJO IN0404.pdf
Esleidysrodriguez1
 
Presentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptxPresentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptx
SaneidaOsmanyGratero
 
Presentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptxPresentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptx
SaneidaOsmanyGratero
 
Trabajo de algebra matemaicas
Trabajo de algebra matemaicasTrabajo de algebra matemaicas
Trabajo de algebra matemaicas
josesuarez272
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptx
Juana30627
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
Andriuska2
 
expresiones algebraicas.pptx.pdf
expresiones algebraicas.pptx.pdfexpresiones algebraicas.pptx.pdf
expresiones algebraicas.pptx.pdf
rafaelejf29
 
Operaciones algebraicas
Operaciones algebraicasOperaciones algebraicas
Operaciones algebraicas
matematicasdivertidas1
 
Presentación1.
Presentación1.Presentación1.
Presentación1.
KevinAlejandrocrdova
 
Expreciones Algebraica.pptx
Expreciones Algebraica.pptxExpreciones Algebraica.pptx
Expreciones Algebraica.pptx
DeritzonRodriguez
 
Presentación matematica1.pptx
Presentación matematica1.pptxPresentación matematica1.pptx
Presentación matematica1.pptx
josequionez10
 
Expresiones algebraicas.pptx
Expresiones algebraicas.pptxExpresiones algebraicas.pptx
Expresiones algebraicas.pptx
dilensanchez1
 
matemática Expresiones algebraicas.
matemática Expresiones algebraicas.matemática Expresiones algebraicas.
matemática Expresiones algebraicas.
DianisMontilla
 
1.-El-lenguaje-algebraico.pdf
1.-El-lenguaje-algebraico.pdf1.-El-lenguaje-algebraico.pdf
1.-El-lenguaje-algebraico.pdf
Simon Perez
 
Antony escalona v 29.531.929 y oleary gallardo v-28.019.132
Antony escalona  v 29.531.929 y oleary gallardo v-28.019.132Antony escalona  v 29.531.929 y oleary gallardo v-28.019.132
Antony escalona v 29.531.929 y oleary gallardo v-28.019.132
AnthonyEscalona5
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
edgarlysalvarez
 
Presentacion alegraica
Presentacion alegraicaPresentacion alegraica
Presentacion alegraica
MariaLucena28
 
Algebra
AlgebraAlgebra
Expreciones algebraicas.pptx
Expreciones algebraicas.pptxExpreciones algebraicas.pptx
Expreciones algebraicas.pptx
onmch241
 

Similar a Introduccion al algebra (20)

álgebra. mariangel torrellas.pdf
álgebra. mariangel torrellas.pdfálgebra. mariangel torrellas.pdf
álgebra. mariangel torrellas.pdf
 
Expresiones Algebraicas TRABAJO IN0404.pdf
Expresiones Algebraicas TRABAJO IN0404.pdfExpresiones Algebraicas TRABAJO IN0404.pdf
Expresiones Algebraicas TRABAJO IN0404.pdf
 
Presentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptxPresentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptx
 
Presentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptxPresentación Expresiones Algebraicas uptaeb.pptx
Presentación Expresiones Algebraicas uptaeb.pptx
 
Trabajo de algebra matemaicas
Trabajo de algebra matemaicasTrabajo de algebra matemaicas
Trabajo de algebra matemaicas
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptx
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
expresiones algebraicas.pptx.pdf
expresiones algebraicas.pptx.pdfexpresiones algebraicas.pptx.pdf
expresiones algebraicas.pptx.pdf
 
Operaciones algebraicas
Operaciones algebraicasOperaciones algebraicas
Operaciones algebraicas
 
Presentación1.
Presentación1.Presentación1.
Presentación1.
 
Expreciones Algebraica.pptx
Expreciones Algebraica.pptxExpreciones Algebraica.pptx
Expreciones Algebraica.pptx
 
Presentación matematica1.pptx
Presentación matematica1.pptxPresentación matematica1.pptx
Presentación matematica1.pptx
 
Expresiones algebraicas.pptx
Expresiones algebraicas.pptxExpresiones algebraicas.pptx
Expresiones algebraicas.pptx
 
matemática Expresiones algebraicas.
matemática Expresiones algebraicas.matemática Expresiones algebraicas.
matemática Expresiones algebraicas.
 
1.-El-lenguaje-algebraico.pdf
1.-El-lenguaje-algebraico.pdf1.-El-lenguaje-algebraico.pdf
1.-El-lenguaje-algebraico.pdf
 
Antony escalona v 29.531.929 y oleary gallardo v-28.019.132
Antony escalona  v 29.531.929 y oleary gallardo v-28.019.132Antony escalona  v 29.531.929 y oleary gallardo v-28.019.132
Antony escalona v 29.531.929 y oleary gallardo v-28.019.132
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Presentacion alegraica
Presentacion alegraicaPresentacion alegraica
Presentacion alegraica
 
Algebra
AlgebraAlgebra
Algebra
 
Expreciones algebraicas.pptx
Expreciones algebraicas.pptxExpreciones algebraicas.pptx
Expreciones algebraicas.pptx
 

Introduccion al algebra

  • 1. INTRODUCCION AL ALGEBRA Es la rama de las matemáticas que estudia la cantidad considerada del modo mas posible. El concepto de la cantidad en algebra es mucho mas amplio que en aritmética las cantidades se representan por números y estos expresan valores determinados. En algebra para logara la generalización, las cantidades se representan por medio de letras, las cuales se pueden representar todos los valores así a representar el valor que nosotros le asignemos.
  • 2. NOTACION CIENTIFICA Es la rama de la matemática que estudia la cantidad considerada del modo mas general posible.
  • 3. LENGUAJE ALGEBRAICO El lenguaje algebraico utiliza letras en combinación con números y signos y además las trata con números en operaciones y propiedades se llama lenguaje algebraico. El lenguaje es mas preciso que el lenguaje numérico permite expresar relaciones y propiedades numéricas. Si queremos representar la mitad de un numero seria: X/2
  • 4. Ocho menos algún otro numero: 8-X Para representar el doble de la suma de dos números seria: 2 (A+B) La Resta de tres números: A-B-C
  • 5. LEY DE SIGNOS Par indicar las operaciones algebraicas fundamentales (adición sustracción multiplicación y división). Se emplea en general los mismos signos de aritmética la regla de signos para multiplicar es la siguiente Mas por mas= a mas Menos por menos= a mas Menos por mas= a menos Mas por menos= a menos
  • 6. SIGNOS DE AGRUPACION Recordemos siempre que cuando delante de un numero no hay signo se entiende que su signo es positivo. Los distintos signos de agrupación estos son los paréntesis los corchetes y las llaves aunque también puedan encontrarse en uso las barras verticales. ( ) [ ] {}
  • 7. Colocar el signo positivo garantiza que las cantidades que ingresan no reciben alteración alguna Esto se lleva acabo colocando el signo positivo delante del signo de agrupación izquierdo y dentro se quedan los números con su signo sin agrupación.
  • 8. Términos semejantes Se llaman términos semejantes aquellos que tienen la misma o las mismas literales y están elevados a la misma potencia. Ejemplo: 7a² y 3a² Son términos semejantes. 10a² y 4b No son términos semejantes
  • 9. RESTA ALGEBRAICA O SUSTRACCION La resta algebraica es la operación binaria que tiene como objetivo hallar un sumando desconocido Se dice finalizado o completa si todos los términos semejantes entre minuendo y sustraendo han sido totalmente simplificados. Ejemplo: -3a² 5a² = -2a²
  • 10. Suma o adición algebraica A+B= AB La suma algebraica es la operación binaria que tiene como objetivo el reunir dos o mas sumas (expresiones algebraicas) es una sola expresión llamada suma o adición Se dice finalizada la operación cuando todos los términos semejantes han sido simplificados correctamente.
  • 11. MULTIPLICACION Para la multiplicación algebraica se mantienen las mismas leyes que para la multiplicación aritmética, las cuales son el producto de dos o más potencias de la misma base es igual a la base elevada a la suma de las potencias. (xm) (xn) = xm + n el coeficiente del producto de dos o más expresiones algebraicas es igual al producto de los coeficientes de los factores. (4x) (5y) = 4 · 5 · x · y = 20xy
  • 12. MULTIPLICACION DE MONIMIOS Se le llama multiplicación de monomios a la multiplicación de un solo término por otro término Reglas: Se multiplica él termino del multiplicando por él termino del multiplicador. Se suman los exponentes de las literales iguales. Se escriben las literales diferentes en un solo término resultado. Se coloca el signo de acuerdo con las reglas de los signos vistas anteriormente.
  • 13. MULTIPLICACION DE POLINOMIOS Multiplicación de monomios con polinomios Se le llama multiplicación de monomios con polinomios cuando un solo factor se encuentra multiplicando a un polinomio Reglas: Se multiplica el término del monomio por cada término del polinomio, sumando los exponentes de las literales iguales. Se coloca el signo de acuerdo con las reglas de los signos vistas anteriormente Se encuentra la suma algebraica de los productos parciales.
  • 14. MULTIPLICACION CONSECUTIVA Producto continuado de polinomios. Es cuando son más de dos los polinomios a multiplicar. Procedimiento Se efectúa la multiplicación de dos factores cualquiera Se multiplica el resultado de la operación anterior con el tercer factor y así se sigue sucesivamente. Ejemplo                    z(5 – z)(z + 2)(z - 9) Lo desarrollaremos de dos maneras Primera forma (factor por factor)
  • 15. DIVISION ALGEBRAICA Es la operación que tiene por objeto, dado el producto de dos factores dividendo y uno de los factores divisor encontrar otro factor llamado cociente: D = d · C Donde:       D es el Dividendo (producto de  los factores “d” y “C”)                        d es el divisor (factor conocido)                        C es el cociente (factor desconocido) Los factores “D”, “d” y “C” pueden ser números, monomios o polinomios.
  • 16. REGLAS PARA DIVIDIR Si el resultado es negativo si la cantidad de factores negativos es impar, de lo contrario es positivo. PARA LOS COEFICIENTES el coeficiente del cociente es el cociente de dividir el coeficiente del dividendo entre el coeficiente del divisor.                          mx ÷ nxy = (m ÷ n)(x ÷ xy) PARA LAS POTENCIAS : la división  de dos o más potencias de la misma base es igual a la   base elevada a la diferencia de las potencias. resulta útil y cómodo colocar la división como una expresión fraccionaria.