Estudiante:
Jesús Martínez
26.346.861
Instituto
politécnica
Universidad
Santiago
Mariño
Profesor :
Pedro Beltrán
Método de Newton
El método numérico de Newton fue descrito por
Sir Isaac Newton en De analysi per aequationes numero
terminorum infinitas ('Sobre el análisis mediante
ecuaciones con un número infinito de términos', escrito
en 1669, publicado en 1711 por William Jones) y en De
metodis flexione et serierum infinitarum (escrito
en 1671, traducido y publicado como Método de las
fluxiones en 1736 por John Colson).
historia Método de Newton
Sin embargo, su descripción difiere en forma
sustancial de la descripción moderna presentada
más arriba: Newton aplicaba el método solo a
polinomios, y no consideraba las aproximaciones
sucesivas xn, sino que calculaba una secuencia de
polinomios para llegar a la aproximación de la
raíz x. Finalmente, Newton ve el método como
puramente algebraico y falla al no ver la conexión
con el cálculo.
Isaac Newton probablemente derivó su método de
forma similar aunque menos precisa del método
de François Viète. La esencia del método de Viète
puede encontrarse en el trabajo
del matemático persa Sharaf al-Din al-Tusi.
Descripción del método
El método de Newton-Raphson es un método abierto, en el sentido
de que no está garantizada su convergencia global.
La única manera de alcanzar la convergencia es seleccionar un valor
inicial lo suficientemente cercano a la raíz buscada.
Así, se ha de comenzar la iteración con un valor razonablemente
cercano al cero (denominado punto de arranque o valor supuesto).
La relativa cercanía del punto inicial a la raíz depende mucho de la
naturaleza de la propia función; si ésta presenta múltiples puntos de
inflexión o pendientes grandes en el entorno de la raíz, entonces las
probabilidades de que el algoritmo diverja aumentan, lo cual exige
seleccionar un valor supuesto cercano a la raíz. Una vez que se ha
hecho esto, el método linealiza la función por la recta tangente en
ese valor supuesto.
La primera de ellas es una simple interpretación geométrica. en
efecto, atendiendo al desarrollo geométrico del método de la
secante, podría pensarse en que si los puntos de iteración están lo
suficientemente cerca (a una distancia infinitesimal), entonces la
secante se sustituye por la tangente a la curva en el punto.
Obtención del Algoritmo
Método de bisección
Este es uno de los métodos más sencillos y de fácil intuición para resolver
ecuaciones en una variable, también conocido como Método de Intervalo
Medio.1​ Se basa en el teorema del valor intermedio (TVI), el cual establece
que toda función continua f en un intervalo cerrado [a,b] toma todos los
valores que se hallan entre f(a) y f(b).
Esto es que todo valor entre f(a) y f(b) es la imagen de al menos un valor en
el intervalo [a,b].
En caso de que f(a) y f(b) tengan signos opuestos, el valor cero sería un
valor intermedio entre f(a) y f(b), por lo que con certeza existe un p en [a,b]
que cumple f(p)=0. De esta forma, se asegura la existencia de al menos
una solución de la ecuación f(x)=0.
El método consiste en lo
siguiente
Debe existir seguridad sobre la continuidad de la función f(x)
en el intervalo [a,b].
Se calcula el punto medio m del intervalo [a,b] y se
evalúa f(m) si ese valor es igual a cero, ya hemos encontrado
la raíz buscada
Se redefine el intervalo [a, b] como [a, m] ó [m, b] según se
haya determinado en cuál de estos intervalos ocurre un
cambio de signo.
Con este nuevo intervalo se continúa sucesivamente
encerrando la solución en un intervalo cada vez más
pequeño, hasta alcanzar la precisión deseada.
La interpolación lineal es un proceso que permite deducir un valor entre dos
valores bien definidos, que pueden estar en una tabla o en un gráfico lineal.
Por ejemplo, si se sabe que 3 litros de lechen valen 4 $ y que 5 litros valen 7 $,
pero se quiere saber cuál es el valor de 4 litros de leche, se interpola para
determinar ese valor intermedio.
Definición Interpolación lineal
Para estimar un valor intermedio de una función se aproxima la función f(x) por
medio de una recta r(x), lo que significa que la función varia linealmente con
«x» para un tramo «x = a» y «x = b»; es decir, para un valor «x» en el intervalo
(x0, x1) y (y0, y1), el valor de «y» es dado por la línea entre los puntos y se
expresa por la siguiente relación:
(y – y0) ÷ (x – x0) = (y1 – y0) ÷ (x1 – x0)
Para que una interpolación sea lineal, es necesario que el polinomio de
interpolación sea de grado uno (n = 1), para que se ajuste a los valores de x0 y
x1.
La interpolación lineal está basada en semejanza de triángulos, de tal manera
que, derivando geométricamente de la expresión anterior, se puede obtener el
valor de «y», que representa el valor desconocido para «x».
Metodo Interpolación lineal
Interpolación lineal de una variable independiente
En una tabla se representan
algunos valores de la función, pero
no todos.
En ocasiones, nos interesa el valor
de la función para un valor de la
variable independiente distinto de
los que figuran en la tabla; en este
caso, podemos tomar el más
próximo al buscado o
aproximarnos un poco más por
interpolación.
Definición de ecuación no lineal
Una ecuación lineal o de primer grado es aquella que involucra solamente suma y resta de
variable elevadas a la primera potencia ( elevadas a uno que no se escribe).
Son llamadas lineales por que se puede representar como rectas en el sistema cartesiano
Propiedad de la igualdades
Las tres propiedades mas importante de la igualdad se resumen en una estatura matemática que se
conoce como relación de equivalencia.
Relación de equivalencia
La relación equivalencia se define como la siguiente propiedades:
Reflexiva: a=a.
Ejemplo: 5=5.
Simetrías a=b, entonces ,b=a.
Ejemplo: si x =2 , entonces ,2 =x.
Transitiva: si a=b, y b= c, entonces, a =c
Ejemplo: si x=2,y 2 =w, entoces,x=w
Presetacion de numerica mandar

Presetacion de numerica mandar

  • 1.
  • 2.
    Método de Newton Elmétodo numérico de Newton fue descrito por Sir Isaac Newton en De analysi per aequationes numero terminorum infinitas ('Sobre el análisis mediante ecuaciones con un número infinito de términos', escrito en 1669, publicado en 1711 por William Jones) y en De metodis flexione et serierum infinitarum (escrito en 1671, traducido y publicado como Método de las fluxiones en 1736 por John Colson).
  • 3.
    historia Método deNewton Sin embargo, su descripción difiere en forma sustancial de la descripción moderna presentada más arriba: Newton aplicaba el método solo a polinomios, y no consideraba las aproximaciones sucesivas xn, sino que calculaba una secuencia de polinomios para llegar a la aproximación de la raíz x. Finalmente, Newton ve el método como puramente algebraico y falla al no ver la conexión con el cálculo. Isaac Newton probablemente derivó su método de forma similar aunque menos precisa del método de François Viète. La esencia del método de Viète puede encontrarse en el trabajo del matemático persa Sharaf al-Din al-Tusi.
  • 4.
    Descripción del método Elmétodo de Newton-Raphson es un método abierto, en el sentido de que no está garantizada su convergencia global. La única manera de alcanzar la convergencia es seleccionar un valor inicial lo suficientemente cercano a la raíz buscada. Así, se ha de comenzar la iteración con un valor razonablemente cercano al cero (denominado punto de arranque o valor supuesto). La relativa cercanía del punto inicial a la raíz depende mucho de la naturaleza de la propia función; si ésta presenta múltiples puntos de inflexión o pendientes grandes en el entorno de la raíz, entonces las probabilidades de que el algoritmo diverja aumentan, lo cual exige seleccionar un valor supuesto cercano a la raíz. Una vez que se ha hecho esto, el método linealiza la función por la recta tangente en ese valor supuesto.
  • 5.
    La primera deellas es una simple interpretación geométrica. en efecto, atendiendo al desarrollo geométrico del método de la secante, podría pensarse en que si los puntos de iteración están lo suficientemente cerca (a una distancia infinitesimal), entonces la secante se sustituye por la tangente a la curva en el punto. Obtención del Algoritmo
  • 6.
    Método de bisección Estees uno de los métodos más sencillos y de fácil intuición para resolver ecuaciones en una variable, también conocido como Método de Intervalo Medio.1​ Se basa en el teorema del valor intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b). Esto es que todo valor entre f(a) y f(b) es la imagen de al menos un valor en el intervalo [a,b]. En caso de que f(a) y f(b) tengan signos opuestos, el valor cero sería un valor intermedio entre f(a) y f(b), por lo que con certeza existe un p en [a,b] que cumple f(p)=0. De esta forma, se asegura la existencia de al menos una solución de la ecuación f(x)=0.
  • 7.
    El método consisteen lo siguiente Debe existir seguridad sobre la continuidad de la función f(x) en el intervalo [a,b]. Se calcula el punto medio m del intervalo [a,b] y se evalúa f(m) si ese valor es igual a cero, ya hemos encontrado la raíz buscada Se redefine el intervalo [a, b] como [a, m] ó [m, b] según se haya determinado en cuál de estos intervalos ocurre un cambio de signo. Con este nuevo intervalo se continúa sucesivamente encerrando la solución en un intervalo cada vez más pequeño, hasta alcanzar la precisión deseada.
  • 8.
    La interpolación lineales un proceso que permite deducir un valor entre dos valores bien definidos, que pueden estar en una tabla o en un gráfico lineal. Por ejemplo, si se sabe que 3 litros de lechen valen 4 $ y que 5 litros valen 7 $, pero se quiere saber cuál es el valor de 4 litros de leche, se interpola para determinar ese valor intermedio. Definición Interpolación lineal
  • 9.
    Para estimar unvalor intermedio de una función se aproxima la función f(x) por medio de una recta r(x), lo que significa que la función varia linealmente con «x» para un tramo «x = a» y «x = b»; es decir, para un valor «x» en el intervalo (x0, x1) y (y0, y1), el valor de «y» es dado por la línea entre los puntos y se expresa por la siguiente relación: (y – y0) ÷ (x – x0) = (y1 – y0) ÷ (x1 – x0) Para que una interpolación sea lineal, es necesario que el polinomio de interpolación sea de grado uno (n = 1), para que se ajuste a los valores de x0 y x1. La interpolación lineal está basada en semejanza de triángulos, de tal manera que, derivando geométricamente de la expresión anterior, se puede obtener el valor de «y», que representa el valor desconocido para «x». Metodo Interpolación lineal
  • 10.
    Interpolación lineal deuna variable independiente En una tabla se representan algunos valores de la función, pero no todos. En ocasiones, nos interesa el valor de la función para un valor de la variable independiente distinto de los que figuran en la tabla; en este caso, podemos tomar el más próximo al buscado o aproximarnos un poco más por interpolación.
  • 11.
    Definición de ecuaciónno lineal Una ecuación lineal o de primer grado es aquella que involucra solamente suma y resta de variable elevadas a la primera potencia ( elevadas a uno que no se escribe). Son llamadas lineales por que se puede representar como rectas en el sistema cartesiano
  • 12.
    Propiedad de laigualdades Las tres propiedades mas importante de la igualdad se resumen en una estatura matemática que se conoce como relación de equivalencia. Relación de equivalencia La relación equivalencia se define como la siguiente propiedades: Reflexiva: a=a. Ejemplo: 5=5. Simetrías a=b, entonces ,b=a. Ejemplo: si x =2 , entonces ,2 =x. Transitiva: si a=b, y b= c, entonces, a =c Ejemplo: si x=2,y 2 =w, entoces,x=w