SlideShare una empresa de Scribd logo
1 de 80
Mapas  con Características Autoorganizativas ( SOM )
Introducción
La corteza cerebral ,[object Object]
Nuestro Cerebro
Mapas en Neurobiologia ,[object Object],[object Object],[object Object],[object Object]
“ El Homunculus” Es una representación distorsionada de la relación entre las partes del cuerpo y las regiones del cerebro  que controlan a ellas
Professor of Computer Science, Computer Science Department, Biology Department, Department for Physics and Astronomy. Director, Laboratory of Computational and Biological Vision Director,  Institut für Neuroinformatik , Ruhr-Universität Bochum, Germany   Ph D. Christoph von der Malsburg (1970´s)
His research areas are the theory of self-organization, associative memories, neural networks, and pattern recognition, in which he has published over 300 research papers and four monography books. His fifth book is on digital computers. His more recent work is expounded in the  tercera edicion extendida (2001)  Teuvo Kohonen Dr. Eng., Emeritus Professor of the Academy of Finland; Academician of his book   Self - Organizing Maps . (1980´s)
Información general ,[object Object],[object Object]
AUTOORGANIZACIÓN ,[object Object],[object Object]
Arquitectura
ARQUITECTURA ,[object Object],[object Object],[object Object],[object Object]
 
 
Características
Aprendizaje competitivo ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
SOM ,[object Object],[object Object],[object Object],[object Object]
 
Especificaciones ,[object Object],[object Object],[object Object]
Vecindades
Redes  Autoorganizativas  ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
Ejemplo de funcionamiento:
Convergencia
Función  sombrero mexicano (Mexican-Hat)
Ventajas ,[object Object],[object Object],[object Object]
Limitaciones ,[object Object],[object Object],[object Object]
Desventajas ,[object Object],[object Object],[object Object]
Algoritmo de Aprendizaje
Entrenamiento  de SOM’s ,[object Object],[object Object]
Entrenamiento  de SOM’s ,[object Object],[object Object]
Procedimiento ,[object Object],[object Object]
Regla de Aprendizaje de los SOM Actualización de los vectores de pesos en una vecindad de la neurona ganadora. REGLA DE  KOHONEN
Donde: N i*   (d)   es  la  vecindad  que  contiene  el  indice  para  todas  las  neuronas  que  radican  dentro del  radio  d d  es  el  radio  alrededor de  la  neurona  ganadora i*   es  la  neurona  ganadora
De  esta  forma: N i*   (d)  ={ j, d ij      d} Conforme  p   se  este  presentando,  los  pesos de  la  neurona  ganadora  y  de  su  vecindad  se  acercarán  cada  vez  más  a  p
ALGORITMO ,[object Object],[object Object],[object Object]
ALGORITMO ,[object Object],[object Object]
Entrenamiento ,[object Object],[object Object],[object Object],[object Object]
Modificación de pesos ,[object Object],[object Object]
Modificación de los parámetros ,[object Object],Donde: T 0  es el numero total de iteraciones  0  es la razón inicial de aprendizaje
Modificación de los parámetros La vecindad se modifica de igual forma Donde:  0  es el numero total de iteraciones  0  =1/2 # neuronas en la capa
Variaciones al  algoritmo Básico ,[object Object],[object Object],[object Object],[object Object]
Aplicaciones
Aplicaciones ,[object Object],[object Object]
Aplicaciones ,[object Object]
Aplicaciones ,[object Object],[object Object]
[object Object],Aplicaciones
La máquina de escribir  neuronal fonética .
Aplicaciones ,[object Object],[object Object]
Ejercicios
Ejemplo 1: ,[object Object],[object Object],[object Object]
Antes   Después
Código en Matlab NNT
ARQUITECTURA  SOM
Inicio Final Mapa Bidimensional
Simulación en  Matlab / NNT
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
Ejemplo 1: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Ejemplo de Codificación 2: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Inicio Final Mapa Lineal
Bibliografía
Articulos Originales ,[object Object],[object Object]
Articulos Originales ,[object Object]
Dudas ???
Hasta la próxima !!!

Más contenido relacionado

La actualidad más candente

Presentación Arreglo de Antenas
Presentación Arreglo de AntenasPresentación Arreglo de Antenas
Presentación Arreglo de AntenasAntenas_propagacion
 
Redes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadasRedes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadasUNIVERSIDAD SANTA MARIA
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Mostafa G. M. Mostafa
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionbutest
 
Probabilidad de error en modulación digital
Probabilidad de error en modulación digitalProbabilidad de error en modulación digital
Probabilidad de error en modulación digitalFrancisco Apablaza
 
lecture07.ppt
lecture07.pptlecture07.ppt
lecture07.pptbutest
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)EdutechLearners
 
codificaciones unipolar, polar, bipolar
codificaciones unipolar, polar, bipolarcodificaciones unipolar, polar, bipolar
codificaciones unipolar, polar, bipolarthejp
 
Modulación digital con portadora análoga
Modulación digital con portadora análogaModulación digital con portadora análoga
Modulación digital con portadora análogaJoaquin Vicioso
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)Mostafa G. M. Mostafa
 
Instance based learning
Instance based learningInstance based learning
Instance based learningswapnac12
 
Artificial nueral network slideshare
Artificial nueral network slideshareArtificial nueral network slideshare
Artificial nueral network slideshareRed Innovators
 
Radio labo-1 FIGUEROA UNAC FIEE
Radio labo-1 FIGUEROA UNAC FIEERadio labo-1 FIGUEROA UNAC FIEE
Radio labo-1 FIGUEROA UNAC FIEERicardo Gonzales
 

La actualidad más candente (20)

Tema 4 codificación de canal
Tema 4   codificación de canalTema 4   codificación de canal
Tema 4 codificación de canal
 
Presentación Arreglo de Antenas
Presentación Arreglo de AntenasPresentación Arreglo de Antenas
Presentación Arreglo de Antenas
 
Neural
NeuralNeural
Neural
 
Redes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadasRedes neuronales artificiales supervisadas y no supervisadas
Redes neuronales artificiales supervisadas y no supervisadas
 
Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)Neural Networks: Radial Bases Functions (RBF)
Neural Networks: Radial Bases Functions (RBF)
 
Hidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognitionHidden Markov Models with applications to speech recognition
Hidden Markov Models with applications to speech recognition
 
Perceptron & Neural Networks
Perceptron & Neural NetworksPerceptron & Neural Networks
Perceptron & Neural Networks
 
Probabilidad de error en modulación digital
Probabilidad de error en modulación digitalProbabilidad de error en modulación digital
Probabilidad de error en modulación digital
 
lecture07.ppt
lecture07.pptlecture07.ppt
lecture07.ppt
 
neural networks
neural networksneural networks
neural networks
 
Ensayo Cliente Servidor
Ensayo Cliente ServidorEnsayo Cliente Servidor
Ensayo Cliente Servidor
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
 
Back propagation method
Back propagation methodBack propagation method
Back propagation method
 
codificaciones unipolar, polar, bipolar
codificaciones unipolar, polar, bipolarcodificaciones unipolar, polar, bipolar
codificaciones unipolar, polar, bipolar
 
Modulación digital con portadora análoga
Modulación digital con portadora análogaModulación digital con portadora análoga
Modulación digital con portadora análoga
 
Neural Networks: Self-Organizing Maps (SOM)
Neural Networks:  Self-Organizing Maps (SOM)Neural Networks:  Self-Organizing Maps (SOM)
Neural Networks: Self-Organizing Maps (SOM)
 
Instance based learning
Instance based learningInstance based learning
Instance based learning
 
Artificial nueral network slideshare
Artificial nueral network slideshareArtificial nueral network slideshare
Artificial nueral network slideshare
 
Neural Networks
Neural NetworksNeural Networks
Neural Networks
 
Radio labo-1 FIGUEROA UNAC FIEE
Radio labo-1 FIGUEROA UNAC FIEERadio labo-1 FIGUEROA UNAC FIEE
Radio labo-1 FIGUEROA UNAC FIEE
 

Destacado

ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1ESCOM
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL BackpropagationESCOM
 
Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoESCOM
 
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...Enrique Adolfo Simmonds Barrios
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESESCOM
 
El Perceptrón Multicapa
El Perceptrón  MulticapaEl Perceptrón  Multicapa
El Perceptrón MulticapaESCOM
 
Seguridad en Gestion de redes
Seguridad en Gestion de redesSeguridad en Gestion de redes
Seguridad en Gestion de redeshmitre17
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBESCOM
 
Curso 2006 Sesion 1 Kohonen
Curso 2006 Sesion 1 KohonenCurso 2006 Sesion 1 Kohonen
Curso 2006 Sesion 1 Kohonenaskroll
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizadosJesus Rojas
 
Clase Inteligencia Artificial Unidad 3
Clase Inteligencia Artificial Unidad 3Clase Inteligencia Artificial Unidad 3
Clase Inteligencia Artificial Unidad 3K Reyes
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalESCOM
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de RetropropagaciónESCOM
 
Introduccion a las redes neuronales
Introduccion a las redes neuronalesIntroduccion a las redes neuronales
Introduccion a las redes neuronalesHALCONPEREGRINO2
 

Destacado (20)

ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
 
Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y Entrenamiento
 
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...
Red Neuronal Artificial Aplicada para la Supervisión del Desempeño Docente De...
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Rn
RnRn
Rn
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
 
El Perceptrón Multicapa
El Perceptrón  MulticapaEl Perceptrón  Multicapa
El Perceptrón Multicapa
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Seguridad en Gestion de redes
Seguridad en Gestion de redesSeguridad en Gestion de redes
Seguridad en Gestion de redes
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Curso 2006 Sesion 1 Kohonen
Curso 2006 Sesion 1 KohonenCurso 2006 Sesion 1 Kohonen
Curso 2006 Sesion 1 Kohonen
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
 
Clase Inteligencia Artificial Unidad 3
Clase Inteligencia Artificial Unidad 3Clase Inteligencia Artificial Unidad 3
Clase Inteligencia Artificial Unidad 3
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación Neuronal
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
 
Modulo5
Modulo5Modulo5
Modulo5
 
Introduccion a las redes neuronales
Introduccion a las redes neuronalesIntroduccion a las redes neuronales
Introduccion a las redes neuronales
 

Similar a REDES NEURONALES Mapas con Características Autoorganizativas Som

redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales KohonenESCOM
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales SomESCOM
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUTLuis Álamo
 
Redes neuronales Luis Lozano CI 22.840.519
Redes neuronales   Luis Lozano CI 22.840.519Redes neuronales   Luis Lozano CI 22.840.519
Redes neuronales Luis Lozano CI 22.840.519lozanolc
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenESCOM
 
Overview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its ApplicationsOverview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its ApplicationsRamiro Aduviri Velasco
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificialesESCOM
 
presentacion RNA y arquitecturas
presentacion RNA y arquitecturaspresentacion RNA y arquitecturas
presentacion RNA y arquitecturasJhonatan Navarro
 
48690471 redes-neuronales
48690471 redes-neuronales48690471 redes-neuronales
48690471 redes-neuronalesjcbenitezp
 
Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2UNEFA
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapaJefferson Guillen
 
Tema 8 Aprendizaje De Sistemas Difusos Con Redes Neuronales
Tema 8 Aprendizaje De Sistemas Difusos Con Redes NeuronalesTema 8 Aprendizaje De Sistemas Difusos Con Redes Neuronales
Tema 8 Aprendizaje De Sistemas Difusos Con Redes NeuronalesESCOM
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia competRichar León
 
IA - Redes Neuronales
IA - Redes NeuronalesIA - Redes Neuronales
IA - Redes Neuronalesmartinp
 

Similar a REDES NEURONALES Mapas con Características Autoorganizativas Som (20)

redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales Kohonen
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
2º asignacion redes neuronales
2º asignacion redes neuronales2º asignacion redes neuronales
2º asignacion redes neuronales
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
 
Redes neuronales Luis Lozano CI 22.840.519
Redes neuronales   Luis Lozano CI 22.840.519Redes neuronales   Luis Lozano CI 22.840.519
Redes neuronales Luis Lozano CI 22.840.519
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
 
Slidecats
SlidecatsSlidecats
Slidecats
 
Overview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its ApplicationsOverview of Artificial Neural Networks and its Applications
Overview of Artificial Neural Networks and its Applications
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificiales
 
presentacion RNA y arquitecturas
presentacion RNA y arquitecturaspresentacion RNA y arquitecturas
presentacion RNA y arquitecturas
 
48690471 redes-neuronales
48690471 redes-neuronales48690471 redes-neuronales
48690471 redes-neuronales
 
Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2Inteligencia Artificial Clase 2
Inteligencia Artificial Clase 2
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapa
 
110641.ppt
110641.ppt110641.ppt
110641.ppt
 
Tema 8 Aprendizaje De Sistemas Difusos Con Redes Neuronales
Tema 8 Aprendizaje De Sistemas Difusos Con Redes NeuronalesTema 8 Aprendizaje De Sistemas Difusos Con Redes Neuronales
Tema 8 Aprendizaje De Sistemas Difusos Con Redes Neuronales
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
 
IA - Redes Neuronales
IA - Redes NeuronalesIA - Redes Neuronales
IA - Redes Neuronales
 

Más de ESCOM

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo SomESCOM
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som SlidesESCOM
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som NetESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networksESCOM
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia AdaptativaESCOM
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3ESCOM
 
Art2
Art2Art2
Art2ESCOM
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo ArtESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima CognitronESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORKESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORKESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
CounterpropagationESCOM
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1ESCOM
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTESCOM
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQESCOM
 

Más de ESCOM (20)

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
 
Art2
Art2Art2
Art2
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 

Último

Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALLA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALJorge Castillo
 
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdfPROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdfmihayedo
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxlitaroxselyperezmont
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )portafoliodigitalyos
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...harolbustamante1
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)portafoliodigitalyos
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)portafoliodigitalyos
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresLluviaAliciaHernande
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...Andrés Canale
 
Profecia 2300 dias explicada, Daniel 8:14
Profecia 2300 dias explicada, Daniel 8:14Profecia 2300 dias explicada, Daniel 8:14
Profecia 2300 dias explicada, Daniel 8:14KevinBuenrostro4
 
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRuben53283
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfNilssaRojas1
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIASandra Mariela Ballón Aguedo
 

Último (20)

Lec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuarioLec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuario
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSALLA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
LA ILIADA Y LA ODISEA.LITERATURA UNIVERSAL
 
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdfPROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
Profecia 2300 dias explicada, Daniel 8:14
Profecia 2300 dias explicada, Daniel 8:14Profecia 2300 dias explicada, Daniel 8:14
Profecia 2300 dias explicada, Daniel 8:14
 
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y SociedadRubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
RubénSaaRamos_PrácticasPedagogía_Educación y Sociedad
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
 
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
 

REDES NEURONALES Mapas con Características Autoorganizativas Som