SlideShare una empresa de Scribd logo
Kohonen
Introducción Existen evidencias que demuestran que en el cerebro existen neuronas
que se organizan en muchas zonas, de forma que las informaciones captadas del
entorno a través de los órganos sensoriales se representan internamente en forma de
capas bidimensionales. Por ejemplo, en el sistema visual se han detectado mapas del
espacio visual en zonas de córtex (capa externa del cerebro). También en el sistema
auditivo se detecta organización según la frecuencia a la que cada neurona alcanza la
mayor respuesta (organización tonotópica). Aunque en gran medida esta
organización neuronal está predeterminada genéticamente, es probable que de ella se
origine medienta el aprendizaje. Esto sugiere, por tanto, que el cerebro podría poseer
la capacidad inherente de formar mapas topológicos de las informaciones recibidas del
exterior. De hecho, esta teoría podría explicar su poder de operar con elementos
semánticos: algunas areas del cerebro simplemente podrían crear y ordenar neuronas
especializadas o grupos con caracteristicas de alto nivel y sus combinaciones. Se
trataría, en definitiva, de construir mapas espaciales para atributos y características.
Historia A partir de estas ideas, T. Kohonen presentó en 1982 un sistema con un
comportamiento semejante. Se trataba de un modelo de red neuronal con capacidad
para formar mapas de características de manera similar a como ocurre en el cerebro.
El objetivo de Kohonen era demostrar que en un estímulo externo (información de
entrada) por si solo, suponiendo una estructura propia y una descripción funcional del
comportamiento de la red, era suficiente para forzar la formacion de mapas. Este
modelo tiene dos variantes, denominadas LVQ (Learning Vector Quantization) y TPM
(Topology-Preserving Map) o SOM (Self-Organizating Map). Ambas se basan en el
principio de formación de mapas topológicos para establecer características comunes
entre las informaciones (vectores) de entrada a la red, aunque difieren en las
dimensiones de éstos, siendo de una soladimensión en el caso de LVQ, y
bidimensional, e incluso tridimensional, en la red TPM. Características Pertenece a la
categoría de las redes competitivas o mapas de autoorganización, es decir,
aprendizaje no supervisado. Poseen una arquitectura de dos capas (entrada-salida)
(una sola capa de conexiones), funciones de activación lineales y flujo de información
unidireccional (son redes en cascada). Las unidades de entrada reciben datos
continuos normalizados, se normalizan así mismo los pesos de las conexiones con la
capa de salida. Tras el aprendizaje de la red, cada patrón de entrada activará una
única unidad de salida. El objetivo de este tipo de redes es clasificar los patrones de
entrada en grupos de características similares, de manera que cada grupo activará
siempre la(s) misma(s) salida(s). Cada grupo de entradas queda representado en los
pesos de las conexiones de la unidad de salida triunfante. La unidad de salida
ganadora para cada grupo de entradas no se conoce previamente, es necesario
averiguarlo después de entrenar a la red. Arquitectura En la arquitectura de la
versión original (LVQ) del modelo Kohonen no existen conexioines hacia atrás. Se
trata de una de las N neuronas entrada y M de salida. Cada una de las N neuronas de
entrada se conecta a las M de salida a través de conexiones hacia adelante
(feedfoward). Entre las neuronas de la capa de salida, puede decirse que existen
conexiones laterales de inhibición (peso negativo) implícitas, pues aunque no estén
conectadas, cada una de las neuronas va a tener cierta influencia sobre sus vecinas.
El valor que se asigne a los pesos de las conexiones hacia adelante entre las capas de
entrada y salida (Wji) durante el proceso de aprendizaje de la red va a depender
precisamente de esta interacción lateral. La influencia que una neurona ejerce sobre
las demás es función de la distancia entre ellas, siendo muy pequeñas cuando estan
muy alejadas. Es frecuente que dicha influencia tenga la forma de un sombrero
mexicano. Por otra parte, la versión del modelo denominada TPM (Topology
Preserving Map) trata de establecer una correspondencia entre los datos de entrada y
un espacio bidimensional de salida, crenado mapas topológicos de dos dimensiones,
de tal forma que ante datos de entrada con características comunes se deben activar
neuronas situadas en próximas zonasde la capa de salida. Aprendizaje Supongamos
que tenemos patrones de entrada n-dimensionales. 0. Aleatorizar los pesos de las
conexiones. Normalizar los pesos de las conexiones incidentes de cada unidad de
salida sobre la unidad: dividir cada conexión por la raíz cuadrada de la suma de los
cuadrados de las conexiones de cada unidad. Normalizar igualmente los datos de
entrada Aplicar un patrón de entrada. Calcular alguna medida de similitud/disimilitud
(producto interno, distancia euclídea o de Mahalanobis, etc.) entre las entradas y los
pesos de las conexiones. La unidad de salida con los pesos más parecidos al patrón
de entrada es declarada ganadora. El vector de pesos de la unidad ganadora, se
convierte en el centro de un grupo de vectores cercanos a él. Modificar los pesos de
los vectores de pesos Wj "cercanos" a Wc (distancia menor a D), según la fórmula:

                                   De esta manera conseguimos que los vectores de
pesos de la unidad ganadora y de su "vecindario" se parezcan cada vez más al patrón
de entrada que hace ganar a esa unidad. Repetir los pasos 1 a 4 con todos los
patrones de entrada. A medida que avanza el aprendizaje hay que ir reduciendo D y
a. Kohonen recomienda empezar con un valor de a cercano a 1 y reducirlo
gradualmente hasta 0.1. D puede empezar valiendo la máxima distancia existente
entre los pesos de las conexiones al principio y acabar siendo tan pequeño que no
quede ninguna unidad en el vecindario de la unidad ganadora. En ese momento solo
se entrenará una unidad, que al final tendrá su vector de pesos igual al vector de
entrada. La precisión de la clasificación de los patrones de entrada aumenta con el
número de ciclos de aprendizaje. Kohonen recomienda una cantidad de ciclos no
inferior a 500 veces el número de neuronas de salida para obtener buenos resultados.
Aplicación Una vez entrenada, podemos usar a la red para clasificar patrones de
entrada similares en el espacio n-dimensional. Una clase o grupo de patrones
similares tiende a controlar una neurona específica, que representará el centro de una
esfera n-dimensional (de radio unitario, pues normalizamos los datos sobre la
unidad). Esa neurona resultará la más activada frente a los patrones más parecidos a
su vector de pesos. Después del aprendizaje, la clasificación consiste en presentar
una entrada y seleccionar la unidad más activada. Además, el vector de pesos nos
servirá para reconstruir el patrón de entrada.

Más contenido relacionado

La actualidad más candente

Capacidad del canal
Capacidad del canalCapacidad del canal
Capacidad del canal
Leonardo Navarro
 
Diagrama de bloque tanque
Diagrama de bloque tanqueDiagrama de bloque tanque
Diagrama de bloque tanque
E_ANTOLINEZ
 
Método de ordenamiento por selección (selection sort
Método de ordenamiento por selección (selection sortMétodo de ordenamiento por selección (selection sort
Método de ordenamiento por selección (selection sort
linkinpark03
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superior
williams leon
 
Reporte metodos de busqueda y ordenamiento
Reporte metodos de busqueda y ordenamientoReporte metodos de busqueda y ordenamiento
Reporte metodos de busqueda y ordenamiento
TAtiizz Villalobos
 
Estructuras de datos lineales
Estructuras de datos linealesEstructuras de datos lineales
Estructuras de datos lineales
Alvaro Enrique Ruano
 
Listas,pilas y colas Estructura de Datos
Listas,pilas y colas Estructura de DatosListas,pilas y colas Estructura de Datos
Listas,pilas y colas Estructura de Datos
Yorka Marisol Perez Feliz
 
Conceptos basicos
Conceptos basicosConceptos basicos
Conceptos basicos
Carlos Ostos
 
Búsqueda secuencial y binaria
Búsqueda secuencial y binariaBúsqueda secuencial y binaria
Búsqueda secuencial y binaria
Alvaro Enrique Ruano
 
Introducción a los Sistemas de Control y sus Elementos
Introducción a los Sistemas de Control y sus ElementosIntroducción a los Sistemas de Control y sus Elementos
Introducción a los Sistemas de Control y sus Elementos
Jeickson Sulbaran
 
acciones basicas-de-control
acciones basicas-de-controlacciones basicas-de-control
acciones basicas-de-control
Edgar Ortiz Sánchez
 
Programacion Orientada a Objetos
Programacion Orientada a ObjetosProgramacion Orientada a Objetos
Programacion Orientada a Objetos
Cesar David Fernandez Grueso
 
Variables Controladas y Variables Incontroladas.
Variables Controladas y Variables Incontroladas.Variables Controladas y Variables Incontroladas.
Variables Controladas y Variables Incontroladas.
acpicegudomonagas
 
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
Isabel Jiménez Carranza
 
Ordenamiento por insercion
Ordenamiento por insercionOrdenamiento por insercion
Ordenamiento por insercion
Héctor Riquelme Burgos
 
Estándar ieee 802
Estándar ieee 802Estándar ieee 802
Estándar ieee 802
Larry Ruiz Barcayola
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
Jesus Chaux
 
Sistemas de primer, segundo y orden superior
Sistemas de primer, segundo y orden superiorSistemas de primer, segundo y orden superior
Sistemas de primer, segundo y orden superior
ChristopherToro5
 
Pilas como estructura de datos..
Pilas como estructura de datos..Pilas como estructura de datos..
Pilas como estructura de datos..
NANO-06
 
Ejercicios
EjerciciosEjercicios
Ejercicios
Ricardo Tejera
 

La actualidad más candente (20)

Capacidad del canal
Capacidad del canalCapacidad del canal
Capacidad del canal
 
Diagrama de bloque tanque
Diagrama de bloque tanqueDiagrama de bloque tanque
Diagrama de bloque tanque
 
Método de ordenamiento por selección (selection sort
Método de ordenamiento por selección (selection sortMétodo de ordenamiento por selección (selection sort
Método de ordenamiento por selección (selection sort
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superior
 
Reporte metodos de busqueda y ordenamiento
Reporte metodos de busqueda y ordenamientoReporte metodos de busqueda y ordenamiento
Reporte metodos de busqueda y ordenamiento
 
Estructuras de datos lineales
Estructuras de datos linealesEstructuras de datos lineales
Estructuras de datos lineales
 
Listas,pilas y colas Estructura de Datos
Listas,pilas y colas Estructura de DatosListas,pilas y colas Estructura de Datos
Listas,pilas y colas Estructura de Datos
 
Conceptos basicos
Conceptos basicosConceptos basicos
Conceptos basicos
 
Búsqueda secuencial y binaria
Búsqueda secuencial y binariaBúsqueda secuencial y binaria
Búsqueda secuencial y binaria
 
Introducción a los Sistemas de Control y sus Elementos
Introducción a los Sistemas de Control y sus ElementosIntroducción a los Sistemas de Control y sus Elementos
Introducción a los Sistemas de Control y sus Elementos
 
acciones basicas-de-control
acciones basicas-de-controlacciones basicas-de-control
acciones basicas-de-control
 
Programacion Orientada a Objetos
Programacion Orientada a ObjetosProgramacion Orientada a Objetos
Programacion Orientada a Objetos
 
Variables Controladas y Variables Incontroladas.
Variables Controladas y Variables Incontroladas.Variables Controladas y Variables Incontroladas.
Variables Controladas y Variables Incontroladas.
 
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
Direccionamiento ip-y-subredes-ejercicios-resueltos-1194346207489436-2
 
Ordenamiento por insercion
Ordenamiento por insercionOrdenamiento por insercion
Ordenamiento por insercion
 
Estándar ieee 802
Estándar ieee 802Estándar ieee 802
Estándar ieee 802
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Sistemas de primer, segundo y orden superior
Sistemas de primer, segundo y orden superiorSistemas de primer, segundo y orden superior
Sistemas de primer, segundo y orden superior
 
Pilas como estructura de datos..
Pilas como estructura de datos..Pilas como estructura de datos..
Pilas como estructura de datos..
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 

Destacado

red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
ESCOM
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
ESCOM
 
redes kohonen
redes kohonenredes kohonen
redes kohonen
Joseph Herrera
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
ESCOM
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
ESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
ESCOM
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
ESCOM
 

Destacado (9)

red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Teoria Resonancia Adaptativa
Teoria Resonancia AdaptativaTeoria Resonancia Adaptativa
Teoria Resonancia Adaptativa
 
redes kohonen
redes kohonenredes kohonen
redes kohonen
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
 

Similar a redes neuronales Kohonen

REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
ESCOM
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
ESCOM
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
Kempachi Zaraki
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
Jesus Rojas
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
edeciofreitez
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
ESCOM
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
Richar León
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
Jhon James Cano
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificiales
ESCOM
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
Luis Álamo
 
Ap acompet
Ap acompetAp acompet
Ap acompet
Edgar Tuza
 
Redes neuronales Luis Lozano CI 22.840.519
Redes neuronales   Luis Lozano CI 22.840.519Redes neuronales   Luis Lozano CI 22.840.519
Redes neuronales Luis Lozano CI 22.840.519
lozanolc
 
Introduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVAIntroduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVA
ESCOM
 
Neurona de Mc culloch
Neurona de Mc cullochNeurona de Mc culloch
Redes Neuronales
Redes NeuronalesRedes Neuronales
MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)
ESCOM
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
Elik Castillo
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
Elik Castillo
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
ESCOM
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
ESCOM
 

Similar a redes neuronales Kohonen (20)

REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
 
Tedes estocasticas
Tedes estocasticasTedes estocasticas
Tedes estocasticas
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificiales
 
Sistemas Basados en Casos IUT
Sistemas Basados en Casos IUTSistemas Basados en Casos IUT
Sistemas Basados en Casos IUT
 
Ap acompet
Ap acompetAp acompet
Ap acompet
 
Redes neuronales Luis Lozano CI 22.840.519
Redes neuronales   Luis Lozano CI 22.840.519Redes neuronales   Luis Lozano CI 22.840.519
Redes neuronales Luis Lozano CI 22.840.519
 
Introduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVAIntroduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVA
 
Neurona de Mc culloch
Neurona de Mc cullochNeurona de Mc culloch
Neurona de Mc culloch
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)MODELO DE RESONANCIA ADAPTATIVA (ART)
MODELO DE RESONANCIA ADAPTATIVA (ART)
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
 
redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
 

Más de ESCOM

redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
ESCOM
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
ESCOM
 
Art2
Art2Art2
Art2
ESCOM
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
ESCOM
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
ESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
ESCOM
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
ESCOM
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised Slides
ESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
ESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
ESCOM
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
ESCOM
 

Más de ESCOM (20)

redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
Art2
Art2Art2
Art2
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
Teoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ARTTeoría de Resonancia Adaptativa ART
Teoría de Resonancia Adaptativa ART
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised Slides
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 

Último

La vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primariaLa vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primaria
EricaCouly1
 
Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.
amayaltc18
 
Presentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdfPresentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdf
H4RV3YH3RN4ND3Z
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
jecgjv
 
Las diversas Sociedades Mercantiles Mexico.pdf
Las diversas Sociedades Mercantiles Mexico.pdfLas diversas Sociedades Mercantiles Mexico.pdf
Las diversas Sociedades Mercantiles Mexico.pdf
La Paradoja educativa
 
Guia Practica de ChatGPT para Docentes Ccesa007.pdf
Guia Practica de ChatGPT para Docentes Ccesa007.pdfGuia Practica de ChatGPT para Docentes Ccesa007.pdf
Guia Practica de ChatGPT para Docentes Ccesa007.pdf
Demetrio Ccesa Rayme
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
https://gramadal.wordpress.com/
 
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
20minutos
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
lautyzaracho4
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
100078171
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
Dia de la Bandera colegio Santa Angela 2024
Dia de la Bandera colegio Santa Angela 2024Dia de la Bandera colegio Santa Angela 2024
Dia de la Bandera colegio Santa Angela 2024
77361565
 
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdfLas Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Demetrio Ccesa Rayme
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Demetrio Ccesa Rayme
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
ginnazamudio
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Unidad de Espiritualidad Eudista
 
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
valerytorresmendizab
 
Todo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdfTodo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdf
La Paradoja educativa
 
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
JAVIER SOLIS NOYOLA
 

Último (20)

La vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primariaLa vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primaria
 
Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.
 
Presentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdfPresentación Curso C. Diferencial - 2024-1.pdf
Presentación Curso C. Diferencial - 2024-1.pdf
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
 
Las diversas Sociedades Mercantiles Mexico.pdf
Las diversas Sociedades Mercantiles Mexico.pdfLas diversas Sociedades Mercantiles Mexico.pdf
Las diversas Sociedades Mercantiles Mexico.pdf
 
Guia Practica de ChatGPT para Docentes Ccesa007.pdf
Guia Practica de ChatGPT para Docentes Ccesa007.pdfGuia Practica de ChatGPT para Docentes Ccesa007.pdf
Guia Practica de ChatGPT para Docentes Ccesa007.pdf
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
 
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
Dia de la Bandera colegio Santa Angela 2024
Dia de la Bandera colegio Santa Angela 2024Dia de la Bandera colegio Santa Angela 2024
Dia de la Bandera colegio Santa Angela 2024
 
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdfLas Tecnologias Digitales en los Aprendizajesdel Siglo XXI  UNESCO Ccesa007.pdf
Las Tecnologias Digitales en los Aprendizajesdel Siglo XXI UNESCO Ccesa007.pdf
 
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdfGuia para Docentes como usar ChatGPT  Mineduc Ccesa007.pdf
Guia para Docentes como usar ChatGPT Mineduc Ccesa007.pdf
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
 
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
 
Todo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdfTodo sobre el acta constitutiva de la empresa.pdf
Todo sobre el acta constitutiva de la empresa.pdf
 
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
ACERTIJO DESCIFRANDO CÓDIGO DEL CANDADO DE LA TORRE EIFFEL EN PARÍS. Por JAVI...
 

redes neuronales Kohonen

  • 1. Kohonen Introducción Existen evidencias que demuestran que en el cerebro existen neuronas que se organizan en muchas zonas, de forma que las informaciones captadas del entorno a través de los órganos sensoriales se representan internamente en forma de capas bidimensionales. Por ejemplo, en el sistema visual se han detectado mapas del espacio visual en zonas de córtex (capa externa del cerebro). También en el sistema auditivo se detecta organización según la frecuencia a la que cada neurona alcanza la mayor respuesta (organización tonotópica). Aunque en gran medida esta organización neuronal está predeterminada genéticamente, es probable que de ella se origine medienta el aprendizaje. Esto sugiere, por tanto, que el cerebro podría poseer la capacidad inherente de formar mapas topológicos de las informaciones recibidas del exterior. De hecho, esta teoría podría explicar su poder de operar con elementos semánticos: algunas areas del cerebro simplemente podrían crear y ordenar neuronas especializadas o grupos con caracteristicas de alto nivel y sus combinaciones. Se trataría, en definitiva, de construir mapas espaciales para atributos y características. Historia A partir de estas ideas, T. Kohonen presentó en 1982 un sistema con un comportamiento semejante. Se trataba de un modelo de red neuronal con capacidad para formar mapas de características de manera similar a como ocurre en el cerebro. El objetivo de Kohonen era demostrar que en un estímulo externo (información de entrada) por si solo, suponiendo una estructura propia y una descripción funcional del comportamiento de la red, era suficiente para forzar la formacion de mapas. Este modelo tiene dos variantes, denominadas LVQ (Learning Vector Quantization) y TPM (Topology-Preserving Map) o SOM (Self-Organizating Map). Ambas se basan en el principio de formación de mapas topológicos para establecer características comunes entre las informaciones (vectores) de entrada a la red, aunque difieren en las dimensiones de éstos, siendo de una soladimensión en el caso de LVQ, y bidimensional, e incluso tridimensional, en la red TPM. Características Pertenece a la categoría de las redes competitivas o mapas de autoorganización, es decir, aprendizaje no supervisado. Poseen una arquitectura de dos capas (entrada-salida) (una sola capa de conexiones), funciones de activación lineales y flujo de información unidireccional (son redes en cascada). Las unidades de entrada reciben datos continuos normalizados, se normalizan así mismo los pesos de las conexiones con la capa de salida. Tras el aprendizaje de la red, cada patrón de entrada activará una única unidad de salida. El objetivo de este tipo de redes es clasificar los patrones de entrada en grupos de características similares, de manera que cada grupo activará siempre la(s) misma(s) salida(s). Cada grupo de entradas queda representado en los pesos de las conexiones de la unidad de salida triunfante. La unidad de salida ganadora para cada grupo de entradas no se conoce previamente, es necesario averiguarlo después de entrenar a la red. Arquitectura En la arquitectura de la versión original (LVQ) del modelo Kohonen no existen conexioines hacia atrás. Se trata de una de las N neuronas entrada y M de salida. Cada una de las N neuronas de entrada se conecta a las M de salida a través de conexiones hacia adelante (feedfoward). Entre las neuronas de la capa de salida, puede decirse que existen conexiones laterales de inhibición (peso negativo) implícitas, pues aunque no estén conectadas, cada una de las neuronas va a tener cierta influencia sobre sus vecinas. El valor que se asigne a los pesos de las conexiones hacia adelante entre las capas de entrada y salida (Wji) durante el proceso de aprendizaje de la red va a depender precisamente de esta interacción lateral. La influencia que una neurona ejerce sobre las demás es función de la distancia entre ellas, siendo muy pequeñas cuando estan muy alejadas. Es frecuente que dicha influencia tenga la forma de un sombrero mexicano. Por otra parte, la versión del modelo denominada TPM (Topology Preserving Map) trata de establecer una correspondencia entre los datos de entrada y
  • 2. un espacio bidimensional de salida, crenado mapas topológicos de dos dimensiones, de tal forma que ante datos de entrada con características comunes se deben activar neuronas situadas en próximas zonasde la capa de salida. Aprendizaje Supongamos que tenemos patrones de entrada n-dimensionales. 0. Aleatorizar los pesos de las conexiones. Normalizar los pesos de las conexiones incidentes de cada unidad de salida sobre la unidad: dividir cada conexión por la raíz cuadrada de la suma de los cuadrados de las conexiones de cada unidad. Normalizar igualmente los datos de entrada Aplicar un patrón de entrada. Calcular alguna medida de similitud/disimilitud (producto interno, distancia euclídea o de Mahalanobis, etc.) entre las entradas y los pesos de las conexiones. La unidad de salida con los pesos más parecidos al patrón de entrada es declarada ganadora. El vector de pesos de la unidad ganadora, se convierte en el centro de un grupo de vectores cercanos a él. Modificar los pesos de los vectores de pesos Wj "cercanos" a Wc (distancia menor a D), según la fórmula: De esta manera conseguimos que los vectores de pesos de la unidad ganadora y de su "vecindario" se parezcan cada vez más al patrón de entrada que hace ganar a esa unidad. Repetir los pasos 1 a 4 con todos los patrones de entrada. A medida que avanza el aprendizaje hay que ir reduciendo D y a. Kohonen recomienda empezar con un valor de a cercano a 1 y reducirlo gradualmente hasta 0.1. D puede empezar valiendo la máxima distancia existente entre los pesos de las conexiones al principio y acabar siendo tan pequeño que no quede ninguna unidad en el vecindario de la unidad ganadora. En ese momento solo se entrenará una unidad, que al final tendrá su vector de pesos igual al vector de entrada. La precisión de la clasificación de los patrones de entrada aumenta con el número de ciclos de aprendizaje. Kohonen recomienda una cantidad de ciclos no inferior a 500 veces el número de neuronas de salida para obtener buenos resultados. Aplicación Una vez entrenada, podemos usar a la red para clasificar patrones de entrada similares en el espacio n-dimensional. Una clase o grupo de patrones similares tiende a controlar una neurona específica, que representará el centro de una esfera n-dimensional (de radio unitario, pues normalizamos los datos sobre la unidad). Esa neurona resultará la más activada frente a los patrones más parecidos a su vector de pesos. Después del aprendizaje, la clasificación consiste en presentar una entrada y seleccionar la unidad más activada. Además, el vector de pesos nos servirá para reconstruir el patrón de entrada.