SlideShare una empresa de Scribd logo
DESARROLLO GUIA 3 Diego Andrés Manios M. Javier Francisco Franco S.
REPRESENTACIÓN DE LA POSICIÓN
Para localizar un cuerpo rígido en el espacio se necesitan herramientas que nos permitan conocer la ubicación espacial de sus puntos. En el plano la localización se describe por dos componentes independientes, mientras que en el espacio tridimensional son necesarios tres componentes. Existen diferentes formas de representar la posición en el espacio, la más común es por medio de coordenadas cartesianas, pero existen además otros métodos como las coordenadas polares para planos y coordenadas cilíndricas y esféricas para el espacio tridimensional.
Coordenadas Cartesianas Un punto definido en el plano estará definido por las componentes x e y, por ejemplo el punto (a,b) se ubica a una distancia a medida desde el origen en el eje de las x (horizontal) y a una altura b medida desde el origen en el eje y (vertical). En el caso de las coordenadas en tres dimensiones el punto se definirá con las componentes (x,y,z), es decir, solamente se agrega un dato más (z) para indicar la posición a lo largo del eje z (perpendicular al eje x y y).
Coordenadas Polares y Cilíndricas 	El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto (posición) en el plano viene determinado por un ángulo y una distancia. El sistema de coordenadas polares resulta especialmente útil en situaciones donde la relación entre dos puntos es más fácil de expresar en términos de ángulos y distancias, mientras que en el sistema de coordenadas cartesianas o rectangulares estas mismas relaciones deben ser expresadas mediante fórmulas trigonométricas. 	Al ser un sistema de coordenadas bidimensional, cada punto dentro del plano se encuentra determinado por dos coordenadas: la coordenada radial y la coordenada angular. La coordenada radial (comúnmente simbolizada por r o ρ) expresa la distancia del punto al punto central del sistema conocido como polo (equivalente al origen del sistema Cartesiano). La coordenada angular (también conocida como ángulo polar o ángulo acimutal, y usualmente simbolizada por θ ó t) expresa el ángulo positivo (en sentido antihorario) medido desde el eje polar (equivalente al eje de abscisas del sistema cartesiano). 	Las coordenadas cilíndricas son un sistema de coordenadas para definir la posición de un punto del espacio mediante un ángulo, una distancia con respecto a un eje y una altura en la dirección del eje.
Coordenadas esféricas El sistema de coordenadas esféricas se basa en la misma idea que las coordenadas polares y se utiliza para determinar la posición espacial de un punto mediante una distancia y dos ángulos. 	En consecuencia, un punto P queda representado por un conjunto de tres magnitudes: el radio r, el ángulo polar o colatitud θ y el azimuth φ.
REPRESENTACIÓN DE LA ORIENTACION
Matrices de Rotación Este es el método más extendido para la representación de orientaciones debido principalmente a la facilidad que representa el álgebra matricial. Suponiendo dos ejes coordenados OXY (fijo) con vectores unitarios para un punto iX y jY y OUV (móvil) con vectores unitarios iu y jv, como se muestra en la figura: 	En ambos sistemas un vector se puede representar como pxy = [px,py]T = pxix + pyjy puv = [pu,pv]T = puiu + pvjv
Lo que, realizando una serie de transformaciones se convierte en: Donde: 	Es la llamada matriz de rotación que define la orientación del sistema OUV con respecto al sistema OXY, y que transforma las coordenadas de un vector en un sistema a las del otro. La matriz de rotación es una matriz ortonormal: R-1=RT. Si se considera que el sistema OUV se gira un ángulo α respecto a OXY la matriz de rotación quedará de la siguiente forma: 	En un espacio tridimensional en donde el sistema OXYZ es el sistema fijo y OUVW es el móvil se sigue un razonamiento similar para tener que: pxyz = [px,py,pz]T = pxix + pyjy + pzkz puvw = [pu,pv,pw]T = puiu + pvjv + pwkw
Con lo que se obtiene la siguiente equivalencia:  Donde: 	Es la matriz de rotación que define la orientación del sistema OUVW con respecto al sistema OXYZ. 	Al igual que en dos dimensiones la matriz también puede representarse en función de sus cosenos directores. A continuación se muestran las matrices de rotación en función de sus cosenos directores para los giros respecto a los tres ejes. Una rotación del sistema OUVW (con el eje OU que coincide con el eje OX) de α grados respecto a OX se representaría de la siguiente forma. Una rotación del sistema OUVW (con el eje OV que coincide con el eje OY) de Ф grados respecto a OY se representaría de la siguiente forma. 	Una rotación del sistema OUVW (con el eje OW que coincide con el eje OZ) de θ grados respecto a OZ se representaría de la siguiente forma. 	Las anteriores tres matrices se denominan matrices básicas de transformación para un sistema de tres dimensiones.
Composición de rotaciones 	Las matrices de rotación pueden componerse para representar la aplicación continua de varias rotaciones. Por ejemplo si se aplica al sistema OUVW una rotación de ángulo α sobre OX, seguida de una rotación de ángulo Ф sobre OY y una rotación de ángulo θ sobre OZ, la rotación total podrá expresarse como: 	Es importante recordar que el producto de matrices no es conmutativo por lo que el orden en el que se realizan las operaciones debe tomarse en cuenta.
	Ángulos de Euler 	Los ángulos de Euler constituyen un conjunto de tres coordenadas angulares que sirven para especificar la orientación de un sistema de referencia de ejes ortogonales, normalmente móvil, respecto a otro sistema de referencia de ejes ortogonales normalmente fijos. Fueron introducidos por LeonhardEuler en mecánica del sólido rígido para describir la orientación de un sistema de referencia solidario con un sólido rígido en movimiento. Dados dos sistemas de coordenadas xyz y XYZ con origen común, es posible especificar la posición de un sistema en términos del otro usando tres ángulos (α, β, γ) de tres maneras equivalentes, como sigue: La definición es Estática, de acuerdo con el esquema adjunto: α es el ángulo entre el eje x y la línea de nodos. β es el ángulo entre el eje z y el eje Z. γ es el ángulo entre la línea de nodos y el eje X. La intersección de los planos coordenados xy y XY se llama línea de nodos.
APLICACIÓN DE LOS CUATERNIOS
	Cuaternios 	Los Cuaternios son una extensión de los números reales, similar a la de los números complejos. Mientras que los números complejos son una extensión de los reales por la adición de la unidad imaginaria i, tal que i2 = − 1, los cuaternios son una extensión generada de manera análoga añadiendo las unidades imaginarias: i, j y k a los números reales y tal que i2 = j2 = k2 = ijk = − 1. Esto se puede resumir en esta tabla de multiplicación: la Tabla de Cayley. 1 i j k 1 1 i j k i i -1 k -j jj -k -1 i k k j -i -1 1, i, j, k, son entonces las "bases" de las componentes de un cuaternión.
Álgebra de cuaternios 	Definimos la suma y producto entre cuaternios mediante la aritmética usual de las matrices y de los números complejos. Puede comprobarse que el conjunto H, junto con estas operaciones, satisface todas las propiedades de un campo con excepción de que el producto no es conmutativo. a = a1 + a2i + a3j + a4k b = b1 + b2i + b3j + b4k
	Adición 	La adición se realiza análogamente a como se hace con los complejos, es decir: término a término: a+ b = (a1 + b1) + (a2 + b2)i + (a3 + b3)j + (a4 + b4)k Producto 	El producto se realiza componente a componente, y está dado en su forma completa por: ab= (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 + a4b3)i + (a1b3 − a2b4 + a3b1 + a4b2)j + (a1b4 + a2b3 − a3b2 + a4b1)k 	El producto entre cuaternios es asociativo, no conmutativo.
	Conjugación 	El conjugado de un cuaternio x = x1 + x2i + x3j + x4k está dado por ar{x}= x1 - x2i – x3j - x4k. En otras palabras, el conjugado invierte el signo de los componentes "agregados" del cuaternio. Matricialmente esto corresponderá a la operación de transposición de cualquiera de sus representaciones matriciales. Cociente 	Usando la forma del inverso, es posible escribir el cociente de dos cuaternios como:
	Exponenciación 	La exponenciación cuaternios, al igual que sucede con los complejos, está relacionada con funciones trigonométricas. Dado un cuaternio escrito en forma canónica q = a + bi + cj + dk su exponenciación resulta ser: 	Comparación con matrices 	La multiplicación de matrices no es, en general, conmutativa al igual que en el caso de los cuaternios. Sin embargo, tampoco todas las matrices poseen un inverso multiplicativo mientras que todos los cuaternios diferentes del cero si son invertibles.
MATRICES DE TRANSFORMACIÓN HOMOGÉNEA
Se define como matriz de transformación homogénea T a una matriz de dimensión 4*4 que representa la transformación de un vector de coordenadas homogéneas de un sistema de coordenadas a otro. 	Así pues, se puede considerar que una matriz homogénea se haya compuesta por cuatro submatrices de distinto tamaño: una submatriz R3*3  que corresponde a una matriz de rotación; una submatriz p3*1  que corresponde al vector de traslación; una submatriz f1*3  que representa una transformación de perspectiva, y una submatriz w1*1  que representa un escalado global. En robótica generalmente solo interesara conocer el valor de R3*3  y de p3*1  , considerándose las componentes f1*3  nulas y la de w1*1 la unidad, aunque mas adelante se estudia su utilidad en otros campos. Al tratarse de una matriz 4*4, los vectores sobre los que se aplique deberán contar con 4 dimensiones, que serán las coordenadas homogéneas del vector tridimensional de que se trate.
Si como sé a mencionado, se considera la transformación de perspectiva nula y el escalado global unitario, la matriz homogénea T resultara de la siguiente forma: 	que representa la orientación y posición de un sistema 0’UVW rotado y trasladado con respecto al sistema de referencia 0XYZ. Esta matriz sirve para conocer las coordenadas (rx,ry,rz) del vector r en el sistema 0XYZ a partir de sus coordenadas (ru,rv,rw) en el sistema 0’XYZ:

Más contenido relacionado

La actualidad más candente

Poleas
PoleasPoleas
Poleas
rosrojd
 
Ejercicos de mecanismos de 4 barras (2)
Ejercicos de mecanismos de 4 barras (2)Ejercicos de mecanismos de 4 barras (2)
Ejercicos de mecanismos de 4 barras (2)
omarlys1
 
Automatización del proceso de corte de planchas de vidrio con un robot cartes...
Automatización del proceso de corte de planchas de vidrio con un robot cartes...Automatización del proceso de corte de planchas de vidrio con un robot cartes...
Automatización del proceso de corte de planchas de vidrio con un robot cartes...darkvenger
 
Cuestionario
 Cuestionario Cuestionario
Cuestionario
Ever Quiñajo
 
Vectores unitarios i, j y k
Vectores unitarios i, j y kVectores unitarios i, j y k
Vectores unitarios i, j y k
Marcodel_68
 
Rotacion, traslacion por matrices homogeneas 2
Rotacion, traslacion por matrices homogeneas 2Rotacion, traslacion por matrices homogeneas 2
Rotacion, traslacion por matrices homogeneas 2
Gustavo Lopez
 
Rodamientos, tipos de rodamientos, clasificacion de rodamientos
Rodamientos, tipos de rodamientos, clasificacion de rodamientosRodamientos, tipos de rodamientos, clasificacion de rodamientos
Rodamientos, tipos de rodamientos, clasificacion de rodamientos
Nicanor Terrero
 
Circuitos de disparo con aislamiento
Circuitos de disparo con aislamientoCircuitos de disparo con aislamiento
Circuitos de disparo con aislamiento
César Sánchez
 
Unidad 5 electricidad
Unidad 5 electricidad Unidad 5 electricidad
Unidad 5 electricidad
EsmeraLda PaLafox
 
Robots Paralelos, Conceptos y Aplicaciones
Robots Paralelos, Conceptos y AplicacionesRobots Paralelos, Conceptos y Aplicaciones
Robots Paralelos, Conceptos y Aplicaciones
htrmoreno
 
Perfil de Leva
Perfil de LevaPerfil de Leva
Perfil de Leva
EuclidesMorales2
 
Curso básico de electrònica digital
Curso básico de electrònica digitalCurso básico de electrònica digital
Curso básico de electrònica digital
Geovanny Ruiz
 
Propiedades del algebra de boole
Propiedades del algebra de boolePropiedades del algebra de boole
Propiedades del algebra de booleD'Ander
 
Clase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paraleloClase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paralelo
Tensor
 
Memorias en circuitos digitales
Memorias en circuitos digitalesMemorias en circuitos digitales
Memorias en circuitos digitales
karen daniela arias cepeda
 
Circuito combinacional
Circuito combinacionalCircuito combinacional
Circuito combinacional
Dorila Vargas Aguero
 
Fuerza electromotriz y circuito de corriente alterna
Fuerza electromotriz y circuito de corriente alternaFuerza electromotriz y circuito de corriente alterna
Fuerza electromotriz y circuito de corriente alterna
Marcos Torres
 

La actualidad más candente (20)

Poleas
PoleasPoleas
Poleas
 
Ejercicos de mecanismos de 4 barras (2)
Ejercicos de mecanismos de 4 barras (2)Ejercicos de mecanismos de 4 barras (2)
Ejercicos de mecanismos de 4 barras (2)
 
Rectificador en puente
Rectificador en puenteRectificador en puente
Rectificador en puente
 
Automatización del proceso de corte de planchas de vidrio con un robot cartes...
Automatización del proceso de corte de planchas de vidrio con un robot cartes...Automatización del proceso de corte de planchas de vidrio con un robot cartes...
Automatización del proceso de corte de planchas de vidrio con un robot cartes...
 
Cuestionario
 Cuestionario Cuestionario
Cuestionario
 
Vectores unitarios i, j y k
Vectores unitarios i, j y kVectores unitarios i, j y k
Vectores unitarios i, j y k
 
Rotacion, traslacion por matrices homogeneas 2
Rotacion, traslacion por matrices homogeneas 2Rotacion, traslacion por matrices homogeneas 2
Rotacion, traslacion por matrices homogeneas 2
 
Rodamientos, tipos de rodamientos, clasificacion de rodamientos
Rodamientos, tipos de rodamientos, clasificacion de rodamientosRodamientos, tipos de rodamientos, clasificacion de rodamientos
Rodamientos, tipos de rodamientos, clasificacion de rodamientos
 
Circuitos de disparo con aislamiento
Circuitos de disparo con aislamientoCircuitos de disparo con aislamiento
Circuitos de disparo con aislamiento
 
Unidad 5 electricidad
Unidad 5 electricidad Unidad 5 electricidad
Unidad 5 electricidad
 
Robots Paralelos, Conceptos y Aplicaciones
Robots Paralelos, Conceptos y AplicacionesRobots Paralelos, Conceptos y Aplicaciones
Robots Paralelos, Conceptos y Aplicaciones
 
Perfil de Leva
Perfil de LevaPerfil de Leva
Perfil de Leva
 
Curso básico de electrònica digital
Curso básico de electrònica digitalCurso básico de electrònica digital
Curso básico de electrònica digital
 
Propiedades del algebra de boole
Propiedades del algebra de boolePropiedades del algebra de boole
Propiedades del algebra de boole
 
Clase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paraleloClase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paralelo
 
Memorias en circuitos digitales
Memorias en circuitos digitalesMemorias en circuitos digitales
Memorias en circuitos digitales
 
Circuito combinacional
Circuito combinacionalCircuito combinacional
Circuito combinacional
 
Fuerza electromotriz y circuito de corriente alterna
Fuerza electromotriz y circuito de corriente alternaFuerza electromotriz y circuito de corriente alterna
Fuerza electromotriz y circuito de corriente alterna
 
Controlabilidad
ControlabilidadControlabilidad
Controlabilidad
 
Control no lineal
Control no linealControl no lineal
Control no lineal
 

Similar a Robotica Guia 3

Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
Angelica Villarroel
 
Coordenades
CoordenadesCoordenades
Coordenades
erlindavid
 
Mate 3 segundo tema sistemas de coordenadas
Mate 3 segundo tema sistemas de coordenadasMate 3 segundo tema sistemas de coordenadas
Mate 3 segundo tema sistemas de coordenadas
joseAngelRemacheCast
 
Diapositivas funciones de varias variables
Diapositivas funciones de varias variablesDiapositivas funciones de varias variables
Diapositivas funciones de varias variables
Kenny Fereira
 
Carlos daniel Diaz Gallardo
Carlos daniel Diaz GallardoCarlos daniel Diaz Gallardo
Carlos daniel Diaz Gallardo
Carlos Diaz
 
Funciones de varias variables
Funciones de varias variablesFunciones de varias variables
Funciones de varias variables
RicardoAzocar3
 
funciones de varias variables
funciones de varias variables funciones de varias variables
funciones de varias variables
MauricioSilvaPrez
 
Presentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina PerezPresentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina Perez
AndrePrez4
 
Sistemas de coordenadas
Sistemas de coordenadasSistemas de coordenadas
Sistemas de coordenadas
rosalinameza
 
Loriannys s funciones de varias variables
Loriannys s funciones de varias variablesLoriannys s funciones de varias variables
Loriannys s funciones de varias variables
ClaretziHernandez
 
Funciones de varias variables
Funciones de varias variablesFunciones de varias variables
Funciones de varias variables
MiguelFuentes114
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
Angelica Villarroel
 
Ecuaciones de varias variables
Ecuaciones de varias variablesEcuaciones de varias variables
Ecuaciones de varias variables
josue echeverri
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
Santiago Andres Guaiquirian Ortiz
 
Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-
leonelgranado
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricas
Kenny Fereira
 
Funciones de Varias Variables
Funciones de Varias VariablesFunciones de Varias Variables
Funciones de Varias Variables
Jesus Alejandro Rosales Vallorani
 
Revista de calculo vectorial equipo 6
Revista de calculo vectorial equipo 6Revista de calculo vectorial equipo 6
Revista de calculo vectorial equipo 6
Luis Rodriiguez
 
FUNCIONES DE VARIAS VARIABLES
FUNCIONES DE VARIAS VARIABLESFUNCIONES DE VARIAS VARIABLES
FUNCIONES DE VARIAS VARIABLES
Jesus Alejandro Rosales Vallorani
 

Similar a Robotica Guia 3 (20)

Robotica Guia 3
Robotica Guia 3Robotica Guia 3
Robotica Guia 3
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
 
Coordenades
CoordenadesCoordenades
Coordenades
 
Mate 3 segundo tema sistemas de coordenadas
Mate 3 segundo tema sistemas de coordenadasMate 3 segundo tema sistemas de coordenadas
Mate 3 segundo tema sistemas de coordenadas
 
Diapositivas funciones de varias variables
Diapositivas funciones de varias variablesDiapositivas funciones de varias variables
Diapositivas funciones de varias variables
 
Carlos daniel Diaz Gallardo
Carlos daniel Diaz GallardoCarlos daniel Diaz Gallardo
Carlos daniel Diaz Gallardo
 
Funciones de varias variables
Funciones de varias variablesFunciones de varias variables
Funciones de varias variables
 
funciones de varias variables
funciones de varias variables funciones de varias variables
funciones de varias variables
 
Presentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina PerezPresentacion funciones de varias variables Andreina Perez
Presentacion funciones de varias variables Andreina Perez
 
Sistemas de coordenadas
Sistemas de coordenadasSistemas de coordenadas
Sistemas de coordenadas
 
Loriannys s funciones de varias variables
Loriannys s funciones de varias variablesLoriannys s funciones de varias variables
Loriannys s funciones de varias variables
 
Funciones de varias variables
Funciones de varias variablesFunciones de varias variables
Funciones de varias variables
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
 
Ecuaciones de varias variables
Ecuaciones de varias variablesEcuaciones de varias variables
Ecuaciones de varias variables
 
Sistema de coordenadas
Sistema de coordenadasSistema de coordenadas
Sistema de coordenadas
 
Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-Ecuaciones parametricas 7 06-2019-
Ecuaciones parametricas 7 06-2019-
 
Ecuaciones parametricas
Ecuaciones parametricasEcuaciones parametricas
Ecuaciones parametricas
 
Funciones de Varias Variables
Funciones de Varias VariablesFunciones de Varias Variables
Funciones de Varias Variables
 
Revista de calculo vectorial equipo 6
Revista de calculo vectorial equipo 6Revista de calculo vectorial equipo 6
Revista de calculo vectorial equipo 6
 
FUNCIONES DE VARIAS VARIABLES
FUNCIONES DE VARIAS VARIABLESFUNCIONES DE VARIAS VARIABLES
FUNCIONES DE VARIAS VARIABLES
 

Más de Decimo Sistemas

Ft dex-03-008 - ardco - monserrate
Ft dex-03-008 - ardco - monserrateFt dex-03-008 - ardco - monserrate
Ft dex-03-008 - ardco - monserrateDecimo Sistemas
 
Gestion De Proyecto De Desarrollo De Software
Gestion De Proyecto De Desarrollo De SoftwareGestion De Proyecto De Desarrollo De Software
Gestion De Proyecto De Desarrollo De Software
Decimo Sistemas
 
Evolucion De Las Comunicaciones De Voz Y Datos
Evolucion De Las Comunicaciones De Voz Y DatosEvolucion De Las Comunicaciones De Voz Y Datos
Evolucion De Las Comunicaciones De Voz Y DatosDecimo Sistemas
 
Anteproyecto Elaboracion De Un Sistema De Informacion De Seguridad
Anteproyecto Elaboracion De Un Sistema De Informacion De SeguridadAnteproyecto Elaboracion De Un Sistema De Informacion De Seguridad
Anteproyecto Elaboracion De Un Sistema De Informacion De SeguridadDecimo Sistemas
 
Anteproyecto De Mejoramiento En La Lecto Escritura De Los Estudiantes
Anteproyecto De Mejoramiento En La Lecto Escritura  De Los EstudiantesAnteproyecto De Mejoramiento En La Lecto Escritura  De Los Estudiantes
Anteproyecto De Mejoramiento En La Lecto Escritura De Los EstudiantesDecimo Sistemas
 

Más de Decimo Sistemas (20)

Guia 8
Guia 8Guia 8
Guia 8
 
Guia 7
Guia 7Guia 7
Guia 7
 
Montaje antena
Montaje antenaMontaje antena
Montaje antena
 
Centro de computo
Centro de computoCentro de computo
Centro de computo
 
Guia no 6
Guia no 6Guia no 6
Guia no 6
 
Ft dex-03-008 - ardco - monserrate
Ft dex-03-008 - ardco - monserrateFt dex-03-008 - ardco - monserrate
Ft dex-03-008 - ardco - monserrate
 
Guia 5
Guia 5Guia 5
Guia 5
 
Modulacion Analoga
Modulacion AnalogaModulacion Analoga
Modulacion Analoga
 
IntroduccióN
IntroduccióNIntroduccióN
IntroduccióN
 
Unidad 15
Unidad 15Unidad 15
Unidad 15
 
Guia No 4
Guia No 4Guia No 4
Guia No 4
 
Tipos De Enlace
Tipos De EnlaceTipos De Enlace
Tipos De Enlace
 
Gestion De Proyecto De Desarrollo De Software
Gestion De Proyecto De Desarrollo De SoftwareGestion De Proyecto De Desarrollo De Software
Gestion De Proyecto De Desarrollo De Software
 
Evolucion De Las Comunicaciones De Voz Y Datos
Evolucion De Las Comunicaciones De Voz Y DatosEvolucion De Las Comunicaciones De Voz Y Datos
Evolucion De Las Comunicaciones De Voz Y Datos
 
Guia 2
Guia 2Guia 2
Guia 2
 
Anteproyecto Elaboracion De Un Sistema De Informacion De Seguridad
Anteproyecto Elaboracion De Un Sistema De Informacion De SeguridadAnteproyecto Elaboracion De Un Sistema De Informacion De Seguridad
Anteproyecto Elaboracion De Un Sistema De Informacion De Seguridad
 
Anteproyecto De Mejoramiento En La Lecto Escritura De Los Estudiantes
Anteproyecto De Mejoramiento En La Lecto Escritura  De Los EstudiantesAnteproyecto De Mejoramiento En La Lecto Escritura  De Los Estudiantes
Anteproyecto De Mejoramiento En La Lecto Escritura De Los Estudiantes
 
Anteproyecto
AnteproyectoAnteproyecto
Anteproyecto
 
Anteproyecto
AnteproyectoAnteproyecto
Anteproyecto
 
Anteproyecto Decimo
Anteproyecto DecimoAnteproyecto Decimo
Anteproyecto Decimo
 

Último

Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
Profes de Relideleón Apellidos
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Monseespinoza6
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
YolandaRodriguezChin
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Demetrio Ccesa Rayme
 
MIP PAPA Rancha Papa.pdf.....y caracteristicas
MIP PAPA  Rancha Papa.pdf.....y caracteristicasMIP PAPA  Rancha Papa.pdf.....y caracteristicas
MIP PAPA Rancha Papa.pdf.....y caracteristicas
jheisonraulmedinafer
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
DivinoNioJess885
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
El Fortí
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
HuallpaSamaniegoSeba
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
20minutos
 
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIAFICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
JavierMontero58
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 

Último (20)

Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
MIP PAPA Rancha Papa.pdf.....y caracteristicas
MIP PAPA  Rancha Papa.pdf.....y caracteristicasMIP PAPA  Rancha Papa.pdf.....y caracteristicas
MIP PAPA Rancha Papa.pdf.....y caracteristicas
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
 
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIAFICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
FICHA DE EJERCICIOS GRECIA 1º DE LA ESO HISTORIA
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 

Robotica Guia 3

  • 1. DESARROLLO GUIA 3 Diego Andrés Manios M. Javier Francisco Franco S.
  • 3. Para localizar un cuerpo rígido en el espacio se necesitan herramientas que nos permitan conocer la ubicación espacial de sus puntos. En el plano la localización se describe por dos componentes independientes, mientras que en el espacio tridimensional son necesarios tres componentes. Existen diferentes formas de representar la posición en el espacio, la más común es por medio de coordenadas cartesianas, pero existen además otros métodos como las coordenadas polares para planos y coordenadas cilíndricas y esféricas para el espacio tridimensional.
  • 4. Coordenadas Cartesianas Un punto definido en el plano estará definido por las componentes x e y, por ejemplo el punto (a,b) se ubica a una distancia a medida desde el origen en el eje de las x (horizontal) y a una altura b medida desde el origen en el eje y (vertical). En el caso de las coordenadas en tres dimensiones el punto se definirá con las componentes (x,y,z), es decir, solamente se agrega un dato más (z) para indicar la posición a lo largo del eje z (perpendicular al eje x y y).
  • 5.
  • 6. Coordenadas Polares y Cilíndricas El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto (posición) en el plano viene determinado por un ángulo y una distancia. El sistema de coordenadas polares resulta especialmente útil en situaciones donde la relación entre dos puntos es más fácil de expresar en términos de ángulos y distancias, mientras que en el sistema de coordenadas cartesianas o rectangulares estas mismas relaciones deben ser expresadas mediante fórmulas trigonométricas. Al ser un sistema de coordenadas bidimensional, cada punto dentro del plano se encuentra determinado por dos coordenadas: la coordenada radial y la coordenada angular. La coordenada radial (comúnmente simbolizada por r o ρ) expresa la distancia del punto al punto central del sistema conocido como polo (equivalente al origen del sistema Cartesiano). La coordenada angular (también conocida como ángulo polar o ángulo acimutal, y usualmente simbolizada por θ ó t) expresa el ángulo positivo (en sentido antihorario) medido desde el eje polar (equivalente al eje de abscisas del sistema cartesiano). Las coordenadas cilíndricas son un sistema de coordenadas para definir la posición de un punto del espacio mediante un ángulo, una distancia con respecto a un eje y una altura en la dirección del eje.
  • 7.
  • 8. Coordenadas esféricas El sistema de coordenadas esféricas se basa en la misma idea que las coordenadas polares y se utiliza para determinar la posición espacial de un punto mediante una distancia y dos ángulos. En consecuencia, un punto P queda representado por un conjunto de tres magnitudes: el radio r, el ángulo polar o colatitud θ y el azimuth φ.
  • 9. REPRESENTACIÓN DE LA ORIENTACION
  • 10. Matrices de Rotación Este es el método más extendido para la representación de orientaciones debido principalmente a la facilidad que representa el álgebra matricial. Suponiendo dos ejes coordenados OXY (fijo) con vectores unitarios para un punto iX y jY y OUV (móvil) con vectores unitarios iu y jv, como se muestra en la figura: En ambos sistemas un vector se puede representar como pxy = [px,py]T = pxix + pyjy puv = [pu,pv]T = puiu + pvjv
  • 11. Lo que, realizando una serie de transformaciones se convierte en: Donde: Es la llamada matriz de rotación que define la orientación del sistema OUV con respecto al sistema OXY, y que transforma las coordenadas de un vector en un sistema a las del otro. La matriz de rotación es una matriz ortonormal: R-1=RT. Si se considera que el sistema OUV se gira un ángulo α respecto a OXY la matriz de rotación quedará de la siguiente forma: En un espacio tridimensional en donde el sistema OXYZ es el sistema fijo y OUVW es el móvil se sigue un razonamiento similar para tener que: pxyz = [px,py,pz]T = pxix + pyjy + pzkz puvw = [pu,pv,pw]T = puiu + pvjv + pwkw
  • 12. Con lo que se obtiene la siguiente equivalencia: Donde: Es la matriz de rotación que define la orientación del sistema OUVW con respecto al sistema OXYZ. Al igual que en dos dimensiones la matriz también puede representarse en función de sus cosenos directores. A continuación se muestran las matrices de rotación en función de sus cosenos directores para los giros respecto a los tres ejes. Una rotación del sistema OUVW (con el eje OU que coincide con el eje OX) de α grados respecto a OX se representaría de la siguiente forma. Una rotación del sistema OUVW (con el eje OV que coincide con el eje OY) de Ф grados respecto a OY se representaría de la siguiente forma. Una rotación del sistema OUVW (con el eje OW que coincide con el eje OZ) de θ grados respecto a OZ se representaría de la siguiente forma. Las anteriores tres matrices se denominan matrices básicas de transformación para un sistema de tres dimensiones.
  • 13. Composición de rotaciones Las matrices de rotación pueden componerse para representar la aplicación continua de varias rotaciones. Por ejemplo si se aplica al sistema OUVW una rotación de ángulo α sobre OX, seguida de una rotación de ángulo Ф sobre OY y una rotación de ángulo θ sobre OZ, la rotación total podrá expresarse como: Es importante recordar que el producto de matrices no es conmutativo por lo que el orden en el que se realizan las operaciones debe tomarse en cuenta.
  • 14. Ángulos de Euler Los ángulos de Euler constituyen un conjunto de tres coordenadas angulares que sirven para especificar la orientación de un sistema de referencia de ejes ortogonales, normalmente móvil, respecto a otro sistema de referencia de ejes ortogonales normalmente fijos. Fueron introducidos por LeonhardEuler en mecánica del sólido rígido para describir la orientación de un sistema de referencia solidario con un sólido rígido en movimiento. Dados dos sistemas de coordenadas xyz y XYZ con origen común, es posible especificar la posición de un sistema en términos del otro usando tres ángulos (α, β, γ) de tres maneras equivalentes, como sigue: La definición es Estática, de acuerdo con el esquema adjunto: α es el ángulo entre el eje x y la línea de nodos. β es el ángulo entre el eje z y el eje Z. γ es el ángulo entre la línea de nodos y el eje X. La intersección de los planos coordenados xy y XY se llama línea de nodos.
  • 15. APLICACIÓN DE LOS CUATERNIOS
  • 16. Cuaternios Los Cuaternios son una extensión de los números reales, similar a la de los números complejos. Mientras que los números complejos son una extensión de los reales por la adición de la unidad imaginaria i, tal que i2 = − 1, los cuaternios son una extensión generada de manera análoga añadiendo las unidades imaginarias: i, j y k a los números reales y tal que i2 = j2 = k2 = ijk = − 1. Esto se puede resumir en esta tabla de multiplicación: la Tabla de Cayley. 1 i j k 1 1 i j k i i -1 k -j jj -k -1 i k k j -i -1 1, i, j, k, son entonces las "bases" de las componentes de un cuaternión.
  • 17. Álgebra de cuaternios Definimos la suma y producto entre cuaternios mediante la aritmética usual de las matrices y de los números complejos. Puede comprobarse que el conjunto H, junto con estas operaciones, satisface todas las propiedades de un campo con excepción de que el producto no es conmutativo. a = a1 + a2i + a3j + a4k b = b1 + b2i + b3j + b4k
  • 18. Adición La adición se realiza análogamente a como se hace con los complejos, es decir: término a término: a+ b = (a1 + b1) + (a2 + b2)i + (a3 + b3)j + (a4 + b4)k Producto El producto se realiza componente a componente, y está dado en su forma completa por: ab= (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 + a4b3)i + (a1b3 − a2b4 + a3b1 + a4b2)j + (a1b4 + a2b3 − a3b2 + a4b1)k El producto entre cuaternios es asociativo, no conmutativo.
  • 19. Conjugación El conjugado de un cuaternio x = x1 + x2i + x3j + x4k está dado por ar{x}= x1 - x2i – x3j - x4k. En otras palabras, el conjugado invierte el signo de los componentes "agregados" del cuaternio. Matricialmente esto corresponderá a la operación de transposición de cualquiera de sus representaciones matriciales. Cociente Usando la forma del inverso, es posible escribir el cociente de dos cuaternios como:
  • 20. Exponenciación La exponenciación cuaternios, al igual que sucede con los complejos, está relacionada con funciones trigonométricas. Dado un cuaternio escrito en forma canónica q = a + bi + cj + dk su exponenciación resulta ser: Comparación con matrices La multiplicación de matrices no es, en general, conmutativa al igual que en el caso de los cuaternios. Sin embargo, tampoco todas las matrices poseen un inverso multiplicativo mientras que todos los cuaternios diferentes del cero si son invertibles.
  • 22. Se define como matriz de transformación homogénea T a una matriz de dimensión 4*4 que representa la transformación de un vector de coordenadas homogéneas de un sistema de coordenadas a otro. Así pues, se puede considerar que una matriz homogénea se haya compuesta por cuatro submatrices de distinto tamaño: una submatriz R3*3  que corresponde a una matriz de rotación; una submatriz p3*1  que corresponde al vector de traslación; una submatriz f1*3  que representa una transformación de perspectiva, y una submatriz w1*1  que representa un escalado global. En robótica generalmente solo interesara conocer el valor de R3*3  y de p3*1  , considerándose las componentes f1*3  nulas y la de w1*1 la unidad, aunque mas adelante se estudia su utilidad en otros campos. Al tratarse de una matriz 4*4, los vectores sobre los que se aplique deberán contar con 4 dimensiones, que serán las coordenadas homogéneas del vector tridimensional de que se trate.
  • 23. Si como sé a mencionado, se considera la transformación de perspectiva nula y el escalado global unitario, la matriz homogénea T resultara de la siguiente forma: que representa la orientación y posición de un sistema 0’UVW rotado y trasladado con respecto al sistema de referencia 0XYZ. Esta matriz sirve para conocer las coordenadas (rx,ry,rz) del vector r en el sistema 0XYZ a partir de sus coordenadas (ru,rv,rw) en el sistema 0’XYZ: