SlideShare una empresa de Scribd logo
1 de 33
Ondas Electromagnéticas
Clase 12
18-Julio-2014
Ondas Electromagnéticas
 Como la mayoría de las regiones de interés son libres de carga, se supone que 𝜌 =
0. Por otro lado, hay que suponer, materiales lineales isotrópicos de tal manera que
𝐷 = 𝜖𝐸, 𝐵 = 𝜇𝐻 𝑦 𝐽 𝐶 = 𝜎𝐸.
 Isotrópico quiere decir que no depende de la elección de los ejes. no importa para
que lado estés midiendo cierta propiedad o magnitud física siempre va a medir lo
mismo.
 Un ejemplo sencillo, se asume al espacio isotrópico, es decir, medir un metro hacia
arriba, es lo mismo que medirlo de lado, diagonal, etc. Un ejemplo en donde no se
cumple la isotropía, si tu tienes un material, y es mas difícil estirarlo de izquierda a
derecha que de arriba abajo, pues se dice que dicha propiedad de estirarlo
(rigidez) es anisotropía.
Ondas Electromagnéticas
 En electromagnetismo algunas de las propiedades que puedes medir son:
conductividad, susceptibilidad magnética, susceptibilidad eléctrica, resistividad, etc.
Si esas propiedades no dependen de la dirección (u orientación de los ejes) se dice
que el cuerpo es isotrópico.
 Por ejemplo si tu cuerpo tiene igual valor de conductividad cuando la corriente lo
atraviesa de arriba a abajo, que de izquierda a derecha (y en general de todas las
posibles direcciones) se dice que ese es un cuerpo isotrópico con respecto a la
conductividad.
Ecuaciones de Onda
 Con base en los principios anteriores y suponiendo que tanto 𝐸 𝑐𝑜𝑚𝑜 𝐻 son
dependientes del tiempo 𝑒 𝑗𝜔𝑡, las ecuaciones de Maxwell se transforman en:
 Ahora aplicamos la identidad vectorial
𝛻 × 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝐸 1
𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻 2
𝛻 ∙ 𝐸 = 0 3
𝛻 ∙ 𝐻 = 0 (4)
𝛻 × 𝛻 × 𝐴 ≡ 𝛻 𝛻 ∙ 𝐴 − 𝛻2 𝐴
Ecuaciones de Onda
 Donde, tan solo en coordenadas cartesianas
 Tomando el rotacional de (1) y (2), y utilizando (3) y (4)
 Ahora sustituyendo 𝛻 × 𝐸 𝑦 𝛻 × 𝐻 de (2) y (1), se obtienen las ecuaciones
vectoriales
𝛻2 𝐴 = 𝛻2 𝐴 𝑥 𝑎 𝑥 + 𝛻2 𝐴 𝑦 𝑎 𝑦+ 𝛻2 𝐴 𝑧 𝑎 𝑧
𝛻2
𝐻 = 𝛾2
𝐻 𝛻2
𝐸 = 𝛾2
𝐸
−𝛻2 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝛻 × 𝐸
−𝛻2
𝐸 = −𝑗𝜔𝜇 𝛻 × 𝐻
Ecuaciones de Onda
 Donde 𝛾2
= 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 . La constante de propagación, 𝛾, es la raíz cuadrada de
𝛾2 cuyas partes real e imaginaria son positivas:
 con
γ = 𝛼 + 𝑗𝐵
𝛼 = 𝜔
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
− 1
𝛽 = 𝜔
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
+ 1
Ecuaciones de Onda
 La constante 𝛼 se llama factor de atenuación y 𝛽 se llama constante de crecimiento
de fase. 𝛾 (Gamma) tiene unidades 𝑚−1 , sin embargo, es costumbre dar
𝛼 𝑦 𝛽 𝑒𝑛
𝑁𝑝
𝑚
𝑦
𝑟𝑎𝑑
𝑚
, respectivamente, donde el neper (Np) es una unidad
adimensional como el radián.
Soluciones en Coordenadas Cartesianas
 La familiar ecuación escalar de onda en una dimensión
 Tiene soluciones de la forma 𝐹 = 𝑓 𝑧 − 𝑈𝑡 𝑦 𝐹 = 𝑔 𝑧 + 𝑈𝑡 , donde 𝑓 𝑦 𝑔 son
funciones arbitrarias. Estas representan ondas que viajan con velocidad 𝑈 en las
direcciones +𝑧 𝑦 − 𝑧, respectivamente, de acuerdo a la siguiente figura.
𝜕2
𝐹
𝜕𝑧2
=
1
𝑈2
𝜕2
𝐹
𝜕𝑡2
Soluciones en Coordenadas Cartesianas
𝑓 𝑧 𝑜
𝑈𝑡1
𝑓 𝑧1 − 𝑈1 𝑡1
𝑡 = 𝑡1𝑡 = 0
Soluciones en Coordenadas Cartesianas
 En particular, si se supone una variación armónica de tiempo 𝑒 𝑗𝜔𝑡
, la ecuación de
onda se convierte en
 Con soluciones (incluyendo el factor temporal) de la forma
 O en las partes real o imaginaria de estas.
𝜕2
𝐹
𝜕𝑧2
= −𝛽2 𝐹 𝛽 =
𝜔
𝑈
𝐹 = 𝐶𝑒 𝑗 𝜔𝑡−𝛽𝑧 𝐹 = 𝐷𝑒 𝑗 𝜔𝑡+𝛽𝑧
Soluciones en Coordenadas Cartesianas
𝐶
𝑡 = 0
𝑡 =
𝜋
2𝜔
𝑑
𝐹
𝑧
𝐹𝑖𝑔𝑢𝑟𝑎 2
Soluciones en Coordenadas Cartesianas
 La figura 2 muestra una de estas soluciones, 𝐹 = 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 , 𝑒𝑛 𝑡 = 0 𝑦 𝑒𝑛 𝑡 =
𝜋
2𝜔
;
durante este intervalo de tiempo la onda se ha movido una distancia 𝑑 =
𝑈
𝜋
2𝜔
= 𝜋/2𝛽 a
la derecha. Para cualquier 𝑡 fijo, la forma de onda se repite cuando 𝑧 cambia a 2𝜋/𝛽. La
distancia
 Se llama longitud de onda. De esta manera en la figura 2, la onda avanzado un cuarto
de longitud de onda a la derecha. La longitud de onda y la frecuencia 𝑓 = 𝜔/2𝜋,
guardan entre si la relación conocida
 También, 𝜆 = 𝑇𝑈 donde 𝑇 =
1
𝑓
= 2𝜋/𝜔 es el periodo
𝜆 =
2𝜋
𝛽
𝜆𝑓 = 𝑈
Soluciones en Coordenadas Cartesianas
 Las ecuaciones vectoriales de onda tienen soluciones similares a las ya discutidas
anteriormente. Como los vectores unidad 𝑎 𝑥, 𝑎 𝑦 𝑦 𝑎 𝑧 en coordenadas cartesianas
tienen direcciones fijas, la ecuación de onda para 𝐻 puede reescribirse bajo la
forma
 De especial interés son las soluciones (ondas planas) que dependen solo de una
coordenada espacial, digamos 𝑧.
𝜕2
𝐻
𝜕𝑥2
+
𝜕2
𝐻
𝜕𝑦2
+
𝜕2
𝐻
𝜕𝑧2
= 𝛾2 𝐻
Soluciones en Coordenadas Cartesianas
 La ecuación se convierte entonces en
 Dando
 Las soluciones correspondientes para el campo eléctrico son
𝑑2
𝐻
𝑑𝑧2
= 𝛾2 𝐻
𝐻 = 𝐻 𝑜 𝑒±𝑦𝑧
𝑎 𝐻 ó 𝐻 𝑧, 𝑡 = 𝐻 𝑜 𝑒±𝑦𝑧
𝑒 𝑗𝜔𝑡
𝑎 𝐻
𝐸 = 𝐸 𝑜 𝑒±𝑦𝑧
𝑎 𝐸 ó 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒±𝑦𝑧
𝑒 𝑗𝜔𝑡
𝑎 𝐸
Soluciones en Coordenadas Cartesianas
 Aquí 𝑎 𝐻 𝑦 𝑎 𝐸 son vectores unitarios. La cantidad compleja 𝛾 se definió anteriormente
 Se demuestra que
 Es decir que ningún campo tienen componente en la dirección de propagación.
 Siendo esto así se pueden rotar siempre los ejes para colocar uno de los campos,
digamos 𝐸 a lo largo del eje 𝑥. Entonces se demuestra que 𝐻 yace a lo largo del eje 𝑦.
 La solución de onda plana que se acaba de obtener depende, vía 𝛾, de las propiedades
del medio 𝜇, 𝜖 𝑦 𝜎
𝑎 𝐻 ∙ 𝑎 𝑧 = 𝑎 𝐸 ∙ 𝑎 𝑧 = 0
Soluciones para medios parcialmente
conductores
 Para una región de poca conductividad (ej.: suelo húmedo, agua de mar), la
solución de la ecuación de onda E es
 La razón 𝐸/𝐻 es característica del medio (también dependen de la frecuencia). Mas
específicamente, para ondas 𝐸 = 𝐸 𝑥 𝑎 𝑥 , 𝐻 = 𝐻 𝑦 𝑎 𝑦 que se propaga en la dirección
+ 𝑧, la impedancia intrínseca, 𝜂, del medio se define por:
 De esta manera
𝐸 = 𝐸 𝑜 𝑒−𝛾𝑧
𝑎 𝑥
𝜂 =
𝐸 𝑥
𝐻 𝑦
𝜂 =
𝑗𝜔𝜇
𝜎 + 𝑗𝜔𝜖
Soluciones para medios parcialmente
conductores
 Donde la raíz cuadrada puede escribirse en forma polar 𝜂 ∠𝜃 con
 (Si la onda se propaga en la dirección −𝑧,
𝐸 𝑥
𝐻 𝑦
= −𝜂. En efecto, 𝛾 se reemplaza por
− 𝛾 y se usa la otra raíz cuadrada).
𝜂 =
𝜇/𝜖
4
1 +
𝜎
𝜔𝜖
2
𝑡𝑎𝑛2𝜃 =
𝜎
𝜔𝜖
𝑦 0 𝑜
< 𝜃 < 45 𝑜
Soluciones para medios parcialmente
conductores
 Al introducer el factor tiempo 𝑒 𝑗𝜔𝑡 y al escribir 𝛾 = 𝛼 + 𝑗𝛽 se obtiene las siguientes
ecuaciones para campos en una región parcialmente conductora:
 El factor 𝑒−𝛼𝑧
atenúa las magnitudes de 𝐸 𝑦 𝐻 cuando se propagan en dirección +𝑧. La
expresión para 𝛼,esto demuestra que existe atenuación a menos que la conductividad 𝜎
sea cero, lo que solo es el caso de dieléctricos perfectos o de espacio vacío.
𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑥 o 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥
𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑒−𝛼𝑧
𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃
𝑎 𝑦 o 𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦
Soluciones para medios parcialmente
conductores
 De la misma manera, la diferencia de fase temporal 𝜃, 𝑒𝑛𝑡𝑟𝑒 𝐸 𝑧, 𝑡 𝑦 𝐻(𝑧, 𝑡)
desaparece solo cuando 𝜎 es cero. La velocidad de propagación y la longitud de
onda están dadas por:
 Si se conoce la velocidad de propagación 𝜆𝑓 = 𝑈 puede usarse para determinar la
longitud de onda 𝜆.
𝑈 =
𝜔
𝛽
=
1
𝜇𝜖
2
1 +
𝜎
𝜔𝜖
2
+ 1
𝜆 =
2𝜋
𝛽
=
2𝜋
𝜔 1 +
𝜎
𝜔𝜖
2
+ 1
Soluciones para medios parcialmente
conductores
 El termino 𝜎/𝜔𝜖 2
reduce tanto el valor de la velocidad como el de la longitud de
onda, de lo que serían en el espacio vacío o dieléctricos perfectos, donde 𝜎 = 0.
Obsérvese que el medio es dispersivo, es decir, ondas con frecuencias diferentes 𝜔
tienen diferentes velocidades 𝑈.
Problemas
 Problema 1
 Una onda viajera está descrita por 𝑦 = 10𝑠𝑒𝑛 𝛽𝑧 − 𝜔𝑡 . Dibuje en 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝑡1
cuando ha avanzado
𝜆
8
, si la velocidad es de 3 × 108 𝑚/𝑠 y la frecuencia angular es
𝜔 = 106 𝑟𝑎𝑑
𝑠
, 𝑏)𝜔 = 2 × 106 𝑟𝑎𝑑/𝑠 y el mismo 𝑡1
Problemas
 Solución Inciso a
 La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que
 𝑡1 =
𝑇
8
=
2𝜋/𝜔
8
=
𝜋
4𝜔

𝜆
8
= 𝑐𝑡1 = 3 × 108 𝜋
4 106 = 236m
𝑡 = 0
𝑡 = 𝑡1
10
𝜔 = 106
𝑧
𝑦
𝜆/2 𝜆
236𝑚
Problemas
 Solución inciso b
 La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que
 𝑡1 =
𝑇
8
=
2𝜋/𝜔
8
=
𝜋
4𝜔

𝜆
8
= 𝑐𝑡1 = 3 × 108 𝜋
4 2×106 = 118m
𝑡 = 0
𝑡 = 𝑡1
10
𝜔 = 2 × 106
𝑧
𝑦
𝜆/2 𝜆
118𝑚
Soluciones para dieléctricos perfectos
 Para un dieléctrico perfecto, 𝜎 = 0 y así
 Como ∝= 0 no hay atenuación de las ondas 𝐸 𝑦 𝐻. El angula cero sobre 𝜂 produce
un 𝐻 que esta en fase temporal con 𝐸 en cada localización fija. Suponiendo 𝐸 en
𝑎 𝑥 y la propagación en 𝑎 𝑧, las ecuaciones de campo pueden obtenerse como
limites, como se denota a continuación:
𝛼 = 0 𝛽 = 𝜔 𝜇𝜖 𝜂 =
𝜇
𝜖
∠00
𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒 𝑗(𝜔𝑡−𝛽𝑧)
𝑎 𝑥
𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑒 𝑗(𝜔𝑡−𝛽𝑧)
𝑎 𝑦
Soluciones para dieléctricos perfectos
 La velocidad de la onda y la longitud de la onda son:
 Para espacio vacío
𝑈 =
𝜔
𝛽
= 4𝜋 × 10−7
𝐻
𝑚
𝜖 = 𝜖 𝑜 = 8.854 ×
10−12
𝐹
𝑚
≈
10−9
36𝜋
𝐹/𝑚
𝜂 = 𝜂 𝑜 ≈ 120𝜋 Ω 𝑦 𝑈 = 𝑐 ≈ 3 × 108 𝑚/𝑠
Problemas
 Problema 2
 En el espacio vacío, 𝐸 𝑧, 𝑡 = 103
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Obtenga 𝐻(𝑧, 𝑡)
Problemas
 Solución
 Un examen de la fase, 𝜔𝑡 − 𝛽𝑧, revela que la dirección de la propagación es +𝑧, 𝐻
debe tener dirección −𝑎 𝑥. Por tanto
𝐸 𝑦
−𝐻𝑧
= 𝜂 𝑜 = 120𝜋 Ω ó 𝐻 𝑥 = −
103
120𝜋
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
𝑦 𝐻𝑧 𝑧, 𝑡 = −
103
120𝜋
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
Problemas
 Problema 3
 Sea la onda, en el espacio vacío, 𝐸 𝑧, 𝑡 = 103
𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Determine la
constante de propagación 𝛾 sabiendo que la frecuencia es que la frecuencia es 𝑓 =
95.5𝑀ℎ𝑧
Problemas
 Solucion
 En general, 𝛾 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 En el espacio vacío, 𝜎 = 0, así que:
 𝛾 = 𝑗𝜔 𝜇0 𝜖0 = 𝑗 2𝜋𝑓/𝑐 = 𝑗
2𝜋 95.5×106
3×108 = −𝑗2𝑚−1
 Obsérvese que este resultado demuestra que el factor de atenuación es 𝛼 = 0 y la
constante de defasaje es 𝛽 = 2 𝑟𝑎𝑑/𝑚
Problemas
 Problema 4
 El campo eléctrico de una onda plana de 1MHz que viaja en la dirección +𝑧 en aire
apunta en la dirección 𝑥. Si el valor pico de 𝐸 es de 1.2𝜋
𝑚𝑉
𝑚
y 𝐸 es máximo
cuando 𝑡 = 0 𝑦 𝑧 = 50𝑚, obtenga expresiones para 𝐸 𝑧, 𝑡 𝑦 𝐻 𝑧, 𝑡 y luego trace
una grafica de estas variaciones en función de 𝑧 𝑐𝑜𝑛 𝑡 = 0.
Problemas
 Solución
 Con 𝑓 = 1𝑀𝐻𝑧, la longitud de onda en el aire es:
 𝜆 =
𝑐
𝑓
=
3×108
1×106 = 300 𝑚
 Y el numero de onda correspondiente es 𝛽 =
2𝜋
𝜆
=
2𝜋
300
𝑟𝑎𝑑/𝑚. La expresión general
para un campo eléctrico dirigido hacia 𝑥 que viaja en la dirección de +𝑧 aparece en
la ecuación como
 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 ⇒ 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 −
2𝜋
300
𝑧 + 𝜃 𝑎 𝑥
𝑚𝑉
𝑚
 El campo 𝐸 𝑧, 𝑡 es máximo cuando el argumento de la función coseno es igual a
cero o a múltiplos de 2𝜋. Con 𝑡 = 0 𝑦 𝑧 = 50𝑚, esta condición es
Problemas
 Solución
 −
2𝜋×50
300
+ 𝜃 = 0 𝑜 𝜃 =
𝜋
3
 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 −
2𝜋
300
𝑧 +
𝜋
3
𝑎 𝑥
𝑚𝑉
𝑚
 Y de acuerdo con
 𝐻 𝑧, 𝑡 =
𝐸 𝑜
𝜂
𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦 ⟹
 𝐻 𝑧, 𝑡 =
1.2𝜋×10−3
120𝜋
𝑐𝑜𝑠 2𝜋 × 106
𝑡 −
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝜇𝐴/𝑚
 𝐻 𝑧, 𝑡 = 10𝑐𝑜𝑠 2𝜋 × 106
𝑡 −
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝜇𝐴/𝑚
 Donde se utilizo la aproximación 𝜂 𝑜 ≈ 120𝜋 Ω 𝑐𝑜𝑛 𝑡 = 0 tenemos que
Problemas
 Solución
 𝐸 𝑧, 0 = 1.2𝜋𝑐𝑜𝑠
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑥 𝑚𝑉/𝑚
 𝐸 𝑧, 0 = 10𝑐𝑜𝑠
2𝜋𝑧
300
−
𝜋
3
𝑎 𝑦 𝑚𝑉/𝑚
Variaciones espaciales de
𝐸 𝑦 𝐻 𝑐𝑜𝑛 𝑡 = 0 para la onda
Plana del ejemplo

Más contenido relacionado

La actualidad más candente

Propagación de Ondas Electromagnéticas
Propagación de Ondas ElectromagnéticasPropagación de Ondas Electromagnéticas
Propagación de Ondas ElectromagnéticasAndy Juan Sarango Veliz
 
joseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaumjoseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaumDavid Estrada Diaz
 
1.movimiento oscilatorio
1.movimiento oscilatorio1.movimiento oscilatorio
1.movimiento oscilatoriomarcojrivera
 
Compilado controles-mec
Compilado controles-mecCompilado controles-mec
Compilado controles-mecIndependiente
 
pruebas pau fisica Castilla la mancha
pruebas pau fisica Castilla la manchapruebas pau fisica Castilla la mancha
pruebas pau fisica Castilla la manchafisicayquimica-com-es
 
Tema6 Ondas en sólidos elásticos y fluidos
Tema6 Ondas en sólidos elásticos y fluidosTema6 Ondas en sólidos elásticos y fluidos
Tema6 Ondas en sólidos elásticos y fluidosrafarrc
 
Aporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoAporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoDewis Cotta
 
Problemas ley coulomb tutorial
Problemas ley coulomb tutorialProblemas ley coulomb tutorial
Problemas ley coulomb tutorialMarcodel_68
 
Aplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingenieríaAplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingenieríaErick Najera
 
Modelado de ecuaciones diferenciales (ejemplos)
Modelado de ecuaciones diferenciales (ejemplos)Modelado de ecuaciones diferenciales (ejemplos)
Modelado de ecuaciones diferenciales (ejemplos)Perla Berrones
 
Introducción al Calculo de Varias Variables MA-III ccesa007
Introducción al Calculo de Varias Variables  MA-III  ccesa007Introducción al Calculo de Varias Variables  MA-III  ccesa007
Introducción al Calculo de Varias Variables MA-III ccesa007Demetrio Ccesa Rayme
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesjuliocesarmontoya
 

La actualidad más candente (20)

Propagación de Ondas Electromagnéticas
Propagación de Ondas ElectromagnéticasPropagación de Ondas Electromagnéticas
Propagación de Ondas Electromagnéticas
 
joseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaumjoseph endminister electromagnetismo-serie-schaum
joseph endminister electromagnetismo-serie-schaum
 
1.movimiento oscilatorio
1.movimiento oscilatorio1.movimiento oscilatorio
1.movimiento oscilatorio
 
Formulario antisismica maverick
Formulario antisismica maverickFormulario antisismica maverick
Formulario antisismica maverick
 
Brigitte moreno
Brigitte morenoBrigitte moreno
Brigitte moreno
 
1.4. Orbitales hidrogenoides
1.4. Orbitales hidrogenoides1.4. Orbitales hidrogenoides
1.4. Orbitales hidrogenoides
 
Compilado controles-mec
Compilado controles-mecCompilado controles-mec
Compilado controles-mec
 
Calculo Vectorial Parte III
Calculo Vectorial   Parte IIICalculo Vectorial   Parte III
Calculo Vectorial Parte III
 
pruebas pau fisica Castilla la mancha
pruebas pau fisica Castilla la manchapruebas pau fisica Castilla la mancha
pruebas pau fisica Castilla la mancha
 
Tema6 Ondas en sólidos elásticos y fluidos
Tema6 Ondas en sólidos elásticos y fluidosTema6 Ondas en sólidos elásticos y fluidos
Tema6 Ondas en sólidos elásticos y fluidos
 
Aporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoAporte individual paso3 dewis moreno
Aporte individual paso3 dewis moreno
 
Semana12 (1)
Semana12 (1)Semana12 (1)
Semana12 (1)
 
Simulación numérica I
Simulación numérica ISimulación numérica I
Simulación numérica I
 
Sist medic angular
Sist medic angularSist medic angular
Sist medic angular
 
Problemas ley coulomb tutorial
Problemas ley coulomb tutorialProblemas ley coulomb tutorial
Problemas ley coulomb tutorial
 
Aplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingenieríaAplicación de ecuaciones diferenciales en la ingeniería
Aplicación de ecuaciones diferenciales en la ingeniería
 
Modelado de ecuaciones diferenciales (ejemplos)
Modelado de ecuaciones diferenciales (ejemplos)Modelado de ecuaciones diferenciales (ejemplos)
Modelado de ecuaciones diferenciales (ejemplos)
 
Introducción al Calculo de Varias Variables MA-III ccesa007
Introducción al Calculo de Varias Variables  MA-III  ccesa007Introducción al Calculo de Varias Variables  MA-III  ccesa007
Introducción al Calculo de Varias Variables MA-III ccesa007
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
 
Mec calor
Mec calorMec calor
Mec calor
 

Similar a Ondas Electromagnéticas Clase 12

Clase 14OR
Clase 14ORClase 14OR
Clase 14ORTensor
 
Clase 12 ondas electromagneticas
Clase 12 ondas electromagneticasClase 12 ondas electromagneticas
Clase 12 ondas electromagneticasTensor
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticasTensor
 
Clase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TEClase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TETensor
 
Clase 12 ondas electromagneticas TE
Clase 12 ondas electromagneticas TEClase 12 ondas electromagneticas TE
Clase 12 ondas electromagneticas TETensor
 
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptx
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptxExpresión matemática de una Onda Electromagnética Plana Uniforme.pptx
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptxVanessa Suarez
 
Deducción ecuación movimiento armónico simple (MAS) Con función SENO
 Deducción ecuación movimiento armónico simple (MAS) Con función SENO Deducción ecuación movimiento armónico simple (MAS) Con función SENO
Deducción ecuación movimiento armónico simple (MAS) Con función SENOJuanJacoboGonzlezHer
 
Clase 13 PC
Clase 13 PCClase 13 PC
Clase 13 PCTensor
 
Espiral de raíces cuadradas de los números naturales
Espiral de raíces cuadradas de los números naturales Espiral de raíces cuadradas de los números naturales
Espiral de raíces cuadradas de los números naturales Enrique Ramon Acosta Ramos
 
Pregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas EstacionariasPregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas EstacionariasAdrian PG
 
Problemas complementarios TE
Problemas complementarios TEProblemas complementarios TE
Problemas complementarios TETensor
 
1 analisis vectorial
1 analisis vectorial1 analisis vectorial
1 analisis vectorialEdwin Artuaga
 
Campo eléctrico II.pdf
Campo eléctrico II.pdfCampo eléctrico II.pdf
Campo eléctrico II.pdfjolopezpla
 
Clase 11 ecuaciones de maxwell TE
Clase 11 ecuaciones de maxwell TEClase 11 ecuaciones de maxwell TE
Clase 11 ecuaciones de maxwell TETensor
 
Clase 11 ecuaciones de maxwell
Clase 11 ecuaciones de maxwellClase 11 ecuaciones de maxwell
Clase 11 ecuaciones de maxwellTensor
 
Clase 11 EDM
Clase 11 EDMClase 11 EDM
Clase 11 EDMTensor
 

Similar a Ondas Electromagnéticas Clase 12 (20)

Clase 14OR
Clase 14ORClase 14OR
Clase 14OR
 
Clase 12 ondas electromagneticas
Clase 12 ondas electromagneticasClase 12 ondas electromagneticas
Clase 12 ondas electromagneticas
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticas
 
Clase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TEClase 14 ondas reflejadas TE
Clase 14 ondas reflejadas TE
 
Clase 12 ondas electromagneticas TE
Clase 12 ondas electromagneticas TEClase 12 ondas electromagneticas TE
Clase 12 ondas electromagneticas TE
 
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptx
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptxExpresión matemática de una Onda Electromagnética Plana Uniforme.pptx
Expresión matemática de una Onda Electromagnética Plana Uniforme.pptx
 
1 exposicionpal examen poisson
1 exposicionpal examen poisson1 exposicionpal examen poisson
1 exposicionpal examen poisson
 
Deducción ecuación movimiento armónico simple (MAS) Con función SENO
 Deducción ecuación movimiento armónico simple (MAS) Con función SENO Deducción ecuación movimiento armónico simple (MAS) Con función SENO
Deducción ecuación movimiento armónico simple (MAS) Con función SENO
 
Clase 13 PC
Clase 13 PCClase 13 PC
Clase 13 PC
 
Espiral de raíces cuadradas de los números naturales
Espiral de raíces cuadradas de los números naturales Espiral de raíces cuadradas de los números naturales
Espiral de raíces cuadradas de los números naturales
 
Pregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas EstacionariasPregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas Estacionarias
 
Problemas complementarios TE
Problemas complementarios TEProblemas complementarios TE
Problemas complementarios TE
 
1 analisis vectorial
1 analisis vectorial1 analisis vectorial
1 analisis vectorial
 
Ejercicios física iii
Ejercicios  física iiiEjercicios  física iii
Ejercicios física iii
 
Pregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas EstacionariasPregunta 4 Selectividad Ondas Estacionarias
Pregunta 4 Selectividad Ondas Estacionarias
 
Resumen calculo ii
Resumen calculo iiResumen calculo ii
Resumen calculo ii
 
Campo eléctrico II.pdf
Campo eléctrico II.pdfCampo eléctrico II.pdf
Campo eléctrico II.pdf
 
Clase 11 ecuaciones de maxwell TE
Clase 11 ecuaciones de maxwell TEClase 11 ecuaciones de maxwell TE
Clase 11 ecuaciones de maxwell TE
 
Clase 11 ecuaciones de maxwell
Clase 11 ecuaciones de maxwellClase 11 ecuaciones de maxwell
Clase 11 ecuaciones de maxwell
 
Clase 11 EDM
Clase 11 EDMClase 11 EDM
Clase 11 EDM
 

Más de Tensor

Libertad
LibertadLibertad
LibertadTensor
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Tensor
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisecciónTensor
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicularTensor
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colasTensor
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016Tensor
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016Tensor
 
Game maker
Game makerGame maker
Game makerTensor
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016Tensor
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivosTensor
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadenaTensor
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04Tensor
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de ordenTensor
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametrosTensor
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposiciónTensor
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricattiTensor
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioTensor
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadasTensor
 
Ondas em
Ondas emOndas em
Ondas emTensor
 
Practicas 8 2016
Practicas 8 2016Practicas 8 2016
Practicas 8 2016Tensor
 

Más de Tensor (20)

Libertad
LibertadLibertad
Libertad
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicular
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colas
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016
 
Game maker
Game makerGame maker
Game maker
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicio
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadas
 
Ondas em
Ondas emOndas em
Ondas em
 
Practicas 8 2016
Practicas 8 2016Practicas 8 2016
Practicas 8 2016
 

Último

texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticosisabeltrejoros
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 

Último (20)

texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticos
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 

Ondas Electromagnéticas Clase 12

  • 2. Ondas Electromagnéticas  Como la mayoría de las regiones de interés son libres de carga, se supone que 𝜌 = 0. Por otro lado, hay que suponer, materiales lineales isotrópicos de tal manera que 𝐷 = 𝜖𝐸, 𝐵 = 𝜇𝐻 𝑦 𝐽 𝐶 = 𝜎𝐸.  Isotrópico quiere decir que no depende de la elección de los ejes. no importa para que lado estés midiendo cierta propiedad o magnitud física siempre va a medir lo mismo.  Un ejemplo sencillo, se asume al espacio isotrópico, es decir, medir un metro hacia arriba, es lo mismo que medirlo de lado, diagonal, etc. Un ejemplo en donde no se cumple la isotropía, si tu tienes un material, y es mas difícil estirarlo de izquierda a derecha que de arriba abajo, pues se dice que dicha propiedad de estirarlo (rigidez) es anisotropía.
  • 3. Ondas Electromagnéticas  En electromagnetismo algunas de las propiedades que puedes medir son: conductividad, susceptibilidad magnética, susceptibilidad eléctrica, resistividad, etc. Si esas propiedades no dependen de la dirección (u orientación de los ejes) se dice que el cuerpo es isotrópico.  Por ejemplo si tu cuerpo tiene igual valor de conductividad cuando la corriente lo atraviesa de arriba a abajo, que de izquierda a derecha (y en general de todas las posibles direcciones) se dice que ese es un cuerpo isotrópico con respecto a la conductividad.
  • 4. Ecuaciones de Onda  Con base en los principios anteriores y suponiendo que tanto 𝐸 𝑐𝑜𝑚𝑜 𝐻 son dependientes del tiempo 𝑒 𝑗𝜔𝑡, las ecuaciones de Maxwell se transforman en:  Ahora aplicamos la identidad vectorial 𝛻 × 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝐸 1 𝛻 × 𝐸 = −𝑗𝜔𝜇𝐻 2 𝛻 ∙ 𝐸 = 0 3 𝛻 ∙ 𝐻 = 0 (4) 𝛻 × 𝛻 × 𝐴 ≡ 𝛻 𝛻 ∙ 𝐴 − 𝛻2 𝐴
  • 5. Ecuaciones de Onda  Donde, tan solo en coordenadas cartesianas  Tomando el rotacional de (1) y (2), y utilizando (3) y (4)  Ahora sustituyendo 𝛻 × 𝐸 𝑦 𝛻 × 𝐻 de (2) y (1), se obtienen las ecuaciones vectoriales 𝛻2 𝐴 = 𝛻2 𝐴 𝑥 𝑎 𝑥 + 𝛻2 𝐴 𝑦 𝑎 𝑦+ 𝛻2 𝐴 𝑧 𝑎 𝑧 𝛻2 𝐻 = 𝛾2 𝐻 𝛻2 𝐸 = 𝛾2 𝐸 −𝛻2 𝐻 = 𝜎 + 𝑗𝜔𝜖 𝛻 × 𝐸 −𝛻2 𝐸 = −𝑗𝜔𝜇 𝛻 × 𝐻
  • 6. Ecuaciones de Onda  Donde 𝛾2 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 . La constante de propagación, 𝛾, es la raíz cuadrada de 𝛾2 cuyas partes real e imaginaria son positivas:  con γ = 𝛼 + 𝑗𝐵 𝛼 = 𝜔 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 − 1 𝛽 = 𝜔 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 + 1
  • 7. Ecuaciones de Onda  La constante 𝛼 se llama factor de atenuación y 𝛽 se llama constante de crecimiento de fase. 𝛾 (Gamma) tiene unidades 𝑚−1 , sin embargo, es costumbre dar 𝛼 𝑦 𝛽 𝑒𝑛 𝑁𝑝 𝑚 𝑦 𝑟𝑎𝑑 𝑚 , respectivamente, donde el neper (Np) es una unidad adimensional como el radián.
  • 8. Soluciones en Coordenadas Cartesianas  La familiar ecuación escalar de onda en una dimensión  Tiene soluciones de la forma 𝐹 = 𝑓 𝑧 − 𝑈𝑡 𝑦 𝐹 = 𝑔 𝑧 + 𝑈𝑡 , donde 𝑓 𝑦 𝑔 son funciones arbitrarias. Estas representan ondas que viajan con velocidad 𝑈 en las direcciones +𝑧 𝑦 − 𝑧, respectivamente, de acuerdo a la siguiente figura. 𝜕2 𝐹 𝜕𝑧2 = 1 𝑈2 𝜕2 𝐹 𝜕𝑡2
  • 9. Soluciones en Coordenadas Cartesianas 𝑓 𝑧 𝑜 𝑈𝑡1 𝑓 𝑧1 − 𝑈1 𝑡1 𝑡 = 𝑡1𝑡 = 0
  • 10. Soluciones en Coordenadas Cartesianas  En particular, si se supone una variación armónica de tiempo 𝑒 𝑗𝜔𝑡 , la ecuación de onda se convierte en  Con soluciones (incluyendo el factor temporal) de la forma  O en las partes real o imaginaria de estas. 𝜕2 𝐹 𝜕𝑧2 = −𝛽2 𝐹 𝛽 = 𝜔 𝑈 𝐹 = 𝐶𝑒 𝑗 𝜔𝑡−𝛽𝑧 𝐹 = 𝐷𝑒 𝑗 𝜔𝑡+𝛽𝑧
  • 11. Soluciones en Coordenadas Cartesianas 𝐶 𝑡 = 0 𝑡 = 𝜋 2𝜔 𝑑 𝐹 𝑧 𝐹𝑖𝑔𝑢𝑟𝑎 2
  • 12. Soluciones en Coordenadas Cartesianas  La figura 2 muestra una de estas soluciones, 𝐹 = 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 , 𝑒𝑛 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝜋 2𝜔 ; durante este intervalo de tiempo la onda se ha movido una distancia 𝑑 = 𝑈 𝜋 2𝜔 = 𝜋/2𝛽 a la derecha. Para cualquier 𝑡 fijo, la forma de onda se repite cuando 𝑧 cambia a 2𝜋/𝛽. La distancia  Se llama longitud de onda. De esta manera en la figura 2, la onda avanzado un cuarto de longitud de onda a la derecha. La longitud de onda y la frecuencia 𝑓 = 𝜔/2𝜋, guardan entre si la relación conocida  También, 𝜆 = 𝑇𝑈 donde 𝑇 = 1 𝑓 = 2𝜋/𝜔 es el periodo 𝜆 = 2𝜋 𝛽 𝜆𝑓 = 𝑈
  • 13. Soluciones en Coordenadas Cartesianas  Las ecuaciones vectoriales de onda tienen soluciones similares a las ya discutidas anteriormente. Como los vectores unidad 𝑎 𝑥, 𝑎 𝑦 𝑦 𝑎 𝑧 en coordenadas cartesianas tienen direcciones fijas, la ecuación de onda para 𝐻 puede reescribirse bajo la forma  De especial interés son las soluciones (ondas planas) que dependen solo de una coordenada espacial, digamos 𝑧. 𝜕2 𝐻 𝜕𝑥2 + 𝜕2 𝐻 𝜕𝑦2 + 𝜕2 𝐻 𝜕𝑧2 = 𝛾2 𝐻
  • 14. Soluciones en Coordenadas Cartesianas  La ecuación se convierte entonces en  Dando  Las soluciones correspondientes para el campo eléctrico son 𝑑2 𝐻 𝑑𝑧2 = 𝛾2 𝐻 𝐻 = 𝐻 𝑜 𝑒±𝑦𝑧 𝑎 𝐻 ó 𝐻 𝑧, 𝑡 = 𝐻 𝑜 𝑒±𝑦𝑧 𝑒 𝑗𝜔𝑡 𝑎 𝐻 𝐸 = 𝐸 𝑜 𝑒±𝑦𝑧 𝑎 𝐸 ó 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒±𝑦𝑧 𝑒 𝑗𝜔𝑡 𝑎 𝐸
  • 15. Soluciones en Coordenadas Cartesianas  Aquí 𝑎 𝐻 𝑦 𝑎 𝐸 son vectores unitarios. La cantidad compleja 𝛾 se definió anteriormente  Se demuestra que  Es decir que ningún campo tienen componente en la dirección de propagación.  Siendo esto así se pueden rotar siempre los ejes para colocar uno de los campos, digamos 𝐸 a lo largo del eje 𝑥. Entonces se demuestra que 𝐻 yace a lo largo del eje 𝑦.  La solución de onda plana que se acaba de obtener depende, vía 𝛾, de las propiedades del medio 𝜇, 𝜖 𝑦 𝜎 𝑎 𝐻 ∙ 𝑎 𝑧 = 𝑎 𝐸 ∙ 𝑎 𝑧 = 0
  • 16. Soluciones para medios parcialmente conductores  Para una región de poca conductividad (ej.: suelo húmedo, agua de mar), la solución de la ecuación de onda E es  La razón 𝐸/𝐻 es característica del medio (también dependen de la frecuencia). Mas específicamente, para ondas 𝐸 = 𝐸 𝑥 𝑎 𝑥 , 𝐻 = 𝐻 𝑦 𝑎 𝑦 que se propaga en la dirección + 𝑧, la impedancia intrínseca, 𝜂, del medio se define por:  De esta manera 𝐸 = 𝐸 𝑜 𝑒−𝛾𝑧 𝑎 𝑥 𝜂 = 𝐸 𝑥 𝐻 𝑦 𝜂 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖
  • 17. Soluciones para medios parcialmente conductores  Donde la raíz cuadrada puede escribirse en forma polar 𝜂 ∠𝜃 con  (Si la onda se propaga en la dirección −𝑧, 𝐸 𝑥 𝐻 𝑦 = −𝜂. En efecto, 𝛾 se reemplaza por − 𝛾 y se usa la otra raíz cuadrada). 𝜂 = 𝜇/𝜖 4 1 + 𝜎 𝜔𝜖 2 𝑡𝑎𝑛2𝜃 = 𝜎 𝜔𝜖 𝑦 0 𝑜 < 𝜃 < 45 𝑜
  • 18. Soluciones para medios parcialmente conductores  Al introducer el factor tiempo 𝑒 𝑗𝜔𝑡 y al escribir 𝛾 = 𝛼 + 𝑗𝛽 se obtiene las siguientes ecuaciones para campos en una región parcialmente conductora:  El factor 𝑒−𝛼𝑧 atenúa las magnitudes de 𝐸 𝑦 𝐻 cuando se propagan en dirección +𝑧. La expresión para 𝛼,esto demuestra que existe atenuación a menos que la conductividad 𝜎 sea cero, lo que solo es el caso de dieléctricos perfectos o de espacio vacío. 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑥 o 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑒−𝛼𝑧 𝑒 𝑗 𝜔𝑡−𝛽𝑧+𝜃 𝑎 𝑦 o 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦
  • 19. Soluciones para medios parcialmente conductores  De la misma manera, la diferencia de fase temporal 𝜃, 𝑒𝑛𝑡𝑟𝑒 𝐸 𝑧, 𝑡 𝑦 𝐻(𝑧, 𝑡) desaparece solo cuando 𝜎 es cero. La velocidad de propagación y la longitud de onda están dadas por:  Si se conoce la velocidad de propagación 𝜆𝑓 = 𝑈 puede usarse para determinar la longitud de onda 𝜆. 𝑈 = 𝜔 𝛽 = 1 𝜇𝜖 2 1 + 𝜎 𝜔𝜖 2 + 1 𝜆 = 2𝜋 𝛽 = 2𝜋 𝜔 1 + 𝜎 𝜔𝜖 2 + 1
  • 20. Soluciones para medios parcialmente conductores  El termino 𝜎/𝜔𝜖 2 reduce tanto el valor de la velocidad como el de la longitud de onda, de lo que serían en el espacio vacío o dieléctricos perfectos, donde 𝜎 = 0. Obsérvese que el medio es dispersivo, es decir, ondas con frecuencias diferentes 𝜔 tienen diferentes velocidades 𝑈.
  • 21. Problemas  Problema 1  Una onda viajera está descrita por 𝑦 = 10𝑠𝑒𝑛 𝛽𝑧 − 𝜔𝑡 . Dibuje en 𝑡 = 0 𝑦 𝑒𝑛 𝑡 = 𝑡1 cuando ha avanzado 𝜆 8 , si la velocidad es de 3 × 108 𝑚/𝑠 y la frecuencia angular es 𝜔 = 106 𝑟𝑎𝑑 𝑠 , 𝑏)𝜔 = 2 × 106 𝑟𝑎𝑑/𝑠 y el mismo 𝑡1
  • 22. Problemas  Solución Inciso a  La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que  𝑡1 = 𝑇 8 = 2𝜋/𝜔 8 = 𝜋 4𝜔  𝜆 8 = 𝑐𝑡1 = 3 × 108 𝜋 4 106 = 236m 𝑡 = 0 𝑡 = 𝑡1 10 𝜔 = 106 𝑧 𝑦 𝜆/2 𝜆 236𝑚
  • 23. Problemas  Solución inciso b  La onda avanza 𝜆 en un periodo, 𝑇 = 2𝜋/𝜔. Por tanto tenemos que  𝑡1 = 𝑇 8 = 2𝜋/𝜔 8 = 𝜋 4𝜔  𝜆 8 = 𝑐𝑡1 = 3 × 108 𝜋 4 2×106 = 118m 𝑡 = 0 𝑡 = 𝑡1 10 𝜔 = 2 × 106 𝑧 𝑦 𝜆/2 𝜆 118𝑚
  • 24. Soluciones para dieléctricos perfectos  Para un dieléctrico perfecto, 𝜎 = 0 y así  Como ∝= 0 no hay atenuación de las ondas 𝐸 𝑦 𝐻. El angula cero sobre 𝜂 produce un 𝐻 que esta en fase temporal con 𝐸 en cada localización fija. Suponiendo 𝐸 en 𝑎 𝑥 y la propagación en 𝑎 𝑧, las ecuaciones de campo pueden obtenerse como limites, como se denota a continuación: 𝛼 = 0 𝛽 = 𝜔 𝜇𝜖 𝜂 = 𝜇 𝜖 ∠00 𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑒 𝑗(𝜔𝑡−𝛽𝑧) 𝑎 𝑥 𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑒 𝑗(𝜔𝑡−𝛽𝑧) 𝑎 𝑦
  • 25. Soluciones para dieléctricos perfectos  La velocidad de la onda y la longitud de la onda son:  Para espacio vacío 𝑈 = 𝜔 𝛽 = 4𝜋 × 10−7 𝐻 𝑚 𝜖 = 𝜖 𝑜 = 8.854 × 10−12 𝐹 𝑚 ≈ 10−9 36𝜋 𝐹/𝑚 𝜂 = 𝜂 𝑜 ≈ 120𝜋 Ω 𝑦 𝑈 = 𝑐 ≈ 3 × 108 𝑚/𝑠
  • 26. Problemas  Problema 2  En el espacio vacío, 𝐸 𝑧, 𝑡 = 103 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Obtenga 𝐻(𝑧, 𝑡)
  • 27. Problemas  Solución  Un examen de la fase, 𝜔𝑡 − 𝛽𝑧, revela que la dirección de la propagación es +𝑧, 𝐻 debe tener dirección −𝑎 𝑥. Por tanto 𝐸 𝑦 −𝐻𝑧 = 𝜂 𝑜 = 120𝜋 Ω ó 𝐻 𝑥 = − 103 120𝜋 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚 𝑦 𝐻𝑧 𝑧, 𝑡 = − 103 120𝜋 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑥 𝐴/𝑚
  • 28. Problemas  Problema 3  Sea la onda, en el espacio vacío, 𝐸 𝑧, 𝑡 = 103 𝑠𝑒𝑛 𝜔𝑡 − 𝛽𝑧 𝑎 𝑦 (𝑉/𝑚). Determine la constante de propagación 𝛾 sabiendo que la frecuencia es que la frecuencia es 𝑓 = 95.5𝑀ℎ𝑧
  • 29. Problemas  Solucion  En general, 𝛾 = 𝑗𝜔𝜇 𝜎 + 𝑗𝜔𝜖 En el espacio vacío, 𝜎 = 0, así que:  𝛾 = 𝑗𝜔 𝜇0 𝜖0 = 𝑗 2𝜋𝑓/𝑐 = 𝑗 2𝜋 95.5×106 3×108 = −𝑗2𝑚−1  Obsérvese que este resultado demuestra que el factor de atenuación es 𝛼 = 0 y la constante de defasaje es 𝛽 = 2 𝑟𝑎𝑑/𝑚
  • 30. Problemas  Problema 4  El campo eléctrico de una onda plana de 1MHz que viaja en la dirección +𝑧 en aire apunta en la dirección 𝑥. Si el valor pico de 𝐸 es de 1.2𝜋 𝑚𝑉 𝑚 y 𝐸 es máximo cuando 𝑡 = 0 𝑦 𝑧 = 50𝑚, obtenga expresiones para 𝐸 𝑧, 𝑡 𝑦 𝐻 𝑧, 𝑡 y luego trace una grafica de estas variaciones en función de 𝑧 𝑐𝑜𝑛 𝑡 = 0.
  • 31. Problemas  Solución  Con 𝑓 = 1𝑀𝐻𝑧, la longitud de onda en el aire es:  𝜆 = 𝑐 𝑓 = 3×108 1×106 = 300 𝑚  Y el numero de onda correspondiente es 𝛽 = 2𝜋 𝜆 = 2𝜋 300 𝑟𝑎𝑑/𝑚. La expresión general para un campo eléctrico dirigido hacia 𝑥 que viaja en la dirección de +𝑧 aparece en la ecuación como  𝐸 𝑧, 𝑡 = 𝐸 𝑜 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑥 ⇒ 𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋 300 𝑧 + 𝜃 𝑎 𝑥 𝑚𝑉 𝑚  El campo 𝐸 𝑧, 𝑡 es máximo cuando el argumento de la función coseno es igual a cero o a múltiplos de 2𝜋. Con 𝑡 = 0 𝑦 𝑧 = 50𝑚, esta condición es
  • 32. Problemas  Solución  − 2𝜋×50 300 + 𝜃 = 0 𝑜 𝜃 = 𝜋 3  𝐸 𝑧, 𝑡 = 1.2𝜋𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋 300 𝑧 + 𝜋 3 𝑎 𝑥 𝑚𝑉 𝑚  Y de acuerdo con  𝐻 𝑧, 𝑡 = 𝐸 𝑜 𝜂 𝑐𝑜𝑠 𝜔𝑡 − 𝛽𝑧 + 𝜃 𝑎 𝑦 ⟹  𝐻 𝑧, 𝑡 = 1.2𝜋×10−3 120𝜋 𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝜇𝐴/𝑚  𝐻 𝑧, 𝑡 = 10𝑐𝑜𝑠 2𝜋 × 106 𝑡 − 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝜇𝐴/𝑚  Donde se utilizo la aproximación 𝜂 𝑜 ≈ 120𝜋 Ω 𝑐𝑜𝑛 𝑡 = 0 tenemos que
  • 33. Problemas  Solución  𝐸 𝑧, 0 = 1.2𝜋𝑐𝑜𝑠 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑥 𝑚𝑉/𝑚  𝐸 𝑧, 0 = 10𝑐𝑜𝑠 2𝜋𝑧 300 − 𝜋 3 𝑎 𝑦 𝑚𝑉/𝑚 Variaciones espaciales de 𝐸 𝑦 𝐻 𝑐𝑜𝑛 𝑡 = 0 para la onda Plana del ejemplo