SlideShare una empresa de Scribd logo
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
CAPITULO III VALORES DE VERDAD Y LÓGICA
1. Definición de tabla de verdad
2. Construcción de tablas de verdad
3. Doble negación
4. Proposiciones condicionales
5. Reciproca, inversas, contrarecíproca
6. Bicondicional
VALORES DE VERDAD Y LÓGICA
El Valor de Verdad (VV) de una proposición dada, o bien es verdadero si la misma es verdadera, o bien es
falsa en caso contrario.
Notación: simbolizamos con T (true) y con F(false) en el segundo caso.
Un motivo de la primera elección
es para aminorar confusiones con el s´ımbolo ∨.
Falso y verdadero con 0 y 1, respectivamente, técnicas digitales
Definición de tabla de verdad
La Tabla de Verdad muestra en forma sistemática los valores de verdad de una proposición compuesta en
función de los todas las combinaciones posibles de los valores de verdad de las proposiciones que la
componen.
¿Para qué sirven las tablas de verdad?. Permiten analizar cualquier fórmula y hallar sus valores de verdad. Nos dice si
una fórmula es satisfacible. Si un razonamiento es válido o no. Constituye un procedimiento de decisión que en un
número finito de pasos nos dice si una fórmula es una tautología o no.
Ejemplo
Construcción de tablas de verdad
Toda tabla de verdad consta de dos tipos de columnas: las columnas de la izquierda (llamadas de referencia) en donde se
pondrán todas las posibilidades de verdad y falsedad de las letras o variables proposicionales, y las columnas de la derecha que
contienen los valores de verdad de las funciones presentes en la fórmula.
Para hallar la tabla de verdad de una fórmula cualquiera de la lógica proposicional habrá de seguirse los siguientes pasos.
Construcción de las columnas de los argumentos.En las columnas de los argumentos hay que consignar l os posibles valores de
verdad de las letras o variables presentes en una fórmula dada. El número de combinaciones posibles es 2 n
, siendo n = número de
variables o el grado de la fórmula, y 2= a los valores de verdad que podemos asignar: verdadero (1), fals o (0).
Las fórmulas según el número de variables se clasifican en:
Fórmulas de orden uno, si n =1. Ejemplo: la fórmula (p ^ ¬ p), o la fórmula (¬ p ^ ¬ p)
Fórmulas de orden dos, si n =2 Ejemplo: la fórmula (p v ¬ q), o la fórmula (¬ p ^ ¬ q) --> q
Fórmulas de orden tres, si n =3 Ejemplo: la fórmula (¬ p ^ ¬ q)  s, o la fórmula (p ^ ¬ p) ^ (s v ¬ q)
Fórmulas de orden n, si n = n
Se procede asignando la mitad de los valores verdaderos y la otra mitad falsos para la primera variable. Para la segunda, l a
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
mitad de los valores verdaderos, han de ser verdaderos y la otra mitad falsos. Así sucesivamente, de tal manera que a la últ ima
variable se le asignen siempre 1 0 1 0.
Construcción de las columnas de los juntores.
Es necesario proceder en primer lugar registrando la tabla de verdad de los juntores de menor dominancia hasta llegar a los d e
mayor dominancia. Para ello es suficiente con proceder de dentro de la fórmula afuera.
Observar el siguiente ejemplo:
(p ^ q) --> ¬ (¬ p v ¬ q)
P q ¬ p ¬ q (p ^ q) (¬ p v ¬ q ) ¬ (¬ p v ¬ q ) (p ^ q) --> ¬ (¬ p v ¬ q )
1 1 0 0 1 0 1 1
1 0 0 1 0 1 0 1
0 1 1 0 0 1 0 1
0 0 1 1 0 1 0 1
NIVEL 1 NIVEL 2 NIVEL 3 NIVEL 4 NIVEL 5 NIVEL 6
Condicionante
La condicional es la proposición compuesta que resulta de conectar dos proposiciones, p y q, mediante el conectivo .
Esta proposición compuesta se denota por y se lee p implica q.
En esta proposición compuesta, la proposición simple p se llama antecedente, mientras que la proposición simple q se
llama consecuente.
La tabla de verdad para el conectivo está dada por
p q
V V V
V F F
F V V
F F V
Se puede ver que una proposición compuesta tiene valor de verdad falso solamente cuando el antecedente es
verdadero y el consecuente es falso. En cualquier otro caso, el valor de verdad de la proposición compuesta es
verdadero.
Proposiciones condicionales
Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares, condicionadas
una de la otra
La cual se indica de la siguiente manera:
pq y se lee Si p entonces q
A la proposición “p” le llamaremos antecedente y a la proposición “q” le llamaremos consecuente, en algunos otros
contextos se le llama “Si condicional” en el cual el antecedente es la condición que debe cumplirse, y el consecuente es
la consecuencia lógica que se deriva de la condición
.
Ejemplos
Es herbívoro si se alimenta de plantas
El número 4 es por puesto que es divisible entre 2
Se llama isósceles siempre que el triángulo tenga dos lados iguales
Cuando venga Raúl jugaremos ajedrez
De salir el sol iremos a la playa
La física relativista fue posible porque existió la mecánica clásica
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
La implicación lógica tiene sus orígenes en la aplicación de la inteligencia social ante situaciones cotidianas, en nuestra
capacidad de comportarnos de acuerdo a normas y reglas, estas reglas son del tipo:
Bajo tal condición, debe ocurrir tal otra cosa
Si se cumplió tal requisito, entonces es aceptado que suceda tal cosa
Algunos ejemplos:
Si pague por el pan entonces lo puedo llevar a casa
Si tengo mi entrada entonces puedo entrar al cine
Si corto el pasto entonces puedo ir a la fiesta esta noche
La regla deja de respetarse, cuando habiendo cumplido una condición ("me saqué un 10 en mi examen semanal") se nos
niega el beneficio ("no puedo ir a la fiesta"), es decir, cuando no se obtuvo el resultado deseado.
Si << condición >> Entonces << beneficio >>
Por tal motivo podemos asegurar que para que una implicación sea lógicamente correcta no es necesario que haya una
relación entre el antecedente y el consecuente, es decir que la verdad entre una proposición condicional es
independiente de las relaciones que puedan existir o no entre los significados del antecedente y el consecuente, por
ejemplo:
“Si la tierra gira alrededor del sol entonces Puerto Asís es un municipio del Putumayo”.
Esta proposición es verdadera a pesar de que no existe relación entre los significados de sus proposiciones
componentes.
Ejemplos ilustrativos de los cuales, podrían ser los siguientes:
· Si la Luna es redonda entonces Puerto Asís es un municipio del Putumayo.
· Si la nieve es blanca entonces Bruto mató a César.
· Si la luna es cuadrada entonces Puerto Asís es un municipio.
Veámoslo mediante un ejemplo:
Si nos fijamos bien, veremos que a Juan no le están dando a elegir como en los ejemplos anteriores, esta vez le están
poniendo una condición que se reflejará en una consecuencia, si lo ejemplificamos en dos proposiciones atómicas
quedaría de la siguiente manera:
p: Juan saca 10 en su examen.
q: Juan va al antro el fin de semana.
p → q que se lee “Si Juan saca 10 entonces Juan va al antro el fin de semana”.
Reflejándolo en una tabla de verdad nos queda:
p q p → q
v v v Juan saca 10 en su examen entonces va al antro, se cumple la consecuencia
lógica.
v f f Juan saca 10 en su examen, pero no va al antro, NO se cumple la
consecuencia lógica.
f v v Juan no saca 10 en su examen, pero va al antro, se cumple la consecuencia
lógica.
f f v Juan no saca 10 en su examen y no va al antro, se cumple la consecuencia
lógica.
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
Bicondicionante
La bicondicional es la proposición compuesta que resulta de conectar dos proposiciones, p y q, mediante el
conectivo .
Esta proposición compuesta se denota por y se lee p si y solo si q.
La tabla de verdad para el conectivo está dada por
p q
V V V
V F F
F V F
F F V
Se puede ver que la proposición compuesta tiene valor de verdad verdadero siempre que las proposiciones
simples tienen el mismo valor de verdad. Es cualquier otro caso, la proposición compuesta tiene valor de verdad falso.
Profundicemos lo que es una Proposición Bicondicional
“Una proposición bicondicional, es aquella que está formada por dos proposiciones atómicas o moleculares,
condicionadas una de la otra, con la característica de que la condición debe cumplirse forzosamente”.
Se indica la proposición bicondicional de la siguiente manera: p ↔ q Se lee “p si y solo si q”.
Esto significa que “p” es verdadera si y solo si “q“ es también verdadera, o bien, “p” es falsa si y solo si “q” también lo es.
También podemos encontrarlo en sus diferentes connotaciones:
“Cuando y solo cuando…”, “si… entonces y solo entonces”, “si y solo si…”.
Ejemplos:
· Es fundamentalista si y solo si es Talibán.
· Habrá cosecha cuando y solo cuando llueva.
· Si apruebo el examen de admisión, entonces y solo entonces ingresará a la U
Las proposiciones bicondicionales se caracterizan porque establecen dos condiciones, pero de sentido inverso, por
ejemplo:
· Habrá cosecha si y solo si las lluvias son suficientes.
· Si las lluvias son suficientes entonces habrá cosecha.
El antecedente y el consecuente son necesarios y suficientes uno de otro, pueden leerse en sentido inverso y la misma
idea de la proposición prevalece.
Analicémoslo mediante un ejemplo:
Ante esta situación Juan tiene una condición que forzosamente debe cumplir para poder obtener el beneficio de la
consecuencia dependiente, si lo ejemplificamos en dos proposiciones atómicas quedaría de la siguiente manera:
p: Juan val al antro el fin de semana.
q: Juan saca 10 en su examen semanal.
p ↔ q que se lee “Juan va la antro el fin de semana si y solo si Juan saca 10 en su examen semanal”.
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
Reflejándolo en una tabla de verdad nos queda:
p q p ↔ q
V V V Juan va al antro, sacó 10 en su examen, se cumple la condición
necesaria.
V F F Juan va al antro, no sacó 10 en su examen, NO se cumple la condición
necesaria.
F V F Juan no va al antro, sacó 10 en su examen, NO se cumple la
consecuencia dependiente.
F F V Juan no va al antro, no sacó 10 en su examen, no se cumple ninguna
EJERCICIOS
((p⇒q)⋀ p)⇒q
p q p⇒q (p⇒q)⋀p ((p⇒q)⋀p)⇒q
v v
v f
f v
f f
((p⇒q)⋀ ¬p)⇒¬q
P q ¬p ¬q p⇒q (p⇒q)⋀¬p ((p⇒q)⋀¬p)⇒¬q
V v
V f
F v
F f
[(p⇒q)⇒p]⇒p
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
p q p⇒q (p⇒q)⇒p [(p⇒q)⇒p]⇒p
v v
v f
f v
f f
(¬p⋀ ¬q)⇒(p⇔q)
q ¬p ¬q (¬p⋀¬q) p⇔q (¬p⋀¬q)⇒(p⇔q)
v v
v f
f v
f f
En los problemas siguientes se pide construir la tabla de verdad de cada una de las proposiciones compuestas.
¬(¬p → ¬q)
¬(p → q) ∨ (¬p ∧ ¬q)
p → ¬q) ∨ (q → ¬r)
Doble negación
Demostraremos que las proposiciones p y la proposición ~(~p) son lógicamente equivalentes. Para lograrlo
construiremos la tabla de verdad de la proposición p↔~ (~p)
Cualquier proposición es equivalente a sí misma.
La doble negación de una proposición es la misma proposición.
Ejemplo 1:
Consideremos la proposición simple:
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
p: es de día, luego:
~p: es de noche
~ (~p): no es de noche
Por lo tanto ~ (~p) = p
Ejercicio
A. p: "No es cierto que no haya vida en la luna"
Puede que no haya vida en la luna
Puede haber vida en la luna
No hay vida en la luna
Hay algo de vida en la luna
*Hay vida en la luna
B. p: "No es verdad que la catedral de León no sea gótica.
Quizá la catedral de León no es gótica
La catedral de León quizá no sea gótica
*La catedral de León es gótica
La catedral de León no es gótica
La catedral de León es algo gótica
C. p: "No es cierto que no tenga discos nuevos."
No tengo discos nuevos
*Tengo discos nuevos
Todos mis discos son viejos
Tengo algunos discos viejos
Tengo algunos discos nuevos
Recíproca, inversas, contrarrecíproca
Dadas las proposiciones p: Es un animal mamífero
q: Tiene pelo entonces:
Implicación directa: Si es mamífero entonces tiene pelo
Implicación contraria: Si no es mamífero entonces no tiene pelo
Implicación recíproca: Si tiene pelo entonces es mamífero
Implicación contra recíproca: Si no tiene pelo entonces no es mamífero
Dada la proposición condicional p → q, su recıproca es la proposición, también condicional,
q → p. Por ejemplo, la recıproca de “Si la salida no va a la pantalla, entonces los resultados se dirigen a la
impresora” será “Si los resultados se dirigen a la impresora, entonces la salida no va a la pantalla”.
Proposición Contrarrecíproca
Dada la proposición condicional p → q, su contrarrecíproca es la proposición, también condicional, ¬q → ¬p.
Por ejemplo, la contrarrecíproca de la proposición “Si María estudia mucho, entonces es buena estudiante” es
“Si María no es buena estudiante, entonces no estudia mucho”.
Ejemplo
Escribir la recíproca y la contrarrecíproca de cada una de las afirmaciones siguientes:
(a) Si llueve, no voy.
(b) Me quedaré, solo si tú te vas.
(c) Si tienes cien pesetas, entonces puedes comprar un helado.
(d) No puedo completar la respuesta si no me ayudas.
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
Solución
Escribiremos la recíproca y la contrarrecíproca de varias formas.
(a) Si llueve, no voy.
Reciproca.
− Si no voy, entonces llueve.
− Llueve si no voy.
− Una condición necesaria para no ir es que llueva.
− Una condición suficiente para que llueva es no ir.
Contrarecíproca.
− Si voy, entonces no llueve.
− Voy solo si no llueve.
− Es necesario que no llueva, para que vaya.
− Es suficiente que vaya para que no llueva.
(b) Me quedaré sólo si te vas.
Recíproca.
− Si te vas, entonces me quedaré.
− Me quedaré, si te vas.
− Una condición necesaria para que te vayas, es quedarme.
− Una condición suficiente para quedarme es que te vayas.
Contra recíproca.
− Si no te vas, entonces no me quedaré.
− No me quedaré si no te vas.
− Es suficiente que no te vayas, para no quedarme.
(c) No puedo completar la respuesta si no me ayudas.
Recıproca.
− Si no puedo completar la respuesta, entonces no me ayudas.
contrarecíproca.
− Si puedo completar la respuesta, entonces me ayudas.
− Puedo completar la respuesta solo si me ayudas.
− Es necesario que ayudes para poder completar la respuesta.
LOGICA MATEMATICA
Ingeniería de Sistemas
Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105
Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689
Email: itputumayo@itp.edu.co
www.itp.edu.co
Recursos
Construcción tablas de verdad
https://www.youtube.com/watch?v=AKjWG2zoH4Q
https://youtu.be/4K5rBPZ5A-g
http://www.cimec.org.ar/twiki/pub/Cimec/TeoriaDeLaComputacion/tc-logica.pdf
Generador de tablas de verdad
http://escuela2punto0.educarex.es/Humanidades/Etica_Filosofia_Ciudadania/Aprende_logica/logica/03tablasv
dad/generadorfrset.html
Construcción de tablas de verdad
http://ficus.pntic.mec.es/rdis0006/lecciones/logica_proposicional/lecciones/las%20tablas%20de%20verdad.ht
m
Simulador de tablas de verdad
http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/
Video del simulador de tablas de verdad
https://www.youtube.com/watch?v=ZKg7wt9EGJI
Video Julio el profe
https://youtu.be/pwJK-4Op438
Doble negación - ejercicios
http://escuela2punto0.educarex.es/Humanidades/Etica_Filosofia_Ciudadania/Aprende_logica/logica/03
tablasvdad/021dobleneg.html
Libro lógica de proposiciones
http://www2.uca.es/matematicas/Docencia/ESI/1711051/Apuntes/Leccion1.pdf

Más contenido relacionado

La actualidad más candente

Logica I
Logica ILogica I
36. logica matematica
36. logica matematica36. logica matematica
36. logica matematica
MIRIAM ORTEGA
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadistica
CYALE19
 
Variables aleatorias y distribuciones de probabilidad
Variables aleatorias y distribuciones de probabilidadVariables aleatorias y distribuciones de probabilidad
Variables aleatorias y distribuciones de probabilidad
Pedro Rodas
 
01 lógica proposicional
01 lógica proposicional01 lógica proposicional
01 lógica proposicional
chofer1990
 
Demostracion condicional
Demostracion condicionalDemostracion condicional
Demostracion condicional
Elio Bendezu Yaranga
 
Jorge Rivero ED1 unidad 1
Jorge Rivero ED1 unidad 1Jorge Rivero ED1 unidad 1
Jorge Rivero ED1 unidad 1
Jorge Riivero
 
Miguel morillo estadistica
Miguel morillo estadisticaMiguel morillo estadistica
Miguel morillo estadistica
miguelmorillo31
 
Introduccion
IntroduccionIntroduccion
Introduccion
javifran2008
 
Actividades unidad3 inteligenecia artificial
Actividades unidad3 inteligenecia artificialActividades unidad3 inteligenecia artificial
Actividades unidad3 inteligenecia artificial
Alejandro Alejandrez
 
Universidad fermin toro esctructura discreta
Universidad fermin toro esctructura discretaUniversidad fermin toro esctructura discreta
Universidad fermin toro esctructura discreta
Ivan Bernal
 
03 Variable Aleatoria
03   Variable Aleatoria03   Variable Aleatoria
03 Variable Aleatoria
Diego Andrés Alvarez Marín
 
ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD
1500743412
 
Metodos de demostracion
Metodos de demostracionMetodos de demostracion
Metodos de demostracion
MishellCarvajal
 
Repaso Algebra Proposicional
Repaso Algebra ProposicionalRepaso Algebra Proposicional
Repaso Algebra Proposicional
Mariexis Cova
 
Esquemas de inferencia lógica
Esquemas de inferencia lógicaEsquemas de inferencia lógica
Esquemas de inferencia lógica
Zetineb Oigres
 
Probabilidades-Estadistica
Probabilidades-EstadisticaProbabilidades-Estadistica
Probabilidades-Estadistica
Luis Eduardo Barillas Sinay
 
Proposiciones SAIA, UFT.
Proposiciones SAIA, UFT.Proposiciones SAIA, UFT.
Proposiciones SAIA, UFT.
Frank Perez
 
Expo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upgExpo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upg
Edgar López
 
Expo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upgExpo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upg
Edgar López
 

La actualidad más candente (20)

Logica I
Logica ILogica I
Logica I
 
36. logica matematica
36. logica matematica36. logica matematica
36. logica matematica
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadistica
 
Variables aleatorias y distribuciones de probabilidad
Variables aleatorias y distribuciones de probabilidadVariables aleatorias y distribuciones de probabilidad
Variables aleatorias y distribuciones de probabilidad
 
01 lógica proposicional
01 lógica proposicional01 lógica proposicional
01 lógica proposicional
 
Demostracion condicional
Demostracion condicionalDemostracion condicional
Demostracion condicional
 
Jorge Rivero ED1 unidad 1
Jorge Rivero ED1 unidad 1Jorge Rivero ED1 unidad 1
Jorge Rivero ED1 unidad 1
 
Miguel morillo estadistica
Miguel morillo estadisticaMiguel morillo estadistica
Miguel morillo estadistica
 
Introduccion
IntroduccionIntroduccion
Introduccion
 
Actividades unidad3 inteligenecia artificial
Actividades unidad3 inteligenecia artificialActividades unidad3 inteligenecia artificial
Actividades unidad3 inteligenecia artificial
 
Universidad fermin toro esctructura discreta
Universidad fermin toro esctructura discretaUniversidad fermin toro esctructura discreta
Universidad fermin toro esctructura discreta
 
03 Variable Aleatoria
03   Variable Aleatoria03   Variable Aleatoria
03 Variable Aleatoria
 
ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD ELEMENTOS DE LA PROBABILIDAD
ELEMENTOS DE LA PROBABILIDAD
 
Metodos de demostracion
Metodos de demostracionMetodos de demostracion
Metodos de demostracion
 
Repaso Algebra Proposicional
Repaso Algebra ProposicionalRepaso Algebra Proposicional
Repaso Algebra Proposicional
 
Esquemas de inferencia lógica
Esquemas de inferencia lógicaEsquemas de inferencia lógica
Esquemas de inferencia lógica
 
Probabilidades-Estadistica
Probabilidades-EstadisticaProbabilidades-Estadistica
Probabilidades-Estadistica
 
Proposiciones SAIA, UFT.
Proposiciones SAIA, UFT.Proposiciones SAIA, UFT.
Proposiciones SAIA, UFT.
 
Expo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upgExpo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upg
 
Expo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upgExpo cap 7 nociones probabilida upg
Expo cap 7 nociones probabilida upg
 

Destacado

Tabrez-Resume 2016
Tabrez-Resume 2016Tabrez-Resume 2016
Tabrez-Resume 2016
Md. Tabrez Faisal
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
528Hz TRUTH
 
Junta pedagógica.pptx rocío
Junta pedagógica.pptx rocíoJunta pedagógica.pptx rocío
Junta pedagógica.pptx rocío
rocioalvarezmesta
 
La hepatitis
La hepatitisLa hepatitis
La hepatitis
Miguel Carlosama
 
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGARNORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
juliocesarlop
 
Jardín botánico abril 1°b
Jardín botánico abril 1°bJardín botánico abril 1°b
Jardín botánico abril 1°b
victorserranov
 
Calentamiento global
Calentamiento globalCalentamiento global
Calentamiento global
tronkt
 
Famous Companies and their Founders
Famous Companies and their FoundersFamous Companies and their Founders
Famous Companies and their Founders
JAMES NICOLAUS
 
A bíblia do carro
A bíblia do carroA bíblia do carro
A bíblia do carro
Maracaju Vip
 
ACTIVIDADES
ACTIVIDADES ACTIVIDADES
ACTIVIDADES
juliocesarlop
 
Internazionalizzazione e Scelta della Piattaforma Ecommerce
Internazionalizzazione e Scelta della Piattaforma EcommerceInternazionalizzazione e Scelta della Piattaforma Ecommerce
Internazionalizzazione e Scelta della Piattaforma Ecommerce
Carlenzoli Yuri
 
Suitability Test Expert System
Suitability Test Expert SystemSuitability Test Expert System
Suitability Test Expert System
Ma Pii
 
Substance Abuse in Wyoming 2005
Substance Abuse in Wyoming 2005Substance Abuse in Wyoming 2005
Substance Abuse in Wyoming 2005
aar911
 
CerviCare Columbia
CerviCare ColumbiaCerviCare Columbia
CerviCare Columbia
Stanford University
 
Trabalo conhabit
Trabalo conhabitTrabalo conhabit
Trabalo conhabit
victorserranov
 
Cst mecânica ferramentas e seus acessórios
Cst mecânica ferramentas e seus acessóriosCst mecânica ferramentas e seus acessórios
Cst mecânica ferramentas e seus acessórios
Paulo Henrique
 
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
ShopRenter
 
Project Launch event
Project Launch event Project Launch event
Project Launch event
Michelle Machado
 
Norman Foster
Norman FosterNorman Foster
Norman Foster
misschand
 
Kaedah Latihan Fartlek
Kaedah Latihan FartlekKaedah Latihan Fartlek
Kaedah Latihan Fartlek
syafiqahharris
 

Destacado (20)

Tabrez-Resume 2016
Tabrez-Resume 2016Tabrez-Resume 2016
Tabrez-Resume 2016
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Junta pedagógica.pptx rocío
Junta pedagógica.pptx rocíoJunta pedagógica.pptx rocío
Junta pedagógica.pptx rocío
 
La hepatitis
La hepatitisLa hepatitis
La hepatitis
 
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGARNORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
NORMAS O CÓDIGOS DE LAS TIC PARA USAR EN EL HOGAR
 
Jardín botánico abril 1°b
Jardín botánico abril 1°bJardín botánico abril 1°b
Jardín botánico abril 1°b
 
Calentamiento global
Calentamiento globalCalentamiento global
Calentamiento global
 
Famous Companies and their Founders
Famous Companies and their FoundersFamous Companies and their Founders
Famous Companies and their Founders
 
A bíblia do carro
A bíblia do carroA bíblia do carro
A bíblia do carro
 
ACTIVIDADES
ACTIVIDADES ACTIVIDADES
ACTIVIDADES
 
Internazionalizzazione e Scelta della Piattaforma Ecommerce
Internazionalizzazione e Scelta della Piattaforma EcommerceInternazionalizzazione e Scelta della Piattaforma Ecommerce
Internazionalizzazione e Scelta della Piattaforma Ecommerce
 
Suitability Test Expert System
Suitability Test Expert SystemSuitability Test Expert System
Suitability Test Expert System
 
Substance Abuse in Wyoming 2005
Substance Abuse in Wyoming 2005Substance Abuse in Wyoming 2005
Substance Abuse in Wyoming 2005
 
CerviCare Columbia
CerviCare ColumbiaCerviCare Columbia
CerviCare Columbia
 
Trabalo conhabit
Trabalo conhabitTrabalo conhabit
Trabalo conhabit
 
Cst mecânica ferramentas e seus acessórios
Cst mecânica ferramentas e seus acessóriosCst mecânica ferramentas e seus acessórios
Cst mecânica ferramentas e seus acessórios
 
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
2015. október - A Hónap Webáruháza: Fejhallgatoplaza.hu
 
Project Launch event
Project Launch event Project Launch event
Project Launch event
 
Norman Foster
Norman FosterNorman Foster
Norman Foster
 
Kaedah Latihan Fartlek
Kaedah Latihan FartlekKaedah Latihan Fartlek
Kaedah Latihan Fartlek
 

Similar a Capitulo iii valores de verdad y lógica

Trabajo colaborativo-2-grupo-168
Trabajo colaborativo-2-grupo-168Trabajo colaborativo-2-grupo-168
Trabajo colaborativo-2-grupo-168
Erica Avila Caicedo
 
Trabajo colaborativo-dos-grupo-203
Trabajo colaborativo-dos-grupo-203Trabajo colaborativo-dos-grupo-203
Trabajo colaborativo-dos-grupo-203
Erica Avila Caicedo
 
CALCULO PROPOSICIONAL
CALCULO PROPOSICIONALCALCULO PROPOSICIONAL
CALCULO PROPOSICIONAL
miguegilgallardo
 
14118030 nociones-de-logica
14118030 nociones-de-logica14118030 nociones-de-logica
14118030 nociones-de-logica
Mildred Palacios
 
Proposiciones SAIA, UFT
Proposiciones SAIA, UFTProposiciones SAIA, UFT
Proposiciones SAIA, UFT
Frank Perez
 
FMMA010_apunte_s7.pdf
FMMA010_apunte_s7.pdfFMMA010_apunte_s7.pdf
FMMA010_apunte_s7.pdf
PaulinaCornejoMeza
 
Calculo proposicional (tarea 1)
Calculo proposicional (tarea 1)Calculo proposicional (tarea 1)
Calculo proposicional (tarea 1)
natali1145ca
 
Funciones Veritativas
Funciones VeritativasFunciones Veritativas
Funciones Veritativas
rafael felix
 
unidad 1 estructuras discretas
unidad 1 estructuras discretas unidad 1 estructuras discretas
unidad 1 estructuras discretas
Roinner
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
Ger Castillo
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
Ger Castillo
 
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
HUAHUASONCO Dionicio
 
La lógica matemática
La lógica matemáticaLa lógica matemática
La lógica matemática
Graciela Slekis Riffel
 
Trabajo colaborativo dos 168
Trabajo colaborativo dos 168Trabajo colaborativo dos 168
Trabajo colaborativo dos 168
Erica Avila Caicedo
 
Trabajo colaborativo dos 168
Trabajo colaborativo dos 168Trabajo colaborativo dos 168
Trabajo colaborativo dos 168
Erica Avila Caicedo
 
Calculo proposicional. geovanny_merlo
Calculo proposicional. geovanny_merloCalculo proposicional. geovanny_merlo
Calculo proposicional. geovanny_merlo
geovannyboss_1
 
Estructuras discretas i
Estructuras discretas iEstructuras discretas i
Estructuras discretas i
Claurimar
 
1.clase introduccion-logica
1.clase introduccion-logica1.clase introduccion-logica
1.clase introduccion-logica
lupitamartel
 
LóGica MatemáTica
LóGica MatemáTicaLóGica MatemáTica
LóGica MatemáTica
geartu
 
36. logica matematica
36. logica matematica36. logica matematica
36. logica matematica
Opinion Ciudadana
 

Similar a Capitulo iii valores de verdad y lógica (20)

Trabajo colaborativo-2-grupo-168
Trabajo colaborativo-2-grupo-168Trabajo colaborativo-2-grupo-168
Trabajo colaborativo-2-grupo-168
 
Trabajo colaborativo-dos-grupo-203
Trabajo colaborativo-dos-grupo-203Trabajo colaborativo-dos-grupo-203
Trabajo colaborativo-dos-grupo-203
 
CALCULO PROPOSICIONAL
CALCULO PROPOSICIONALCALCULO PROPOSICIONAL
CALCULO PROPOSICIONAL
 
14118030 nociones-de-logica
14118030 nociones-de-logica14118030 nociones-de-logica
14118030 nociones-de-logica
 
Proposiciones SAIA, UFT
Proposiciones SAIA, UFTProposiciones SAIA, UFT
Proposiciones SAIA, UFT
 
FMMA010_apunte_s7.pdf
FMMA010_apunte_s7.pdfFMMA010_apunte_s7.pdf
FMMA010_apunte_s7.pdf
 
Calculo proposicional (tarea 1)
Calculo proposicional (tarea 1)Calculo proposicional (tarea 1)
Calculo proposicional (tarea 1)
 
Funciones Veritativas
Funciones VeritativasFunciones Veritativas
Funciones Veritativas
 
unidad 1 estructuras discretas
unidad 1 estructuras discretas unidad 1 estructuras discretas
unidad 1 estructuras discretas
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
 
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
01-DESCARGAR-LÓGICA-MATEMÁTICA-QUINTO-DE-SECUNDARIA.doc
 
La lógica matemática
La lógica matemáticaLa lógica matemática
La lógica matemática
 
Trabajo colaborativo dos 168
Trabajo colaborativo dos 168Trabajo colaborativo dos 168
Trabajo colaborativo dos 168
 
Trabajo colaborativo dos 168
Trabajo colaborativo dos 168Trabajo colaborativo dos 168
Trabajo colaborativo dos 168
 
Calculo proposicional. geovanny_merlo
Calculo proposicional. geovanny_merloCalculo proposicional. geovanny_merlo
Calculo proposicional. geovanny_merlo
 
Estructuras discretas i
Estructuras discretas iEstructuras discretas i
Estructuras discretas i
 
1.clase introduccion-logica
1.clase introduccion-logica1.clase introduccion-logica
1.clase introduccion-logica
 
LóGica MatemáTica
LóGica MatemáTicaLóGica MatemáTica
LóGica MatemáTica
 
36. logica matematica
36. logica matematica36. logica matematica
36. logica matematica
 

Más de Ciuad de Asis

Evaluacion dia de la familia
Evaluacion dia de la familiaEvaluacion dia de la familia
Evaluacion dia de la familia
Ciuad de Asis
 
Rendicion de cuentas 2018-2
Rendicion de cuentas 2018-2Rendicion de cuentas 2018-2
Rendicion de cuentas 2018-2
Ciuad de Asis
 
Uniforme IECA
Uniforme IECAUniforme IECA
Uniforme IECA
Ciuad de Asis
 
Rendicion de cuentas ciudad de asis 2017
Rendicion de cuentas ciudad de asis 2017Rendicion de cuentas ciudad de asis 2017
Rendicion de cuentas ciudad de asis 2017
Ciuad de Asis
 
Rendicion de cuentas año 2016
Rendicion de cuentas año 2016Rendicion de cuentas año 2016
Rendicion de cuentas año 2016
Ciuad de Asis
 
Lista de participantes
Lista de participantesLista de participantes
Lista de participantes
Ciuad de Asis
 
Rendición de cuentas Ciudad de Asís 2016
Rendición de cuentas Ciudad de Asís 2016Rendición de cuentas Ciudad de Asís 2016
Rendición de cuentas Ciudad de Asís 2016
Ciuad de Asis
 
Algebrabooleana
AlgebrabooleanaAlgebrabooleana
Algebrabooleana
Ciuad de Asis
 
Circuitos logicos
Circuitos logicosCircuitos logicos
Circuitos logicos
Ciuad de Asis
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
Ciuad de Asis
 
Leyes de la lógica
Leyes de la lógicaLeyes de la lógica
Leyes de la lógica
Ciuad de Asis
 
Gilberto cortez ospina antivirus act 3.1
Gilberto cortez ospina antivirus act 3.1Gilberto cortez ospina antivirus act 3.1
Gilberto cortez ospina antivirus act 3.1
Ciuad de Asis
 
Capitulo iii valores de verdad y lógica
Capitulo iii valores de verdad y lógicaCapitulo iii valores de verdad y lógica
Capitulo iii valores de verdad y lógica
Ciuad de Asis
 
Simbolizacion de proposiciones
Simbolizacion de proposicionesSimbolizacion de proposiciones
Simbolizacion de proposiciones
Ciuad de Asis
 
Propositos de la logica
Propositos de la logicaPropositos de la logica
Propositos de la logica
Ciuad de Asis
 
Tipos de logica
Tipos de logicaTipos de logica
Tipos de logica
Ciuad de Asis
 
Las tic
Las ticLas tic
Las tic
Ciuad de Asis
 
6. programa calidad de educacion preescolar pai
6. programa calidad de educacion preescolar pai6. programa calidad de educacion preescolar pai
6. programa calidad de educacion preescolar pai
Ciuad de Asis
 
5. ejemplo dba
5. ejemplo dba5. ejemplo dba
5. ejemplo dba
Ciuad de Asis
 
4. presentación sentidos y retos de la transversalidad
4. presentación sentidos y retos de la transversalidad4. presentación sentidos y retos de la transversalidad
4. presentación sentidos y retos de la transversalidad
Ciuad de Asis
 

Más de Ciuad de Asis (20)

Evaluacion dia de la familia
Evaluacion dia de la familiaEvaluacion dia de la familia
Evaluacion dia de la familia
 
Rendicion de cuentas 2018-2
Rendicion de cuentas 2018-2Rendicion de cuentas 2018-2
Rendicion de cuentas 2018-2
 
Uniforme IECA
Uniforme IECAUniforme IECA
Uniforme IECA
 
Rendicion de cuentas ciudad de asis 2017
Rendicion de cuentas ciudad de asis 2017Rendicion de cuentas ciudad de asis 2017
Rendicion de cuentas ciudad de asis 2017
 
Rendicion de cuentas año 2016
Rendicion de cuentas año 2016Rendicion de cuentas año 2016
Rendicion de cuentas año 2016
 
Lista de participantes
Lista de participantesLista de participantes
Lista de participantes
 
Rendición de cuentas Ciudad de Asís 2016
Rendición de cuentas Ciudad de Asís 2016Rendición de cuentas Ciudad de Asís 2016
Rendición de cuentas Ciudad de Asís 2016
 
Algebrabooleana
AlgebrabooleanaAlgebrabooleana
Algebrabooleana
 
Circuitos logicos
Circuitos logicosCircuitos logicos
Circuitos logicos
 
Cuantificadores
CuantificadoresCuantificadores
Cuantificadores
 
Leyes de la lógica
Leyes de la lógicaLeyes de la lógica
Leyes de la lógica
 
Gilberto cortez ospina antivirus act 3.1
Gilberto cortez ospina antivirus act 3.1Gilberto cortez ospina antivirus act 3.1
Gilberto cortez ospina antivirus act 3.1
 
Capitulo iii valores de verdad y lógica
Capitulo iii valores de verdad y lógicaCapitulo iii valores de verdad y lógica
Capitulo iii valores de verdad y lógica
 
Simbolizacion de proposiciones
Simbolizacion de proposicionesSimbolizacion de proposiciones
Simbolizacion de proposiciones
 
Propositos de la logica
Propositos de la logicaPropositos de la logica
Propositos de la logica
 
Tipos de logica
Tipos de logicaTipos de logica
Tipos de logica
 
Las tic
Las ticLas tic
Las tic
 
6. programa calidad de educacion preescolar pai
6. programa calidad de educacion preescolar pai6. programa calidad de educacion preescolar pai
6. programa calidad de educacion preescolar pai
 
5. ejemplo dba
5. ejemplo dba5. ejemplo dba
5. ejemplo dba
 
4. presentación sentidos y retos de la transversalidad
4. presentación sentidos y retos de la transversalidad4. presentación sentidos y retos de la transversalidad
4. presentación sentidos y retos de la transversalidad
 

Último

Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
https://gramadal.wordpress.com/
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
EleNoguera
 
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptxMapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
ElizabethLpez634570
 
preguntas de historia universal. guia comipems
preguntas de historia universal. guia comipemspreguntas de historia universal. guia comipems
preguntas de historia universal. guia comipems
nahomigonzalez66
 
Ejercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docxEjercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docx
sebastianjacome1808
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
PaolaAlejandraCarmon1
 
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDATRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
ARIANAANABELVINUEZAZ
 
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍACINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
Fernández Gorka
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
JimmyDeveloperWebAnd
 
Programación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP AlfaresProgramación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP Alfares
Alfaresbilingual
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
https://gramadal.wordpress.com/
 
Jesús calma la tempestad el mar de en.docx
Jesús calma la tempestad el mar de en.docxJesús calma la tempestad el mar de en.docx
Jesús calma la tempestad el mar de en.docx
JRAA3
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
EfranMartnez8
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
christianMuoz756105
 
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Shirley Vásquez Esparza
 
PPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierraPPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierra
https://gramadal.wordpress.com/
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
eleandroth
 
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
carla526481
 
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACIONANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
carla466417
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
JorgeVillota6
 

Último (20)

Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
 
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptxMapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
Mapa-conceptual-de-la-Evolucion-del-Hombre-3.pptx
 
preguntas de historia universal. guia comipems
preguntas de historia universal. guia comipemspreguntas de historia universal. guia comipems
preguntas de historia universal. guia comipems
 
Ejercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docxEjercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docx
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
 
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDATRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
 
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍACINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
 
Programación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP AlfaresProgramación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP Alfares
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
 
Jesús calma la tempestad el mar de en.docx
Jesús calma la tempestad el mar de en.docxJesús calma la tempestad el mar de en.docx
Jesús calma la tempestad el mar de en.docx
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
 
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
 
PPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierraPPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierra
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
 
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
 
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACIONANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
ANALISIS CRITICO DEL PENSAMIENTO COLONIAL Y DESCOLONIZACION
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
 

Capitulo iii valores de verdad y lógica

  • 1. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co CAPITULO III VALORES DE VERDAD Y LÓGICA 1. Definición de tabla de verdad 2. Construcción de tablas de verdad 3. Doble negación 4. Proposiciones condicionales 5. Reciproca, inversas, contrarecíproca 6. Bicondicional VALORES DE VERDAD Y LÓGICA El Valor de Verdad (VV) de una proposición dada, o bien es verdadero si la misma es verdadera, o bien es falsa en caso contrario. Notación: simbolizamos con T (true) y con F(false) en el segundo caso. Un motivo de la primera elección es para aminorar confusiones con el s´ımbolo ∨. Falso y verdadero con 0 y 1, respectivamente, técnicas digitales Definición de tabla de verdad La Tabla de Verdad muestra en forma sistemática los valores de verdad de una proposición compuesta en función de los todas las combinaciones posibles de los valores de verdad de las proposiciones que la componen. ¿Para qué sirven las tablas de verdad?. Permiten analizar cualquier fórmula y hallar sus valores de verdad. Nos dice si una fórmula es satisfacible. Si un razonamiento es válido o no. Constituye un procedimiento de decisión que en un número finito de pasos nos dice si una fórmula es una tautología o no. Ejemplo Construcción de tablas de verdad Toda tabla de verdad consta de dos tipos de columnas: las columnas de la izquierda (llamadas de referencia) en donde se pondrán todas las posibilidades de verdad y falsedad de las letras o variables proposicionales, y las columnas de la derecha que contienen los valores de verdad de las funciones presentes en la fórmula. Para hallar la tabla de verdad de una fórmula cualquiera de la lógica proposicional habrá de seguirse los siguientes pasos. Construcción de las columnas de los argumentos.En las columnas de los argumentos hay que consignar l os posibles valores de verdad de las letras o variables presentes en una fórmula dada. El número de combinaciones posibles es 2 n , siendo n = número de variables o el grado de la fórmula, y 2= a los valores de verdad que podemos asignar: verdadero (1), fals o (0). Las fórmulas según el número de variables se clasifican en: Fórmulas de orden uno, si n =1. Ejemplo: la fórmula (p ^ ¬ p), o la fórmula (¬ p ^ ¬ p) Fórmulas de orden dos, si n =2 Ejemplo: la fórmula (p v ¬ q), o la fórmula (¬ p ^ ¬ q) --> q Fórmulas de orden tres, si n =3 Ejemplo: la fórmula (¬ p ^ ¬ q)  s, o la fórmula (p ^ ¬ p) ^ (s v ¬ q) Fórmulas de orden n, si n = n Se procede asignando la mitad de los valores verdaderos y la otra mitad falsos para la primera variable. Para la segunda, l a
  • 2. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co mitad de los valores verdaderos, han de ser verdaderos y la otra mitad falsos. Así sucesivamente, de tal manera que a la últ ima variable se le asignen siempre 1 0 1 0. Construcción de las columnas de los juntores. Es necesario proceder en primer lugar registrando la tabla de verdad de los juntores de menor dominancia hasta llegar a los d e mayor dominancia. Para ello es suficiente con proceder de dentro de la fórmula afuera. Observar el siguiente ejemplo: (p ^ q) --> ¬ (¬ p v ¬ q) P q ¬ p ¬ q (p ^ q) (¬ p v ¬ q ) ¬ (¬ p v ¬ q ) (p ^ q) --> ¬ (¬ p v ¬ q ) 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 NIVEL 1 NIVEL 2 NIVEL 3 NIVEL 4 NIVEL 5 NIVEL 6 Condicionante La condicional es la proposición compuesta que resulta de conectar dos proposiciones, p y q, mediante el conectivo . Esta proposición compuesta se denota por y se lee p implica q. En esta proposición compuesta, la proposición simple p se llama antecedente, mientras que la proposición simple q se llama consecuente. La tabla de verdad para el conectivo está dada por p q V V V V F F F V V F F V Se puede ver que una proposición compuesta tiene valor de verdad falso solamente cuando el antecedente es verdadero y el consecuente es falso. En cualquier otro caso, el valor de verdad de la proposición compuesta es verdadero. Proposiciones condicionales Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares, condicionadas una de la otra La cual se indica de la siguiente manera: pq y se lee Si p entonces q A la proposición “p” le llamaremos antecedente y a la proposición “q” le llamaremos consecuente, en algunos otros contextos se le llama “Si condicional” en el cual el antecedente es la condición que debe cumplirse, y el consecuente es la consecuencia lógica que se deriva de la condición . Ejemplos Es herbívoro si se alimenta de plantas El número 4 es por puesto que es divisible entre 2 Se llama isósceles siempre que el triángulo tenga dos lados iguales Cuando venga Raúl jugaremos ajedrez De salir el sol iremos a la playa La física relativista fue posible porque existió la mecánica clásica
  • 3. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co La implicación lógica tiene sus orígenes en la aplicación de la inteligencia social ante situaciones cotidianas, en nuestra capacidad de comportarnos de acuerdo a normas y reglas, estas reglas son del tipo: Bajo tal condición, debe ocurrir tal otra cosa Si se cumplió tal requisito, entonces es aceptado que suceda tal cosa Algunos ejemplos: Si pague por el pan entonces lo puedo llevar a casa Si tengo mi entrada entonces puedo entrar al cine Si corto el pasto entonces puedo ir a la fiesta esta noche La regla deja de respetarse, cuando habiendo cumplido una condición ("me saqué un 10 en mi examen semanal") se nos niega el beneficio ("no puedo ir a la fiesta"), es decir, cuando no se obtuvo el resultado deseado. Si << condición >> Entonces << beneficio >> Por tal motivo podemos asegurar que para que una implicación sea lógicamente correcta no es necesario que haya una relación entre el antecedente y el consecuente, es decir que la verdad entre una proposición condicional es independiente de las relaciones que puedan existir o no entre los significados del antecedente y el consecuente, por ejemplo: “Si la tierra gira alrededor del sol entonces Puerto Asís es un municipio del Putumayo”. Esta proposición es verdadera a pesar de que no existe relación entre los significados de sus proposiciones componentes. Ejemplos ilustrativos de los cuales, podrían ser los siguientes: · Si la Luna es redonda entonces Puerto Asís es un municipio del Putumayo. · Si la nieve es blanca entonces Bruto mató a César. · Si la luna es cuadrada entonces Puerto Asís es un municipio. Veámoslo mediante un ejemplo: Si nos fijamos bien, veremos que a Juan no le están dando a elegir como en los ejemplos anteriores, esta vez le están poniendo una condición que se reflejará en una consecuencia, si lo ejemplificamos en dos proposiciones atómicas quedaría de la siguiente manera: p: Juan saca 10 en su examen. q: Juan va al antro el fin de semana. p → q que se lee “Si Juan saca 10 entonces Juan va al antro el fin de semana”. Reflejándolo en una tabla de verdad nos queda: p q p → q v v v Juan saca 10 en su examen entonces va al antro, se cumple la consecuencia lógica. v f f Juan saca 10 en su examen, pero no va al antro, NO se cumple la consecuencia lógica. f v v Juan no saca 10 en su examen, pero va al antro, se cumple la consecuencia lógica. f f v Juan no saca 10 en su examen y no va al antro, se cumple la consecuencia lógica.
  • 4. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co Bicondicionante La bicondicional es la proposición compuesta que resulta de conectar dos proposiciones, p y q, mediante el conectivo . Esta proposición compuesta se denota por y se lee p si y solo si q. La tabla de verdad para el conectivo está dada por p q V V V V F F F V F F F V Se puede ver que la proposición compuesta tiene valor de verdad verdadero siempre que las proposiciones simples tienen el mismo valor de verdad. Es cualquier otro caso, la proposición compuesta tiene valor de verdad falso. Profundicemos lo que es una Proposición Bicondicional “Una proposición bicondicional, es aquella que está formada por dos proposiciones atómicas o moleculares, condicionadas una de la otra, con la característica de que la condición debe cumplirse forzosamente”. Se indica la proposición bicondicional de la siguiente manera: p ↔ q Se lee “p si y solo si q”. Esto significa que “p” es verdadera si y solo si “q“ es también verdadera, o bien, “p” es falsa si y solo si “q” también lo es. También podemos encontrarlo en sus diferentes connotaciones: “Cuando y solo cuando…”, “si… entonces y solo entonces”, “si y solo si…”. Ejemplos: · Es fundamentalista si y solo si es Talibán. · Habrá cosecha cuando y solo cuando llueva. · Si apruebo el examen de admisión, entonces y solo entonces ingresará a la U Las proposiciones bicondicionales se caracterizan porque establecen dos condiciones, pero de sentido inverso, por ejemplo: · Habrá cosecha si y solo si las lluvias son suficientes. · Si las lluvias son suficientes entonces habrá cosecha. El antecedente y el consecuente son necesarios y suficientes uno de otro, pueden leerse en sentido inverso y la misma idea de la proposición prevalece. Analicémoslo mediante un ejemplo: Ante esta situación Juan tiene una condición que forzosamente debe cumplir para poder obtener el beneficio de la consecuencia dependiente, si lo ejemplificamos en dos proposiciones atómicas quedaría de la siguiente manera: p: Juan val al antro el fin de semana. q: Juan saca 10 en su examen semanal. p ↔ q que se lee “Juan va la antro el fin de semana si y solo si Juan saca 10 en su examen semanal”.
  • 5. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co Reflejándolo en una tabla de verdad nos queda: p q p ↔ q V V V Juan va al antro, sacó 10 en su examen, se cumple la condición necesaria. V F F Juan va al antro, no sacó 10 en su examen, NO se cumple la condición necesaria. F V F Juan no va al antro, sacó 10 en su examen, NO se cumple la consecuencia dependiente. F F V Juan no va al antro, no sacó 10 en su examen, no se cumple ninguna EJERCICIOS ((p⇒q)⋀ p)⇒q p q p⇒q (p⇒q)⋀p ((p⇒q)⋀p)⇒q v v v f f v f f ((p⇒q)⋀ ¬p)⇒¬q P q ¬p ¬q p⇒q (p⇒q)⋀¬p ((p⇒q)⋀¬p)⇒¬q V v V f F v F f [(p⇒q)⇒p]⇒p
  • 6. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co p q p⇒q (p⇒q)⇒p [(p⇒q)⇒p]⇒p v v v f f v f f (¬p⋀ ¬q)⇒(p⇔q) q ¬p ¬q (¬p⋀¬q) p⇔q (¬p⋀¬q)⇒(p⇔q) v v v f f v f f En los problemas siguientes se pide construir la tabla de verdad de cada una de las proposiciones compuestas. ¬(¬p → ¬q) ¬(p → q) ∨ (¬p ∧ ¬q) p → ¬q) ∨ (q → ¬r) Doble negación Demostraremos que las proposiciones p y la proposición ~(~p) son lógicamente equivalentes. Para lograrlo construiremos la tabla de verdad de la proposición p↔~ (~p) Cualquier proposición es equivalente a sí misma. La doble negación de una proposición es la misma proposición. Ejemplo 1: Consideremos la proposición simple:
  • 7. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co p: es de día, luego: ~p: es de noche ~ (~p): no es de noche Por lo tanto ~ (~p) = p Ejercicio A. p: "No es cierto que no haya vida en la luna" Puede que no haya vida en la luna Puede haber vida en la luna No hay vida en la luna Hay algo de vida en la luna *Hay vida en la luna B. p: "No es verdad que la catedral de León no sea gótica. Quizá la catedral de León no es gótica La catedral de León quizá no sea gótica *La catedral de León es gótica La catedral de León no es gótica La catedral de León es algo gótica C. p: "No es cierto que no tenga discos nuevos." No tengo discos nuevos *Tengo discos nuevos Todos mis discos son viejos Tengo algunos discos viejos Tengo algunos discos nuevos Recíproca, inversas, contrarrecíproca Dadas las proposiciones p: Es un animal mamífero q: Tiene pelo entonces: Implicación directa: Si es mamífero entonces tiene pelo Implicación contraria: Si no es mamífero entonces no tiene pelo Implicación recíproca: Si tiene pelo entonces es mamífero Implicación contra recíproca: Si no tiene pelo entonces no es mamífero Dada la proposición condicional p → q, su recıproca es la proposición, también condicional, q → p. Por ejemplo, la recıproca de “Si la salida no va a la pantalla, entonces los resultados se dirigen a la impresora” será “Si los resultados se dirigen a la impresora, entonces la salida no va a la pantalla”. Proposición Contrarrecíproca Dada la proposición condicional p → q, su contrarrecíproca es la proposición, también condicional, ¬q → ¬p. Por ejemplo, la contrarrecíproca de la proposición “Si María estudia mucho, entonces es buena estudiante” es “Si María no es buena estudiante, entonces no estudia mucho”. Ejemplo Escribir la recíproca y la contrarrecíproca de cada una de las afirmaciones siguientes: (a) Si llueve, no voy. (b) Me quedaré, solo si tú te vas. (c) Si tienes cien pesetas, entonces puedes comprar un helado. (d) No puedo completar la respuesta si no me ayudas.
  • 8. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co Solución Escribiremos la recíproca y la contrarrecíproca de varias formas. (a) Si llueve, no voy. Reciproca. − Si no voy, entonces llueve. − Llueve si no voy. − Una condición necesaria para no ir es que llueva. − Una condición suficiente para que llueva es no ir. Contrarecíproca. − Si voy, entonces no llueve. − Voy solo si no llueve. − Es necesario que no llueva, para que vaya. − Es suficiente que vaya para que no llueva. (b) Me quedaré sólo si te vas. Recíproca. − Si te vas, entonces me quedaré. − Me quedaré, si te vas. − Una condición necesaria para que te vayas, es quedarme. − Una condición suficiente para quedarme es que te vayas. Contra recíproca. − Si no te vas, entonces no me quedaré. − No me quedaré si no te vas. − Es suficiente que no te vayas, para no quedarme. (c) No puedo completar la respuesta si no me ayudas. Recıproca. − Si no puedo completar la respuesta, entonces no me ayudas. contrarecíproca. − Si puedo completar la respuesta, entonces me ayudas. − Puedo completar la respuesta solo si me ayudas. − Es necesario que ayudes para poder completar la respuesta.
  • 9. LOGICA MATEMATICA Ingeniería de Sistemas Nit. 800.247.940-1 Sede Mocoa: “Aire Libre” Barrio Luis Carlos Galán Teléfonos: 4200922 - 4201206 - 4296105 Subsede Sibundoy: Vía al Canal C – Granja Versalles Teléfono: 310 243 4689 Email: itputumayo@itp.edu.co www.itp.edu.co Recursos Construcción tablas de verdad https://www.youtube.com/watch?v=AKjWG2zoH4Q https://youtu.be/4K5rBPZ5A-g http://www.cimec.org.ar/twiki/pub/Cimec/TeoriaDeLaComputacion/tc-logica.pdf Generador de tablas de verdad http://escuela2punto0.educarex.es/Humanidades/Etica_Filosofia_Ciudadania/Aprende_logica/logica/03tablasv dad/generadorfrset.html Construcción de tablas de verdad http://ficus.pntic.mec.es/rdis0006/lecciones/logica_proposicional/lecciones/las%20tablas%20de%20verdad.ht m Simulador de tablas de verdad http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/ Video del simulador de tablas de verdad https://www.youtube.com/watch?v=ZKg7wt9EGJI Video Julio el profe https://youtu.be/pwJK-4Op438 Doble negación - ejercicios http://escuela2punto0.educarex.es/Humanidades/Etica_Filosofia_Ciudadania/Aprende_logica/logica/03 tablasvdad/021dobleneg.html Libro lógica de proposiciones http://www2.uca.es/matematicas/Docencia/ESI/1711051/Apuntes/Leccion1.pdf