SlideShare una empresa de Scribd logo
Diseño de Elementos de
Maquinas
Presenta: Dr. Ing. Ángel Francisco Villalpando Reyna
Ingeniería Mecatronica
Tema 1. Diseño de Flechas o Ejes (Selección de Materiales)
Introducción
Una flecha es un elemento rotatorio, por lo general, de sección transversal circular,
que se emplea para transmitir potencia o movimiento. Constituye el eje de rotación
u oscilación de elementos como engranes, poleas, volantes de inercia, manivelas,
ruedas dentadas o catarinas y miembros similares y, además, controla la geometría
de su movimiento. Un eje es un elemento no giratorio que no transmite par de
torsión y que se utiliza para soportar ruedas rotatorias, poleas y elementos
parecidos.
La ubicuidad de las flechas en muchas aplicaciones de diseño de máquinas,
es conveniente realizar un estudio más a fondo de la flecha y su diseño. El
diseño de una flecha completa tiene mucha interdependencia con el diseño
de los componentes.
El diseño de la propia máquina dictará que ciertos engranes, poleas,
cojinetes y otros elementos se tendrán que analizar, al menos parcialmente,
y determinar en forma tentativa su tamaño y espaciamiento.
En este capítulo se estudiarán los detalles referentes a la flecha, incluyendo
los siguientes temas:
• Selección del material
• Configuración geométrica
• Esfuerzo y resistencia
Resistencia estática
Resistencia por fatiga
• Deflexión y rigidez
Deflexión por flexión
Deflexión por torsión
Pendiente en los cojinetes y elementos soportados por el eje
Deflexión por cortante debida a cargas transversales sobre ejes cortos
• Vibración debida a la frecuencia natural
Cuando se deciden los diversos aspectos de un enfoque de diseño, es necesario tomar en cuenta
que un análisis de esfuerzos en un punto específico de un eje se hace sólo mediante la geometría
del eje en la proximidad de ese punto. De esta forma, no se necesita conocer la geometría de todo
el eje. En diseño, por lo general, se localizan las áreas críticas, se dimensionan para cumplir los
requisitos de resistencia y después se dimensiona el resto del eje para satisfacer las necesidades de
los elementos soportados por éste.
De esta manera, la deflexión es una función de la geometría de todas partes, mientras que el
esfuerzo en una sección de interés es una función de la geometría local.
Materiales para fabricar ejes
La resistencia necesaria para soportar esfuerzos de carga afecta la elección de los materiales y sus
tratamientos. Muchos ejes están hechos de acero de bajo carbono, acero estirado en frío o acero
laminado en caliente, como lo son los aceros AISI 1020-1050.
A menudo no está garantizado el incremento significativo de la resistencia proveniente del
tratamiento térmico ni el contenido de alta aleación. La falla por fatiga se reduce moderadamente
mediante el incremento de la resistencia, y después sólo a cierto nivel antes de que los efectos
adversos en el límite de resistencia a la fatiga y la sensibilidad a la muesca comience a contrarrestar
los beneficios de una resistencia mayor.
Una buena práctica consiste en iniciar con un acero de bajo o medio carbono de bajo costo, como
primer paso en los cálculos del diseño. Si las consideraciones de resistencia resultan dominar sobre
las de deflexión, entonces debe probarse un material con mayor resistencia
Materiales para fabricar ejes
La resistencia necesaria para soportar esfuerzos de carga afecta la elección de los materiales y sus
tratamientos. Muchos ejes están hechos de acero de bajo carbono, acero estirado en frío o acero
laminado en caliente, como lo son los aceros ANSI 1020-1050.
A menudo no está garantizado el incremento significativo de la resistencia proveniente del
tratamiento térmico ni el contenido de alta aleación. La falla por fatiga se reduce moderadamente
mediante el incremento de la resistencia, y después sólo a cierto nivel antes de que los efectos
adversos en el límite de resistencia a la fatiga y la sensibilidad a la muesca comience a contrarrestar
los beneficios de una resistencia mayor.
Una buena práctica consiste en iniciar con un acero de bajo o medio carbono de bajo costo, como
primer paso en los cálculos del diseño. Si las consideraciones de resistencia resultan dominar sobre
las de deflexión, entonces debe probarse un material con mayor resistencia.
El costo del material y su procesamiento debe ponderarse en relación con la necesidad de contar
con diámetros de eje más pequeños. Cuando están garantizadas, las aleaciones de acero típicas para
tratamiento térmico incluyen AISI 1340-50, 3140-50, 4140, 4340, 5140 y 8650.
Por lo general, los ejes no requieren endurecimiento superficial a menos que sirvan como
un recubrimiento real en una superficie de contacto. Las elecciones típicas del material para el
endurecimiento superficial incluyen los grados de carburización AISI 1020, 4320, 4820 y 8620.
AISI – American Iron and Steel Institute
Por lo general, el acero estirado en frío se usa para diámetros menores de 3 pulgadas. El
diámetro nominal de la barra puede dejarse sin maquinar en áreas que no requieren el ajuste de los
componentes. El acero laminado en caliente debe maquinarse por completo. En el caso de ejes
grandes que requieren la remoción de mucho material, los esfuerzos residuales pueden tender a
causar pandeo.
Cuando se debe seleccionar el material, la cantidad que se producirá es un factor sobresaliente. Para
pequeñas producciones, el torneado es el proceso de formado más común. Un punto de vista
económico puede requerir la eliminación de una cantidad mínima de material. La alta producción
puede permitir un método de conformado conservador de volumen (formado en caliente o en frío,
fundición) y un mínimo de material en el eje puede convertirse en una meta de diseño.
Configuración del eje
La configuración general de un eje para acomodar los elementos que lo conforman, por
ejemplo, engranes, cojinetes y poleas, debe especificarse en los primeros pasos del proceso de
diseño para realizar un análisis de fuerzas de cuerpo libre y obtener diagramas de momento
cortante.
En la figura 7-1 se muestra un ejemplo de un eje escalonado que soporta el engrane de un reductor
de velocidad de corona sinfín. Por lo general, la geometría de un eje es la de un cilindro escalonado.
El uso de hombros o resaltos constituye un medio excelente para localizar en forma axial los
elementos del eje y para ejecutar cualquier carga de empuje necesaria.
Si no se cuenta con un diseño para emplearlo como punto de partida, entonces la determinación de
la geometría del eje puede tener muchas soluciones. El problema se ilustra mediante los dos
ejemplos de la figura 7-2. En la figura 7-2a) se muestra un contraeje con engranes que debe ser
soportado por dos cojinetes. En la figura 7-2c) se debe configurar una flecha de ventilador. Las
soluciones que se muestran en las figuras 7-2b) y 7-2d) no son necesariamente las mejores, pero
ilustran cómo se fijan los dispositivos montados en la flecha y su ubicación en la dirección axial y la
forma en que se toma en cuenta la transferencia de par de torsión de un elemento a otro.
Configuración axial de componentes
A menudo, el posicionamiento axial de los componentes está determinado por la
configuración de la carcasa y otros componentes de engranaje. En general, resulta mejor
apoyar los componentes que soportan carga entre cojinetes, como en la figura 7-2a), en
lugar de colocar los cojinetes en voladizo como en la figura 7-2c). Con frecuencia, las
poleas y ruedas dentadas necesitan montarse por fuera para facilitar la instalación de la
banda o cadena. La longitud del voladizo debe mantenerse corta para minimizar la
deflexión.
En la mayoría de los casos sólo deberían usarse dos cojinetes. Para ejes extremadamente
largos que soportan varios componentes de carga, puede ser necesario proporcionar más
de dos apoyos de cojinete.
Los ejes deben mantenerse cortos para minimizar los momentos flexionantes y las de
flexiones. Es deseable cierto espacio axial entre los componentes para permitir el flujo de
lubricante y proporcionar espacio de acceso para el desensamble de componentes con un
jalador.
Los componentes de carga deben colocarse cerca de los cojinetes, de nuevo para
minimizar el momento flexionarte en las ubicaciones que probablemente tendrán
concentraciones de esfuerzo, y para minimizar la deflexión en los componentes sometidos
a carga.
Los componentes deben localizarse de manera exacta sobre el eje para alinearse con los
otros componentes correspondientes, y debe tenerse la precaución de sostener los
componentes en posición. El medio principal para ubicar los componentes es posicionarlos
contra un hombro del eje. Un hombro también proporciona un soporte sólido para
minimizar la deflexión y vibración del componente.
Soporte de cargas axiales
En los casos donde las cargas axiales no son triviales, es necesario proporcionar un medio
para transferir las cargas axiales al eje, y después, mediante un cojinete, al soporte fijo. Esto
será particularmente necesario con engranes helicoidales o cónicos, o cojinetes ahusados
de rodillo, puesto que cada uno de ellos produce componentes de fuerza axial. Con
frecuencia, el mismo medio por el que se proporciona localización axial, por ejemplo,
hombros, anillos de retención y pasadores, también se usará para transmitir la carga axial
en el eje.
Por lo general, es mejor tener sólo un cojinete para soportar la carga axial, lo que permite
tolerancias más grandes en las dimensiones de la longitud del eje, y evita que se apriete si
el eje se expande debido a los cambios de temperatura. Esto es particularmente
importante en el caso de ejes largos. En las figuras 7-3 y 7-4 se presentan ejemplos de ejes
con sólo un cojinete que soporta la carga axial contra un hombro, mientras que el otro
cojinete tiene simplemente un ajuste a presión sobre el eje sin hombro.
Transmisión de par de torsión
Muchas flechas sirven para transmitir un par de torsión de un engrane o polea de entrada, a
través del eje, a un engrane o polea de salida. Por supuesto, el eje debe tener el tamaño
adecuado para soportar el esfuerzo y la deflexión por torsión. También es necesario
proporcionar un medio para transmitir el par de torsión entre el eje y los engranes. Los
elementos comunes para transmitir el par de torsión son:
• Cuñas
• Ejes estriados
• Tornillos de fijación
• Pasadores
• Ajustes a presión o por contracción
• Ajustes ahusados
Además de transmitir el par de torsión, muchos de estos dispositivos están diseñados para
fallar si el par de torsión excede ciertos límites de operación aceptables, con lo que se
protege a los componentes más caros.
Ensamble y desensamble
Es necesario tener en consideración el método de ensamblado de los componentes en el eje
y el ensamblado del eje en el marco.
Por lo general, esto requiere el diámetro más grande en el centro del eje y diámetros
progresivamente más pequeños hacia los extremos, para permitir que los componentes se
deslicen hacia las puntas.
Si se necesita un hombro en ambos lados de un componente, debe crearse uno de ellos
mediante algo como un anillo de retención o mediante un manguito entre los dos
componentes. La misma caja de engranes necesitará medios para posicionar físicamente el
eje en sus cojinetes y éstos en el marco. Esta tarea se logra, de manera típica,
proporcionando acceso a través del alojamiento al cojinete que se encuentra en un extremo
del eje. En las figuras 7-5 a 7-8 se ilustran algunos ejemplos.
Diseño de ejes para el esfuerzo
Ubicaciones críticas
No es necesario evaluar los esfuerzos en todos los puntos de un eje; es suficiente hacerlo en
unas cuantas ubicaciones potencialmente críticas. Por lo general, estas ubicaciones se
localizan en la superficie exterior, en ubicaciones axiales donde el momento flexionante es
grande, donde el par de torsión está presente y donde existen concentraciones de esfuerzo.
Por comparación directa de diferentes puntos a lo largo del eje, pueden identificarse unas
cuantas ubicaciones críticas sobre las cuales puede basarse el diseño. También resulta útil
una evaluación de situaciones de esfuerzo típicas.
La mayoría de los ejes transmiten el par de torsión sólo a través de una parte de ellos. Lo
común es que el par de torsión entre al eje por un engrane y salga del eje por otro engrane.
Un diagrama de cuerpo libre del eje permite determinar el par de torsión en cualquier
sección.

Más contenido relacionado

La actualidad más candente

Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)
carloslosa
 
teoria de fallas - carga estatica
  teoria de fallas - carga estatica  teoria de fallas - carga estatica
teoria de fallas - carga estatica
Alan H
 
Diseño de ejes
Diseño de ejesDiseño de ejes
Diseño de ejes
Aly Olvera
 
problemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidalesproblemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidales
Berthing Gutierrez Brenis
 
Ejercicios de ejes
Ejercicios de ejesEjercicios de ejes
Ejercicios de ejes
phuarac
 
Velocidades de Corte y RPM en el torno
Velocidades de Corte y RPM en el tornoVelocidades de Corte y RPM en el torno
Velocidades de Corte y RPM en el torno
Sergio Barrios
 
Informe de fundición de metales
Informe de fundición de metalesInforme de fundición de metales
Informe de fundición de metales
cruzbermudez
 
Fundamentos de corte
Fundamentos de corteFundamentos de corte
Fundamentos de corte
Karina Cieza Sanchez
 
Capítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabonesCapítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabones
Jorge Puga Martinez
 
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Angel Villalpando
 
Vibraciones unidad 1 b [sistema de resortes]
Vibraciones unidad 1 b [sistema de resortes]Vibraciones unidad 1 b [sistema de resortes]
Vibraciones unidad 1 b [sistema de resortes]
Angel Villalpando
 
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica. DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
DianaJulia10
 
Sistemas de 4 barras articuladas
Sistemas de 4 barras articuladasSistemas de 4 barras articuladas
Sistemas de 4 barras articuladas
JoseToro48
 
Eslabones : Definición y Clasificacion
Eslabones : Definición y ClasificacionEslabones : Definición y Clasificacion
Eslabones : Definición y Clasificacion
Fabian Andres Martinez Paredes
 
Analisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 bAnalisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 b
Angel Villalpando
 
Mecanismos levas.
Mecanismos levas.Mecanismos levas.
Mecanismos levas.
robin morales pacheco
 
solucionario diseño de elementos de maquinas robert mott 4ta edicion
solucionario diseño de elementos de maquinas robert mott 4ta edicionsolucionario diseño de elementos de maquinas robert mott 4ta edicion
solucionario diseño de elementos de maquinas robert mott 4ta edicion
Junior Aguilar Serna
 

La actualidad más candente (20)

Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)
 
teoria de fallas - carga estatica
  teoria de fallas - carga estatica  teoria de fallas - carga estatica
teoria de fallas - carga estatica
 
Diseño de ejes
Diseño de ejesDiseño de ejes
Diseño de ejes
 
problemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidalesproblemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidales
 
Ejercicios de ejes
Ejercicios de ejesEjercicios de ejes
Ejercicios de ejes
 
Velocidades de Corte y RPM en el torno
Velocidades de Corte y RPM en el tornoVelocidades de Corte y RPM en el torno
Velocidades de Corte y RPM en el torno
 
Maquinas --el-torno
Maquinas --el-tornoMaquinas --el-torno
Maquinas --el-torno
 
Informe de fundición de metales
Informe de fundición de metalesInforme de fundición de metales
Informe de fundición de metales
 
Fundamentos de corte
Fundamentos de corteFundamentos de corte
Fundamentos de corte
 
Capítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabonesCapítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabones
 
Ejes (1)
Ejes (1)Ejes (1)
Ejes (1)
 
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
 
Vibraciones unidad 1 b [sistema de resortes]
Vibraciones unidad 1 b [sistema de resortes]Vibraciones unidad 1 b [sistema de resortes]
Vibraciones unidad 1 b [sistema de resortes]
 
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica. DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
DISEÑO DE ELEMENTOS DE MAQUINAS Ingeniería Mecánica.
 
Sistemas de 4 barras articuladas
Sistemas de 4 barras articuladasSistemas de 4 barras articuladas
Sistemas de 4 barras articuladas
 
Eslabones : Definición y Clasificacion
Eslabones : Definición y ClasificacionEslabones : Definición y Clasificacion
Eslabones : Definición y Clasificacion
 
Analisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 bAnalisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 b
 
Mecanismos levas.
Mecanismos levas.Mecanismos levas.
Mecanismos levas.
 
Engranaje Helicoidal
Engranaje HelicoidalEngranaje Helicoidal
Engranaje Helicoidal
 
solucionario diseño de elementos de maquinas robert mott 4ta edicion
solucionario diseño de elementos de maquinas robert mott 4ta edicionsolucionario diseño de elementos de maquinas robert mott 4ta edicion
solucionario diseño de elementos de maquinas robert mott 4ta edicion
 

Destacado

Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
Angel Villalpando
 
BI 2012 - Redes Sociales y Business Intelligence
BI 2012 - Redes Sociales y Business IntelligenceBI 2012 - Redes Sociales y Business Intelligence
BI 2012 - Redes Sociales y Business Intelligence
Mario Guedes de Rezende
 
Innovacion de producto
Innovacion de productoInnovacion de producto
Innovacion de producto
Diana Milena Riaño Cuevas
 
Sempertex
SempertexSempertex
Sempertex
Alejandro Maya
 
Innovación de un producto: Fresas con Chocolate
Innovación de un producto: Fresas con ChocolateInnovación de un producto: Fresas con Chocolate
Innovación de un producto: Fresas con Chocolate
UNAH-CURLA
 
Innovación y desarrollo de producto v2.1
Innovación y desarrollo de producto v2.1Innovación y desarrollo de producto v2.1
Innovación y desarrollo de producto v2.1Carlos H. Martín-Moré
 
Presentacion producto innovador
Presentacion producto innovadorPresentacion producto innovador
Presentacion producto innovadortipsenmercadeo
 
diseño del producto y proceso
diseño del producto y procesodiseño del producto y proceso
diseño del producto y proceso
arturoallende
 

Destacado (8)

Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
Diseño de flechas o ejes (calculo del factor de seguridad empleado para flechas)
 
BI 2012 - Redes Sociales y Business Intelligence
BI 2012 - Redes Sociales y Business IntelligenceBI 2012 - Redes Sociales y Business Intelligence
BI 2012 - Redes Sociales y Business Intelligence
 
Innovacion de producto
Innovacion de productoInnovacion de producto
Innovacion de producto
 
Sempertex
SempertexSempertex
Sempertex
 
Innovación de un producto: Fresas con Chocolate
Innovación de un producto: Fresas con ChocolateInnovación de un producto: Fresas con Chocolate
Innovación de un producto: Fresas con Chocolate
 
Innovación y desarrollo de producto v2.1
Innovación y desarrollo de producto v2.1Innovación y desarrollo de producto v2.1
Innovación y desarrollo de producto v2.1
 
Presentacion producto innovador
Presentacion producto innovadorPresentacion producto innovador
Presentacion producto innovador
 
diseño del producto y proceso
diseño del producto y procesodiseño del producto y proceso
diseño del producto y proceso
 

Similar a Diseño de flechas o ejes (selección de materiales)

Resortes Helicoidales
Resortes HelicoidalesResortes Helicoidales
Resortes Helicoidales
Donal Estrada
 
Resortes
ResortesResortes
Resortes
saidriana
 
Gianfranco abdul resortes
Gianfranco abdul resortesGianfranco abdul resortes
Gianfranco abdul resortes
Gian Abdul
 
RESORTES HELICOIDALES.docx
RESORTES HELICOIDALES.docxRESORTES HELICOIDALES.docx
RESORTES HELICOIDALES.docx
WILLIAMJAVIERLEONARD
 
Resortes helicoidales, planos y tornillos de potencia
Resortes helicoidales, planos y tornillos de potenciaResortes helicoidales, planos y tornillos de potencia
Resortes helicoidales, planos y tornillos de potencia
Camilo Perez
 
Eje elementos 2 informe
Eje elementos 2 informeEje elementos 2 informe
Eje elementos 2 informe
Juan Ramírez
 
Presentación de resorte diego abreu
Presentación de resorte diego abreu Presentación de resorte diego abreu
Presentación de resorte diego abreu
GABRIELATOLEDO44
 
manofactura
manofactura manofactura
manofactura
Oscar Miron Bello
 
Rodamientos cojinetes y engranajes
Rodamientos cojinetes y engranajesRodamientos cojinetes y engranajes
Rodamientos cojinetes y engranajes
google
 
Resortes 2.pptx
Resortes 2.pptxResortes 2.pptx
Resortes 2.pptx
MarioAsquith1
 
Arboles Ejes y Elementos Rodantes
Arboles Ejes y Elementos RodantesArboles Ejes y Elementos Rodantes
Arboles Ejes y Elementos Rodantes
IsabellaGraterol
 
PERFILES ESTRUCTURALES
PERFILES ESTRUCTURALESPERFILES ESTRUCTURALES
PERFILES ESTRUCTURALES
Jesus Miranda Villalobos
 
Definición de rodamientos e interpretacion de sus codigos
Definición de rodamientos e  interpretacion de sus codigosDefinición de rodamientos e  interpretacion de sus codigos
Definición de rodamientos e interpretacion de sus codigosMarvin Daniel Arley Castro
 
Tipos de rodamientos e interpretacion de sus codigos
Tipos de rodamientos e  interpretacion de sus codigosTipos de rodamientos e  interpretacion de sus codigos
Tipos de rodamientos e interpretacion de sus codigosMarvin Daniel Arley Castro
 

Similar a Diseño de flechas o ejes (selección de materiales) (20)

Resortes Helicoidales
Resortes HelicoidalesResortes Helicoidales
Resortes Helicoidales
 
Resortes
ResortesResortes
Resortes
 
Resortes
ResortesResortes
Resortes
 
Gianfranco abdul resortes
Gianfranco abdul resortesGianfranco abdul resortes
Gianfranco abdul resortes
 
Resorte
ResorteResorte
Resorte
 
RESORTES HELICOIDALES.docx
RESORTES HELICOIDALES.docxRESORTES HELICOIDALES.docx
RESORTES HELICOIDALES.docx
 
Resortes helicoidales, planos y tornillos de potencia
Resortes helicoidales, planos y tornillos de potenciaResortes helicoidales, planos y tornillos de potencia
Resortes helicoidales, planos y tornillos de potencia
 
Cadenas bueno
Cadenas buenoCadenas bueno
Cadenas bueno
 
Cadenas bueno
Cadenas buenoCadenas bueno
Cadenas bueno
 
Eje elementos 2 informe
Eje elementos 2 informeEje elementos 2 informe
Eje elementos 2 informe
 
Presentación de resorte diego abreu
Presentación de resorte diego abreu Presentación de resorte diego abreu
Presentación de resorte diego abreu
 
manofactura
manofactura manofactura
manofactura
 
Arboles
ArbolesArboles
Arboles
 
Rodamientos cojinetes y engranajes
Rodamientos cojinetes y engranajesRodamientos cojinetes y engranajes
Rodamientos cojinetes y engranajes
 
Resortes 2.pptx
Resortes 2.pptxResortes 2.pptx
Resortes 2.pptx
 
Rodamientos de bolas
Rodamientos de bolasRodamientos de bolas
Rodamientos de bolas
 
Arboles Ejes y Elementos Rodantes
Arboles Ejes y Elementos RodantesArboles Ejes y Elementos Rodantes
Arboles Ejes y Elementos Rodantes
 
PERFILES ESTRUCTURALES
PERFILES ESTRUCTURALESPERFILES ESTRUCTURALES
PERFILES ESTRUCTURALES
 
Definición de rodamientos e interpretacion de sus codigos
Definición de rodamientos e  interpretacion de sus codigosDefinición de rodamientos e  interpretacion de sus codigos
Definición de rodamientos e interpretacion de sus codigos
 
Tipos de rodamientos e interpretacion de sus codigos
Tipos de rodamientos e  interpretacion de sus codigosTipos de rodamientos e  interpretacion de sus codigos
Tipos de rodamientos e interpretacion de sus codigos
 

Más de Angel Villalpando

Movimiento curvilineo componente normal y tangencial P3.pptx
Movimiento curvilineo componente normal y tangencial P3.pptxMovimiento curvilineo componente normal y tangencial P3.pptx
Movimiento curvilineo componente normal y tangencial P3.pptx
Angel Villalpando
 
METROLOGIA Y NORMALIZACION PARA LA INGENIERIA INDUSTRIALx
METROLOGIA Y NORMALIZACION  PARA LA INGENIERIA INDUSTRIALxMETROLOGIA Y NORMALIZACION  PARA LA INGENIERIA INDUSTRIALx
METROLOGIA Y NORMALIZACION PARA LA INGENIERIA INDUSTRIALx
Angel Villalpando
 
Fundamentos de Estadística y Probabilidad
Fundamentos de Estadística y ProbabilidadFundamentos de Estadística y Probabilidad
Fundamentos de Estadística y Probabilidad
Angel Villalpando
 
3. MOTORES - ACTUADORES electicos tipos y clasificacion
3. MOTORES - ACTUADORES electicos tipos y clasificacion3. MOTORES - ACTUADORES electicos tipos y clasificacion
3. MOTORES - ACTUADORES electicos tipos y clasificacion
Angel Villalpando
 
INSTRUMENTACION P3 terminos adicionales.pptx
INSTRUMENTACION P3 terminos adicionales.pptxINSTRUMENTACION P3 terminos adicionales.pptx
INSTRUMENTACION P3 terminos adicionales.pptx
Angel Villalpando
 
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptxINVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
Angel Villalpando
 
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptxINVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
Angel Villalpando
 
2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx
Angel Villalpando
 
Inventarios.pptx
Inventarios.pptxInventarios.pptx
Inventarios.pptx
Angel Villalpando
 
Modelo de transporte.pptx
Modelo de transporte.pptxModelo de transporte.pptx
Modelo de transporte.pptx
Angel Villalpando
 
Fundamentos movimiento.pptx
Fundamentos movimiento.pptxFundamentos movimiento.pptx
Fundamentos movimiento.pptx
Angel Villalpando
 
Introduccion a la informatica
Introduccion a la informaticaIntroduccion a la informatica
Introduccion a la informatica
Angel Villalpando
 
4. ROBOTICA 3.pptx
4. ROBOTICA 3.pptx4. ROBOTICA 3.pptx
4. ROBOTICA 3.pptx
Angel Villalpando
 
3. ROBOTICA 2 .pptx
3. ROBOTICA 2 .pptx3. ROBOTICA 2 .pptx
3. ROBOTICA 2 .pptx
Angel Villalpando
 
ELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptxELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptx
Angel Villalpando
 
2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx
Angel Villalpando
 
P2. MANEJO DE MATERIALES.pptx
P2. MANEJO DE MATERIALES.pptxP2. MANEJO DE MATERIALES.pptx
P2. MANEJO DE MATERIALES.pptx
Angel Villalpando
 
INGENIERIA DE METODOS - P1.pptx
INGENIERIA DE METODOS - P1.pptxINGENIERIA DE METODOS - P1.pptx
INGENIERIA DE METODOS - P1.pptx
Angel Villalpando
 
Estructuras cristalinas y defectos
Estructuras cristalinas y defectosEstructuras cristalinas y defectos
Estructuras cristalinas y defectos
Angel Villalpando
 
1. investigacion de operaciones introduccion p1
1. investigacion de operaciones   introduccion p11. investigacion de operaciones   introduccion p1
1. investigacion de operaciones introduccion p1
Angel Villalpando
 

Más de Angel Villalpando (20)

Movimiento curvilineo componente normal y tangencial P3.pptx
Movimiento curvilineo componente normal y tangencial P3.pptxMovimiento curvilineo componente normal y tangencial P3.pptx
Movimiento curvilineo componente normal y tangencial P3.pptx
 
METROLOGIA Y NORMALIZACION PARA LA INGENIERIA INDUSTRIALx
METROLOGIA Y NORMALIZACION  PARA LA INGENIERIA INDUSTRIALxMETROLOGIA Y NORMALIZACION  PARA LA INGENIERIA INDUSTRIALx
METROLOGIA Y NORMALIZACION PARA LA INGENIERIA INDUSTRIALx
 
Fundamentos de Estadística y Probabilidad
Fundamentos de Estadística y ProbabilidadFundamentos de Estadística y Probabilidad
Fundamentos de Estadística y Probabilidad
 
3. MOTORES - ACTUADORES electicos tipos y clasificacion
3. MOTORES - ACTUADORES electicos tipos y clasificacion3. MOTORES - ACTUADORES electicos tipos y clasificacion
3. MOTORES - ACTUADORES electicos tipos y clasificacion
 
INSTRUMENTACION P3 terminos adicionales.pptx
INSTRUMENTACION P3 terminos adicionales.pptxINSTRUMENTACION P3 terminos adicionales.pptx
INSTRUMENTACION P3 terminos adicionales.pptx
 
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptxINVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
 
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptxINVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
INVESTIGACION DE OPERACIONES - INTRODUCCION P1 1.pptx
 
2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx
 
Inventarios.pptx
Inventarios.pptxInventarios.pptx
Inventarios.pptx
 
Modelo de transporte.pptx
Modelo de transporte.pptxModelo de transporte.pptx
Modelo de transporte.pptx
 
Fundamentos movimiento.pptx
Fundamentos movimiento.pptxFundamentos movimiento.pptx
Fundamentos movimiento.pptx
 
Introduccion a la informatica
Introduccion a la informaticaIntroduccion a la informatica
Introduccion a la informatica
 
4. ROBOTICA 3.pptx
4. ROBOTICA 3.pptx4. ROBOTICA 3.pptx
4. ROBOTICA 3.pptx
 
3. ROBOTICA 2 .pptx
3. ROBOTICA 2 .pptx3. ROBOTICA 2 .pptx
3. ROBOTICA 2 .pptx
 
ELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptxELECTROESTATICA 2.pptx
ELECTROESTATICA 2.pptx
 
2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx2. RESISTENCIA DE MATERIALES P1.pptx
2. RESISTENCIA DE MATERIALES P1.pptx
 
P2. MANEJO DE MATERIALES.pptx
P2. MANEJO DE MATERIALES.pptxP2. MANEJO DE MATERIALES.pptx
P2. MANEJO DE MATERIALES.pptx
 
INGENIERIA DE METODOS - P1.pptx
INGENIERIA DE METODOS - P1.pptxINGENIERIA DE METODOS - P1.pptx
INGENIERIA DE METODOS - P1.pptx
 
Estructuras cristalinas y defectos
Estructuras cristalinas y defectosEstructuras cristalinas y defectos
Estructuras cristalinas y defectos
 
1. investigacion de operaciones introduccion p1
1. investigacion de operaciones   introduccion p11. investigacion de operaciones   introduccion p1
1. investigacion de operaciones introduccion p1
 

Último

Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
Mercedes Gonzalez
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
Alejandrino Halire Ccahuana
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
Ruben53283
 
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docxSESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
QuispeJimenezDyuy
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptxAutomatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
GallardoJahse
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
JAVIER SOLIS NOYOLA
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
YolandaRodriguezChin
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
Alejandrogarciapanta
 
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
20minutos
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 

Último (20)

Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
 
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docxSESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptxAutomatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
 
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 

Diseño de flechas o ejes (selección de materiales)

  • 1. Diseño de Elementos de Maquinas Presenta: Dr. Ing. Ángel Francisco Villalpando Reyna Ingeniería Mecatronica Tema 1. Diseño de Flechas o Ejes (Selección de Materiales)
  • 2. Introducción Una flecha es un elemento rotatorio, por lo general, de sección transversal circular, que se emplea para transmitir potencia o movimiento. Constituye el eje de rotación u oscilación de elementos como engranes, poleas, volantes de inercia, manivelas, ruedas dentadas o catarinas y miembros similares y, además, controla la geometría de su movimiento. Un eje es un elemento no giratorio que no transmite par de torsión y que se utiliza para soportar ruedas rotatorias, poleas y elementos parecidos.
  • 3. La ubicuidad de las flechas en muchas aplicaciones de diseño de máquinas, es conveniente realizar un estudio más a fondo de la flecha y su diseño. El diseño de una flecha completa tiene mucha interdependencia con el diseño de los componentes. El diseño de la propia máquina dictará que ciertos engranes, poleas, cojinetes y otros elementos se tendrán que analizar, al menos parcialmente, y determinar en forma tentativa su tamaño y espaciamiento.
  • 4. En este capítulo se estudiarán los detalles referentes a la flecha, incluyendo los siguientes temas: • Selección del material • Configuración geométrica • Esfuerzo y resistencia Resistencia estática Resistencia por fatiga • Deflexión y rigidez Deflexión por flexión Deflexión por torsión Pendiente en los cojinetes y elementos soportados por el eje Deflexión por cortante debida a cargas transversales sobre ejes cortos • Vibración debida a la frecuencia natural
  • 5. Cuando se deciden los diversos aspectos de un enfoque de diseño, es necesario tomar en cuenta que un análisis de esfuerzos en un punto específico de un eje se hace sólo mediante la geometría del eje en la proximidad de ese punto. De esta forma, no se necesita conocer la geometría de todo el eje. En diseño, por lo general, se localizan las áreas críticas, se dimensionan para cumplir los requisitos de resistencia y después se dimensiona el resto del eje para satisfacer las necesidades de los elementos soportados por éste. De esta manera, la deflexión es una función de la geometría de todas partes, mientras que el esfuerzo en una sección de interés es una función de la geometría local.
  • 6. Materiales para fabricar ejes La resistencia necesaria para soportar esfuerzos de carga afecta la elección de los materiales y sus tratamientos. Muchos ejes están hechos de acero de bajo carbono, acero estirado en frío o acero laminado en caliente, como lo son los aceros AISI 1020-1050. A menudo no está garantizado el incremento significativo de la resistencia proveniente del tratamiento térmico ni el contenido de alta aleación. La falla por fatiga se reduce moderadamente mediante el incremento de la resistencia, y después sólo a cierto nivel antes de que los efectos adversos en el límite de resistencia a la fatiga y la sensibilidad a la muesca comience a contrarrestar los beneficios de una resistencia mayor. Una buena práctica consiste en iniciar con un acero de bajo o medio carbono de bajo costo, como primer paso en los cálculos del diseño. Si las consideraciones de resistencia resultan dominar sobre las de deflexión, entonces debe probarse un material con mayor resistencia
  • 7. Materiales para fabricar ejes La resistencia necesaria para soportar esfuerzos de carga afecta la elección de los materiales y sus tratamientos. Muchos ejes están hechos de acero de bajo carbono, acero estirado en frío o acero laminado en caliente, como lo son los aceros ANSI 1020-1050. A menudo no está garantizado el incremento significativo de la resistencia proveniente del tratamiento térmico ni el contenido de alta aleación. La falla por fatiga se reduce moderadamente mediante el incremento de la resistencia, y después sólo a cierto nivel antes de que los efectos adversos en el límite de resistencia a la fatiga y la sensibilidad a la muesca comience a contrarrestar los beneficios de una resistencia mayor. Una buena práctica consiste en iniciar con un acero de bajo o medio carbono de bajo costo, como primer paso en los cálculos del diseño. Si las consideraciones de resistencia resultan dominar sobre las de deflexión, entonces debe probarse un material con mayor resistencia.
  • 8. El costo del material y su procesamiento debe ponderarse en relación con la necesidad de contar con diámetros de eje más pequeños. Cuando están garantizadas, las aleaciones de acero típicas para tratamiento térmico incluyen AISI 1340-50, 3140-50, 4140, 4340, 5140 y 8650. Por lo general, los ejes no requieren endurecimiento superficial a menos que sirvan como un recubrimiento real en una superficie de contacto. Las elecciones típicas del material para el endurecimiento superficial incluyen los grados de carburización AISI 1020, 4320, 4820 y 8620. AISI – American Iron and Steel Institute
  • 9.
  • 10. Por lo general, el acero estirado en frío se usa para diámetros menores de 3 pulgadas. El diámetro nominal de la barra puede dejarse sin maquinar en áreas que no requieren el ajuste de los componentes. El acero laminado en caliente debe maquinarse por completo. En el caso de ejes grandes que requieren la remoción de mucho material, los esfuerzos residuales pueden tender a causar pandeo. Cuando se debe seleccionar el material, la cantidad que se producirá es un factor sobresaliente. Para pequeñas producciones, el torneado es el proceso de formado más común. Un punto de vista económico puede requerir la eliminación de una cantidad mínima de material. La alta producción puede permitir un método de conformado conservador de volumen (formado en caliente o en frío, fundición) y un mínimo de material en el eje puede convertirse en una meta de diseño.
  • 11. Configuración del eje La configuración general de un eje para acomodar los elementos que lo conforman, por ejemplo, engranes, cojinetes y poleas, debe especificarse en los primeros pasos del proceso de diseño para realizar un análisis de fuerzas de cuerpo libre y obtener diagramas de momento cortante. En la figura 7-1 se muestra un ejemplo de un eje escalonado que soporta el engrane de un reductor de velocidad de corona sinfín. Por lo general, la geometría de un eje es la de un cilindro escalonado. El uso de hombros o resaltos constituye un medio excelente para localizar en forma axial los elementos del eje y para ejecutar cualquier carga de empuje necesaria.
  • 12. Si no se cuenta con un diseño para emplearlo como punto de partida, entonces la determinación de la geometría del eje puede tener muchas soluciones. El problema se ilustra mediante los dos ejemplos de la figura 7-2. En la figura 7-2a) se muestra un contraeje con engranes que debe ser soportado por dos cojinetes. En la figura 7-2c) se debe configurar una flecha de ventilador. Las soluciones que se muestran en las figuras 7-2b) y 7-2d) no son necesariamente las mejores, pero ilustran cómo se fijan los dispositivos montados en la flecha y su ubicación en la dirección axial y la forma en que se toma en cuenta la transferencia de par de torsión de un elemento a otro.
  • 13. Configuración axial de componentes A menudo, el posicionamiento axial de los componentes está determinado por la configuración de la carcasa y otros componentes de engranaje. En general, resulta mejor apoyar los componentes que soportan carga entre cojinetes, como en la figura 7-2a), en lugar de colocar los cojinetes en voladizo como en la figura 7-2c). Con frecuencia, las poleas y ruedas dentadas necesitan montarse por fuera para facilitar la instalación de la banda o cadena. La longitud del voladizo debe mantenerse corta para minimizar la deflexión. En la mayoría de los casos sólo deberían usarse dos cojinetes. Para ejes extremadamente largos que soportan varios componentes de carga, puede ser necesario proporcionar más de dos apoyos de cojinete.
  • 14. Los ejes deben mantenerse cortos para minimizar los momentos flexionantes y las de flexiones. Es deseable cierto espacio axial entre los componentes para permitir el flujo de lubricante y proporcionar espacio de acceso para el desensamble de componentes con un jalador. Los componentes de carga deben colocarse cerca de los cojinetes, de nuevo para minimizar el momento flexionarte en las ubicaciones que probablemente tendrán concentraciones de esfuerzo, y para minimizar la deflexión en los componentes sometidos a carga. Los componentes deben localizarse de manera exacta sobre el eje para alinearse con los otros componentes correspondientes, y debe tenerse la precaución de sostener los componentes en posición. El medio principal para ubicar los componentes es posicionarlos contra un hombro del eje. Un hombro también proporciona un soporte sólido para minimizar la deflexión y vibración del componente.
  • 15. Soporte de cargas axiales En los casos donde las cargas axiales no son triviales, es necesario proporcionar un medio para transferir las cargas axiales al eje, y después, mediante un cojinete, al soporte fijo. Esto será particularmente necesario con engranes helicoidales o cónicos, o cojinetes ahusados de rodillo, puesto que cada uno de ellos produce componentes de fuerza axial. Con frecuencia, el mismo medio por el que se proporciona localización axial, por ejemplo, hombros, anillos de retención y pasadores, también se usará para transmitir la carga axial en el eje. Por lo general, es mejor tener sólo un cojinete para soportar la carga axial, lo que permite tolerancias más grandes en las dimensiones de la longitud del eje, y evita que se apriete si el eje se expande debido a los cambios de temperatura. Esto es particularmente importante en el caso de ejes largos. En las figuras 7-3 y 7-4 se presentan ejemplos de ejes con sólo un cojinete que soporta la carga axial contra un hombro, mientras que el otro cojinete tiene simplemente un ajuste a presión sobre el eje sin hombro.
  • 16. Transmisión de par de torsión Muchas flechas sirven para transmitir un par de torsión de un engrane o polea de entrada, a través del eje, a un engrane o polea de salida. Por supuesto, el eje debe tener el tamaño adecuado para soportar el esfuerzo y la deflexión por torsión. También es necesario proporcionar un medio para transmitir el par de torsión entre el eje y los engranes. Los elementos comunes para transmitir el par de torsión son: • Cuñas • Ejes estriados • Tornillos de fijación • Pasadores • Ajustes a presión o por contracción • Ajustes ahusados Además de transmitir el par de torsión, muchos de estos dispositivos están diseñados para fallar si el par de torsión excede ciertos límites de operación aceptables, con lo que se protege a los componentes más caros.
  • 17. Ensamble y desensamble Es necesario tener en consideración el método de ensamblado de los componentes en el eje y el ensamblado del eje en el marco. Por lo general, esto requiere el diámetro más grande en el centro del eje y diámetros progresivamente más pequeños hacia los extremos, para permitir que los componentes se deslicen hacia las puntas. Si se necesita un hombro en ambos lados de un componente, debe crearse uno de ellos mediante algo como un anillo de retención o mediante un manguito entre los dos componentes. La misma caja de engranes necesitará medios para posicionar físicamente el eje en sus cojinetes y éstos en el marco. Esta tarea se logra, de manera típica, proporcionando acceso a través del alojamiento al cojinete que se encuentra en un extremo del eje. En las figuras 7-5 a 7-8 se ilustran algunos ejemplos.
  • 18.
  • 19.
  • 20. Diseño de ejes para el esfuerzo Ubicaciones críticas No es necesario evaluar los esfuerzos en todos los puntos de un eje; es suficiente hacerlo en unas cuantas ubicaciones potencialmente críticas. Por lo general, estas ubicaciones se localizan en la superficie exterior, en ubicaciones axiales donde el momento flexionante es grande, donde el par de torsión está presente y donde existen concentraciones de esfuerzo. Por comparación directa de diferentes puntos a lo largo del eje, pueden identificarse unas cuantas ubicaciones críticas sobre las cuales puede basarse el diseño. También resulta útil una evaluación de situaciones de esfuerzo típicas. La mayoría de los ejes transmiten el par de torsión sólo a través de una parte de ellos. Lo común es que el par de torsión entre al eje por un engrane y salga del eje por otro engrane. Un diagrama de cuerpo libre del eje permite determinar el par de torsión en cualquier sección.