SlideShare una empresa de Scribd logo
LIMITES




          CONCEPCION DEL
            CONCEPTO
INTRODUCCION
• En este ensayo trataré de resumir la historia
  de una concepción abstracta de difícil
  comprensión que ha sido de gran utilidad
  para el desarrollo del cálculo infinitesimal, se
  trata del concepto de límite matemático y de
  sus variantes
Historia del concepto de límite
                           • Han sido tres siglos
                             los necesarios para
                             llegar a estas
                             definiciones desde
                             que John Wallis
                             (1616-1703)
                             formulase la que es
                             aceptada como la
                             primera en el siglo
 John Wallis (1616-1703)     XVII.
Historia del concepto de límite
                           • Habría que esperar hasta el año
                             1821 cuando apareció el texto
                             Cours d’analyse algébrique escrito
                             por Louis Cauchy, en su obra
                             Cauchy definía el límite de una
                             función de la siguiente forma:
                             “Cuando los valores atribuidos
                             sucesivamente a una variable se
                             aproximan indefinidamente a un
                             valor fijo para llegar por último a
                             diferir de este valor en una cantidad
                             tan pequeña como se desee,
                             entonces dicho valor fijo recibe el
                             nombre de límite de todos los
Louis Cauchy(1789 –1857)     demás valores.”
Historia del concepto de límite
                                • Tendrían que pasar aún
                                  unos treinta años para que
                                  el riguroso alemán Karl
                                  Weierstrass viniese a
                                  rematar la faena del
                                  delicado concepto de
                                  límite, con la ayuda de sus
                                  épsilon y delta, que no son
                                  más que números reales,
                                  muy pequeños y muy
                                  próximos a cero, y que
                                  tanto éxito le dieron.
Weierstrass, Karl (1815-1897)
La definición formal del límite.
• “El límite de una función , cuando x tiende a c es L si
  y sólo si para todo épsilon existe un delta tal que
  para todo número real x en el dominio de la función
  si cero es menor que el valor absoluto de x-c y este
  es menor al delta entonces el valor absoluto de f(x)-L
  es menor a épsilon.”
• Esto, escrito en notación formal:
La definición formal del límite.
• Lo importante es comprender que el formalismo
  no lo hacen los símbolos matemáticos, sino, la
  precisión con la que queda definido el concepto
  de límite.
• Esta notación es tremendamente poderosa, pues,
  nos dice que si el límite existe, entonces se puede
  estar tan cerca de él como se desee. Si no se logra
  estar lo suficientemente cerca, entonces la
  elección del δ no era adecuada. La definición
  asegura que si el límite existe, entonces es
  posible encontrar tal δ.
Introducción de la definición de límites
             en el infinito
• Consideramos la función f definida por:



• Vamos a determinar el comportamiento de la
  función cuando x tiende a 2, cuando x tiende a
  más infinito y cuando x tiende a menos
  infinito .
Para ellos usaremos las siguientes tablas
a.         X     3     2.5      2.3      2.25      2.1        2.01      2.001 2.00001

                 1     2        3.33      4        10         100       1000   10000


     En este caso, cuando x tiende a 2 por la derecha , la función    tiende a
     tomar valores positivos cada vez mayores. Esto podemos escribirlo como:
                                  , es decir
b.         X      1     1.5       1.6      1.75         1.9      1.99      1.999   1.9999

                  -1       -2     -2.5        -4        -10      -100      -1000   -10000




     En este caso, cuando x tiende a 2 por la izquierda , la función  tiende a
     tomar valores negativos cada vez menores. Esto podemos escribirlo como:
                                 , es decir
c.       X      4       5       8      10       100      1000

                    0.5     0.33   0.16    0.125   0.0125    0.001002




 Ahora observe que es x la que tiende a tomar valores positivos cada vez
 mayores, obteniendo como resultado que        tiende a valores cercanos
 a cero.
 Así              , o sea,                         .


d.        X       -3        -5     -8      -10      -100      -1000

                  -0.2    -0.142   -0.1   -0.083   -0.0098   -0.000998




 En forma similar a la tabla anterior se tiene que
 es decir,
Podríamos decir:

a)                           c)

b)                           d)

• Pero estos valores y equivalencias a pesar de que sea
  demostrado con las tablas anteriores que son
  verdaderas, en la definición formal no tienen sentido
  ya que es una noción mas no un numero real por lo
  que no se pueden realizar operaciones aritméticas con
  él. Así que se tuvo la necesidad de desarrollar su propia
  definición y se desarrollo de tal forma que cada caso
  tiene su propia definición.
• Caso 1: cuando x tiende a una constante y          a más
  infinito


• “El límite de      cuando x tiende a c es infinito positivo,
  si y solo si para cualquier número positivo A (tan
  grande como se quiera), podemos encontrar un
  número tal que, para todos los x dentro del entorno
  reducido de c de radio δ se cumple que es mayor que
  A. “
• En otras palabras, si para cualquier número positivo A
  que consideremos, existe un entorno reducido de c
  donde la función vale más que A, quiere decir que
  puede hacerse mayor que cualquier número, con tal de
  que x se acerque lo suficiente a c. Por eso se dice que
  el límite de      cuando x tiende a c es .
• Caso 2: cuando x tiende a una constante y a
  menos infinito


• Caso 3: cuando x tiende a más infinito y a más
  infinito


• Para cualquier número positivo A (por grande que
  sea), es posible encontrar un número positivo B
  tal que para todos los mayores que B, es mayor
  que A. Es decir que puede ser mayor que
  cualquier número, si es lo suficientemente
  grande.
• Caso 4: cuando x tiende a más infinito y a menos
  infinito



• Caso 5: cuando x tiende a menos infinito y a más
  infinito



• Caso 6: cuando x tiende a menos infinito y a menos
  infinito
• Caso 7: cuando x tiende a más infinito y a una
  constante




• Caso 8: cuando x tiende a menos infinito y a una
  constante
• Así de esta forma se tienen cubiertos todas las
  posibilidades con respecto a los valores que
  puedan tomar las incógnitas y los valores
  resultantes de las funciones y por ende de los
  límites posibles también, de esta forma
  también permite el calcular aunque
  parcialmente limites en puntos donde la
  función misma esta indefinida (con limites
  laterales) y el utilizar las mismas definiciones
  de límites en y hacia el infinito para otros
  propósitos y en otras materias.
Conclusión
• En conclusión el hecho de haber podido definir
  correctamente lo que es el límite, establecer sus
  variaciones y definirlas correctamente permitió
  crear las bases de un concepto maestro en el
  cálculo infinitesimal, un artefacto intelectual
  imprescindible para poder definir los conceptos
  fundamentales de convergencia, continuidad,
  derivación e integración, entre otros.
• Y así el calculo avanzó, dando lugar a su uso no
  solo teórico sino también practico impulsando la
  generación de conocimiento.

Más contenido relacionado

La actualidad más candente

Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones linealesalgebra
 
Ecuaciones Empíricas
 Ecuaciones Empíricas Ecuaciones Empíricas
Ecuaciones Empíricas
Self-employed
 
Ejercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO IEjercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO I
Kátherin Romero F
 
Derivadas. Método de incremento o Regla de los 4 pasos
Derivadas. Método de incremento o Regla de los 4 pasosDerivadas. Método de incremento o Regla de los 4 pasos
Derivadas. Método de incremento o Regla de los 4 pasos
Nombre Apellidos
 
Límite por Aproximación
Límite por AproximaciónLímite por Aproximación
Límite por Aproximación
Neidy Sanchez
 
Funcion lineal
Funcion lineal Funcion lineal
Funcion lineal
Juliana Isola
 
TERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCIONTERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCION
Irlanda Gt
 
Trabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioTrabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacio
Jonathan Villarroel
 
Funcion lineal en la vida real diaria
Funcion lineal en la vida real diariaFuncion lineal en la vida real diaria
Funcion lineal en la vida real diaria
Julian Alzate Salazar
 
Asíntotas
AsíntotasAsíntotas
Asíntotas
Mar Tuxi
 
Problemas resueltos de limites
Problemas resueltos de limitesProblemas resueltos de limites
Problemas resueltos de limites
Carlos Alberto Martinez Briones
 
Elipse con centro (h,k)
Elipse con centro (h,k)Elipse con centro (h,k)
Elipse con centro (h,k)
idalidesquinterorocha
 
Teoria de limites
Teoria de limitesTeoria de limites
Teoria de limites
Pamee Garcia
 
Derivacion implicita
Derivacion implicitaDerivacion implicita
Derivacion implicita
Daumant Frideberg
 
Limites por racionalización
Limites por racionalizaciónLimites por racionalización
Limites por racionalizaciónEPFAA
 
Problemas resueltos-caida-libre
Problemas resueltos-caida-libreProblemas resueltos-caida-libre
Problemas resueltos-caida-libre
Gustavo Reina
 
Funciones continuas y discontinuas
Funciones continuas y discontinuasFunciones continuas y discontinuas
Funciones continuas y discontinuas
Universidad Autónoma Metropolitana , México.
 

La actualidad más candente (20)

Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
 
Ecuaciones Empíricas
 Ecuaciones Empíricas Ecuaciones Empíricas
Ecuaciones Empíricas
 
Ejercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO IEjercicios resueltos de funciones - CALCULO I
Ejercicios resueltos de funciones - CALCULO I
 
Derivadas. Método de incremento o Regla de los 4 pasos
Derivadas. Método de incremento o Regla de los 4 pasosDerivadas. Método de incremento o Regla de los 4 pasos
Derivadas. Método de incremento o Regla de los 4 pasos
 
Límite por Aproximación
Límite por AproximaciónLímite por Aproximación
Límite por Aproximación
 
Funcion lineal
Funcion lineal Funcion lineal
Funcion lineal
 
TERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCIONTERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCION
 
Trabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacioTrabajo vectores en el plano y el espacio
Trabajo vectores en el plano y el espacio
 
Funcion lineal en la vida real diaria
Funcion lineal en la vida real diariaFuncion lineal en la vida real diaria
Funcion lineal en la vida real diaria
 
Asíntotas
AsíntotasAsíntotas
Asíntotas
 
Problemas resueltos de limites
Problemas resueltos de limitesProblemas resueltos de limites
Problemas resueltos de limites
 
Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticos
 
Elipse con centro (h,k)
Elipse con centro (h,k)Elipse con centro (h,k)
Elipse con centro (h,k)
 
Teoria de limites
Teoria de limitesTeoria de limites
Teoria de limites
 
Derivacion implicita
Derivacion implicitaDerivacion implicita
Derivacion implicita
 
Limites por racionalización
Limites por racionalizaciónLimites por racionalización
Limites por racionalización
 
Funciones especiales
Funciones especialesFunciones especiales
Funciones especiales
 
Problemas resueltos-caida-libre
Problemas resueltos-caida-libreProblemas resueltos-caida-libre
Problemas resueltos-caida-libre
 
Parabola
ParabolaParabola
Parabola
 
Funciones continuas y discontinuas
Funciones continuas y discontinuasFunciones continuas y discontinuas
Funciones continuas y discontinuas
 

Similar a Presentación historia del concepto de limite

Lìmites al infinito
Lìmites al infinitoLìmites al infinito
Lìmites al infinito
camagia
 
Limite de uan funcion
Limite de uan funcionLimite de uan funcion
Limite de uan funcion
David Marcano
 
Limites matemáticos
Limites matemáticosLimites matemáticos
Limites matemáticos
m1gu3lgust4v0
 
LÍMITES
LÍMITES LÍMITES
LÍMITES
Erikita Yadira
 
Bloque IV límite y continuidad
Bloque IV límite y continuidadBloque IV límite y continuidad
Bloque IV límite y continuidadguestecc8d0e
 
Limites infinitos
Limites infinitosLimites infinitos
Limites infinitos
niedlinger
 
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
DanielRamos746776
 
Trabajo monográfico
Trabajo monográficoTrabajo monográfico
Trabajo monográficomijinina
 
Limites
LimitesLimites
Limites
deninxon10
 
Limites y aplicaciones
Limites y aplicacionesLimites y aplicaciones
Limites y aplicaciones
Manolo Torres
 
52721654 limite-y-continuidad-de-funciones-de-varias-variables
52721654 limite-y-continuidad-de-funciones-de-varias-variables52721654 limite-y-continuidad-de-funciones-de-varias-variables
52721654 limite-y-continuidad-de-funciones-de-varias-variablesDeninson Duran
 
Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55
cruzsuarez
 
Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55
cruzsuarez
 
LíMites Y Continuidad(2)
LíMites Y Continuidad(2)LíMites Y Continuidad(2)
LíMites Y Continuidad(2)
UNAD
 
Llimites jairomendoza
Llimites  jairomendozaLlimites  jairomendoza
Llimites jairomendoza
Jairo Mendoza
 
Resumen limites
Resumen  limitesResumen  limites
Resumen limites
KEVIN VALENCIA
 
Limites y continuidad de funciones
Limites y continuidad de funciones Limites y continuidad de funciones
Limites y continuidad de funciones
Carlos Andrade Loor
 

Similar a Presentación historia del concepto de limite (20)

Lìmites al infinito
Lìmites al infinitoLìmites al infinito
Lìmites al infinito
 
Limite de uan funcion
Limite de uan funcionLimite de uan funcion
Limite de uan funcion
 
Limites matemáticos
Limites matemáticosLimites matemáticos
Limites matemáticos
 
Límites.
Límites.Límites.
Límites.
 
LÍMITES
LÍMITES LÍMITES
LÍMITES
 
Bloque IV Límite y Continuidad
Bloque IV Límite y ContinuidadBloque IV Límite y Continuidad
Bloque IV Límite y Continuidad
 
Bloque IV límite y continuidad
Bloque IV límite y continuidadBloque IV límite y continuidad
Bloque IV límite y continuidad
 
Limites infinitos
Limites infinitosLimites infinitos
Limites infinitos
 
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf02 Intro a la Fis - Limites y derivadas 2024-I.pdf
02 Intro a la Fis - Limites y derivadas 2024-I.pdf
 
Trabajo monográfico
Trabajo monográficoTrabajo monográfico
Trabajo monográfico
 
Marco teorico
Marco teoricoMarco teorico
Marco teorico
 
Limites
LimitesLimites
Limites
 
Limites y aplicaciones
Limites y aplicacionesLimites y aplicaciones
Limites y aplicaciones
 
52721654 limite-y-continuidad-de-funciones-de-varias-variables
52721654 limite-y-continuidad-de-funciones-de-varias-variables52721654 limite-y-continuidad-de-funciones-de-varias-variables
52721654 limite-y-continuidad-de-funciones-de-varias-variables
 
Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55
 
Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55Trabajo de ascenso cruz suarez 55
Trabajo de ascenso cruz suarez 55
 
LíMites Y Continuidad(2)
LíMites Y Continuidad(2)LíMites Y Continuidad(2)
LíMites Y Continuidad(2)
 
Llimites jairomendoza
Llimites  jairomendozaLlimites  jairomendoza
Llimites jairomendoza
 
Resumen limites
Resumen  limitesResumen  limites
Resumen limites
 
Limites y continuidad de funciones
Limites y continuidad de funciones Limites y continuidad de funciones
Limites y continuidad de funciones
 

Último

CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
MasielPMP
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
JAVIER SOLIS NOYOLA
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
Ruben53283
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
Alejandrino Halire Ccahuana
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
YolandaRodriguezChin
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdfT3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
eliecerespinosa
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
DivinoNioJess885
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
Mercedes Gonzalez
 

Último (20)

CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdfT3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
 

Presentación historia del concepto de limite

  • 1. LIMITES CONCEPCION DEL CONCEPTO
  • 2. INTRODUCCION • En este ensayo trataré de resumir la historia de una concepción abstracta de difícil comprensión que ha sido de gran utilidad para el desarrollo del cálculo infinitesimal, se trata del concepto de límite matemático y de sus variantes
  • 3. Historia del concepto de límite • Han sido tres siglos los necesarios para llegar a estas definiciones desde que John Wallis (1616-1703) formulase la que es aceptada como la primera en el siglo John Wallis (1616-1703) XVII.
  • 4. Historia del concepto de límite • Habría que esperar hasta el año 1821 cuando apareció el texto Cours d’analyse algébrique escrito por Louis Cauchy, en su obra Cauchy definía el límite de una función de la siguiente forma: “Cuando los valores atribuidos sucesivamente a una variable se aproximan indefinidamente a un valor fijo para llegar por último a diferir de este valor en una cantidad tan pequeña como se desee, entonces dicho valor fijo recibe el nombre de límite de todos los Louis Cauchy(1789 –1857) demás valores.”
  • 5. Historia del concepto de límite • Tendrían que pasar aún unos treinta años para que el riguroso alemán Karl Weierstrass viniese a rematar la faena del delicado concepto de límite, con la ayuda de sus épsilon y delta, que no son más que números reales, muy pequeños y muy próximos a cero, y que tanto éxito le dieron. Weierstrass, Karl (1815-1897)
  • 6. La definición formal del límite. • “El límite de una función , cuando x tiende a c es L si y sólo si para todo épsilon existe un delta tal que para todo número real x en el dominio de la función si cero es menor que el valor absoluto de x-c y este es menor al delta entonces el valor absoluto de f(x)-L es menor a épsilon.” • Esto, escrito en notación formal:
  • 7. La definición formal del límite. • Lo importante es comprender que el formalismo no lo hacen los símbolos matemáticos, sino, la precisión con la que queda definido el concepto de límite. • Esta notación es tremendamente poderosa, pues, nos dice que si el límite existe, entonces se puede estar tan cerca de él como se desee. Si no se logra estar lo suficientemente cerca, entonces la elección del δ no era adecuada. La definición asegura que si el límite existe, entonces es posible encontrar tal δ.
  • 8. Introducción de la definición de límites en el infinito • Consideramos la función f definida por: • Vamos a determinar el comportamiento de la función cuando x tiende a 2, cuando x tiende a más infinito y cuando x tiende a menos infinito .
  • 9. Para ellos usaremos las siguientes tablas a. X 3 2.5 2.3 2.25 2.1 2.01 2.001 2.00001 1 2 3.33 4 10 100 1000 10000 En este caso, cuando x tiende a 2 por la derecha , la función tiende a tomar valores positivos cada vez mayores. Esto podemos escribirlo como: , es decir b. X 1 1.5 1.6 1.75 1.9 1.99 1.999 1.9999 -1 -2 -2.5 -4 -10 -100 -1000 -10000 En este caso, cuando x tiende a 2 por la izquierda , la función tiende a tomar valores negativos cada vez menores. Esto podemos escribirlo como: , es decir
  • 10. c. X 4 5 8 10 100 1000 0.5 0.33 0.16 0.125 0.0125 0.001002 Ahora observe que es x la que tiende a tomar valores positivos cada vez mayores, obteniendo como resultado que tiende a valores cercanos a cero. Así , o sea, . d. X -3 -5 -8 -10 -100 -1000 -0.2 -0.142 -0.1 -0.083 -0.0098 -0.000998 En forma similar a la tabla anterior se tiene que es decir,
  • 11. Podríamos decir: a) c) b) d) • Pero estos valores y equivalencias a pesar de que sea demostrado con las tablas anteriores que son verdaderas, en la definición formal no tienen sentido ya que es una noción mas no un numero real por lo que no se pueden realizar operaciones aritméticas con él. Así que se tuvo la necesidad de desarrollar su propia definición y se desarrollo de tal forma que cada caso tiene su propia definición.
  • 12. • Caso 1: cuando x tiende a una constante y a más infinito • “El límite de cuando x tiende a c es infinito positivo, si y solo si para cualquier número positivo A (tan grande como se quiera), podemos encontrar un número tal que, para todos los x dentro del entorno reducido de c de radio δ se cumple que es mayor que A. “ • En otras palabras, si para cualquier número positivo A que consideremos, existe un entorno reducido de c donde la función vale más que A, quiere decir que puede hacerse mayor que cualquier número, con tal de que x se acerque lo suficiente a c. Por eso se dice que el límite de cuando x tiende a c es .
  • 13. • Caso 2: cuando x tiende a una constante y a menos infinito • Caso 3: cuando x tiende a más infinito y a más infinito • Para cualquier número positivo A (por grande que sea), es posible encontrar un número positivo B tal que para todos los mayores que B, es mayor que A. Es decir que puede ser mayor que cualquier número, si es lo suficientemente grande.
  • 14. • Caso 4: cuando x tiende a más infinito y a menos infinito • Caso 5: cuando x tiende a menos infinito y a más infinito • Caso 6: cuando x tiende a menos infinito y a menos infinito
  • 15. • Caso 7: cuando x tiende a más infinito y a una constante • Caso 8: cuando x tiende a menos infinito y a una constante
  • 16. • Así de esta forma se tienen cubiertos todas las posibilidades con respecto a los valores que puedan tomar las incógnitas y los valores resultantes de las funciones y por ende de los límites posibles también, de esta forma también permite el calcular aunque parcialmente limites en puntos donde la función misma esta indefinida (con limites laterales) y el utilizar las mismas definiciones de límites en y hacia el infinito para otros propósitos y en otras materias.
  • 17. Conclusión • En conclusión el hecho de haber podido definir correctamente lo que es el límite, establecer sus variaciones y definirlas correctamente permitió crear las bases de un concepto maestro en el cálculo infinitesimal, un artefacto intelectual imprescindible para poder definir los conceptos fundamentales de convergencia, continuidad, derivación e integración, entre otros. • Y así el calculo avanzó, dando lugar a su uso no solo teórico sino también practico impulsando la generación de conocimiento.