SlideShare una empresa de Scribd logo
Ayudantías de Matemáticas.
Prof.: Gloria Loncoman.
Ing. (E) Informática.
Raíces
Concepto:
Muchos de quienes tratan esta materia hablan de raíz o de radical, usados como sinónimos.
Mientras esto no afecte la comprensión del concepto no hay problema.
En estricto rigor, raíz es una cantidad que se multiplica por sí misma una o más veces para
presentarse como un número determinado.
Para encontrar esa cantidad que se multiplica se recurre a la operación de extraer la raíz a partir
del número determinado y se ejecuta utilizando el símbolo √, que se llama radical. Por ello es que se
habla de operaciones con radicales al referirse a operaciones para trabajar con raíces.
Encontrar o extraer la raíz es realizar la operación contraria o inversa de la potenciación, así como
la suma es la operación inversa de la resta y viceversa, y la multiplicación es la operación contraria de la
división y viceversa.
Para graficarlo de algún modo:
Potencia Raíz
Los nombres de las partes que constituyen cada operación matemática son:
X: Base de la potencia X: Valor de la raíz
n: Exponente de la potencia n: Índice de raíz
a: Valor de la potencia a: Cantidad subradical (o radicando)
La raíz consiste en encontrar la base de la potencia conociendo el exponente (que en la raíz se llama
índice) y la cantidad subradical.
Propiedades:
Debido a que las raíces pueden convertirse a potencias de exponente fraccionario, cumplen con
todas las propiedades de potencias a partir de las cuales se pueden deducir las siguientes propiedades
de raíces:
1) Multiplicación de raíces de igual índice:
Se multiplican las bases y se conserva el índice.
2) División de raíces de igual índice:
Se dividen las bases y se conserva el índice.
3) Raíz de raíz:
Para obtener raíz de raíz se multiplican los índices y se conserva la base.
4) Raíz de una potencia cuyo exponente es igual al índice:
Exponente e índice se anulan entre sí, por lo tanto desaparece el radical y la base queda
aislada.
5) Propiedad de amplificación:
Tanto el índice como el exponente de la potencia pueden amplificarse por un mismo valor.
6) Ingreso de un factor dentro de una raíz:
(con la restricción que a>0 si n es par)
Para introducir un factor dentro de una raíz se coloca el factor dentro del radical como potencia con
exponente igual al índice y multiplicando a los demás factores.
Observación: las propiedades anteriores son válidas solamente en el caso de que las raíces estén
definidas en los números reales.
Operaciones con Radicales.
Las raíces que se encuentran dentro del signo radical pueden realizar operaciones entre sí.
Pueden sumarse, restarse, multiplicarse o dividirse si cumplen con determinadas condiciones o reglas.
Suma y resta de radicales
Solamente pueden sumarse (o restarse) dos radicales cuando son radicales semejantes; es decir,
si son radicales con el mismo índice e igual radicando (o base subradical).
Podemos sumar y restar radicales solamente cuando estos tengan el mismo índice y contengan
una misma base (subradical o radicando).
Ejemplo:
Caso 2
¿Podremos sumar y restar radicales que tengan el mismo índice pero que tengan distinta base?
Ejemplo:
Aquí también se pide realizar una operación combinada de suma y resta. Sin embargo, no será
posible porque los tres radicales poseen el mismo índice (2) y sus bases (o cantidades subradicales o
radicandos) son diferentes, además de que son números primos y no se pueden factorizar.
Pero, veamos otro ejemplo:
Esta también es una operación combinada de sumas y restas de radicales que tienen el mismo índice (2)
pero tienen distinta base. Pero aquí hay una diferencia: las bases se pueden factorizar, de tal modo que
1082
54 2
27 3
9 3
3 3
1
Para quedar
Producto o multiplicación de radicales
Multiplicar radicales del mismo índice
Se multiplican los radicando (las bases) y se conserva el índice
Multiplicar radicales de distinto índice:
Primero se reducen a índice común y luego se multiplican.
Para realizar una multiplicación de radicales que tengan distinto índice es obligatorio reducir esos índices
distintos a un índice común (igual para todos los radicales).
Reducción de radicales a índice común
273
9 3
3 3
1
753
255
5 5
1
¿Cómo hacerlo?
El primer paso es hallar el mínimo común múltiplo (m.c.m.) de los índices, que será el índice común.
Luego, dividimos ese índice común por cada uno de los índices y cada resultado obtenido se multiplica
por sus exponentes correspondientes.
Veamos un ejemplo:
Si tuviésemos que multiplicar entre sí las cantidades siguientes:
La primera raíz tiene índice 2; la segunda, 3, y la tercera, 4. Entonces tenemos que encontrar el m.c.m.
entre 2, 3 y 4, que resulta ser 12. Dividimos 12 por cada índice y el resultado de cada división lo
multiplicamos por cada uno de los exponentes de las cantidades bases o radicandos; de la siguiente
manera:
12 ÷ 2 (2 es el índice de la primera raíz) = 6, este 6 lo multiplicamos por 1 (1 es el exponente) y nos queda
Después, 12 ÷ 3 (3 es el índice de la segunda raíz) = 4, este 4 lo multiplicamos por 2 en cada uno de los
multiplicandos que hay dentro del raíz (ambos tiene exponente 2) y nos queda
En seguida, hacemos 12 ÷ 4 (4 es el índice de la tercera raíz) = 3, este 3 lo multiplicamos por 2 (exponente
del primer multiplicando dentro de la raíz) y por 3 (exponente del segundo multiplicando dentro de la raíz)
y nos queda
Ahora podemos hacer la operación, teniendo tres raíces con igual índice (12):
Veamos otro ejemplo:
Si tenemos el m.c.m. entre 2, 3 y 4 es 12
Entonces:
Otro ejemplo:
m.c.m. de 2 y 3 es = 6, que se convierte en el índice común.
Hacemos 6 ÷ 2 = 3 x 1 = 3, para que tengamos
Y hacemos 6 ÷ 3 = 2 x 1 = 2, para que tengamos
Y ahora tenemos:
Nótese que después de llevar las raíces a un índice común (6), factorizamos las bases o radicandos (12
= 22
x 3) y (36 = 22
x 32
) y para llegar al resultado final sacamos afuera del signo radical un 2 (obtenido
de 210
y dejando 24
dentro del signo radical), y un 3 (obtenido de 37
y dejando 3 dentro del signo radical).
Ejercicios de multiplicación de radicales
Ejercicio 1)
Ejercicio 2)
Cociente o división de radicales
Dividir radicales del mismo índice
Se dividen los radicando (las bases) y se conserva el índice
Dividir radicales de distinto índice:
Primero se reducen a índice común y luego se dividen.
Sabemos que no podemos dividir raíces que tengan distinto índice, para también sabemos cómo igualar
esos índices, y para hacerlo utilizamos la propiedad de amplificación:
Veamos un ejemplo:
El numerador tiene índice 2 (que no se escribe), el denominador tiene índice 3, buscamos entonces el
m.c.m. entre 2 y 3, que seis, entonces amplificamos por 6 ambos términos de la división para igualar los
índices a seis:
Potencia de radicales
Ya sabemos, o deberíamos saberlo, que todas las raíces pueden convertirse a potencias de exponente
fraccionario. Hacer la conversión es muy sencillo: lo único que debemos hacer es pasar el grado (índice)
del radical como denominador de una fracción cuyo numerador será el exponente que tenga la base (el
radicando).
Veamos algunos ejemplos:
Ejemplo 1:
En este caso, el grado del radical es 3, el cual pasó a dividir al exponente 6, convirtiendo a este en una
fracción. El resultado de esta división (la fracción es una división: 6÷3 = 2) será el nuevo exponente para
la cantidad subradical.
De esta manera se ha realizado la potenciación.
Ejemplo 2:
Acá hicimos lo mismo que en el caso anterior (recordemos que cuando no se escribe el índice o grado de
un radical se entiende, por convención, que es 2, raíz cuadrada).
Raíz de un radical
Para calcular la raíz de una raíz se multiplican los índices de las raíces y se conserva la cantidad
subradical.
Ejemplo:
Racionalizar
Consiste en quitar los radicales del denominador, lo cual facilita el cálculo de operaciones como la
suma de fracciones.
Podemos distinguir tres casos, para eliminar los radicales del denominador.
a) Se multiplican el numerador y el denominador por
.
b) Se multiplican el numerador y el denominador por
.
c)
y en general cuando el denominador sea un binomio con al menos un radical, se multiplican el
numerador y denominador por el conjugado del denominador. El conjugado es la misma expresión
pero con signo contrario.
Simplificar Radicales
Para cumplir con las condiciones que las propiedades de los radicales les imponen a estos cuando
participan en alguna operación, uno de los métodos es la simplificación de radicales.
Veámoslo con diferentes ejemplos:
Simplificar
Un radical se puede expresar como una potencia de exponente fraccionario.
En nuestro ejemplo, se puede expresar como .
Por tanto se puede simplificar igual que una fracción; o sea se divide el índice (12 que se coloca como
denominador) y el exponente (9 que se coloca como numerador) por un mismo número. (9 y 12 son
divisibles por 3, y quedan como 3 y 4)
Ahora podemos hacer el camino inverso y una potencia con exponente fraccionario como podemos
expresarla como un radical .
También se puede simplificar directamente (cuando es posible), dividiendo el índice y el exponente por
un mismo número (12 ÷ 3 = 4 y 9 ÷ 3 = 3).
Otros casos y más ejemplos:
Simplificar
Simplificamos directamente dividiendo, en este caso, índice y exponente entre 4.

Más contenido relacionado

La actualidad más candente

Radicales
RadicalesRadicales
Radicales
belesan
 
Arboles avl
Arboles avlArboles avl
Arboles avl
Alex Pin
 
Insercion Arboles AVL
Insercion Arboles AVLInsercion Arboles AVL
Insercion Arboles AVL
Evans Balcazar
 
Introduccion a Arboles AVL
Introduccion a Arboles AVLIntroduccion a Arboles AVL
Introduccion a Arboles AVL
Evans Balcazar
 
Radicacion
RadicacionRadicacion
Radicación
RadicaciónRadicación
Radicación
nickantonio
 
Operaciones numéricas con radicales
Operaciones numéricas con radicalesOperaciones numéricas con radicales
Operaciones numéricas con radicales
Logos Academy
 
Radicales
RadicalesRadicales
Radicales
Norman Rivera
 
Trees
TreesTrees
áRbol avl
áRbol avláRbol avl
áRbol avl
edwinosuna
 
Arboles AVL Rotaciones
Arboles AVL RotacionesArboles AVL Rotaciones
Arboles AVL Rotaciones
Evans Balcazar
 
Radicacion (para los alumnos)
Radicacion (para los alumnos)Radicacion (para los alumnos)
Radicacion (para los alumnos)
1LMontesAlgarin
 
Quincena2
Quincena2Quincena2
Quincena2
francesca2009_10
 
Arboles binarios
Arboles binariosArboles binarios
Arboles binarios
favi_hola
 
Propiedades de las Raíces
Propiedades de las RaícesPropiedades de las Raíces
Propiedades de las Raíces
Maximiliano Medina
 
Racionalización de radicales
Racionalización de radicalesRacionalización de radicales
Racionalización de radicales
Logos Academy
 
Racionalización de radicales
Racionalización de radicalesRacionalización de radicales
Racionalización de radicales
Norman Rivera
 
Racionalización de denominadores
Racionalización de denominadoresRacionalización de denominadores
Racionalización de denominadores
Zorangel Aponte
 
Sarah 4
Sarah 4Sarah 4
Sarah 4
sarahbbr
 
Exponentes fraccionarioshum
Exponentes fraccionarioshumExponentes fraccionarioshum
Exponentes fraccionarioshum
Juliana Isola
 

La actualidad más candente (20)

Radicales
RadicalesRadicales
Radicales
 
Arboles avl
Arboles avlArboles avl
Arboles avl
 
Insercion Arboles AVL
Insercion Arboles AVLInsercion Arboles AVL
Insercion Arboles AVL
 
Introduccion a Arboles AVL
Introduccion a Arboles AVLIntroduccion a Arboles AVL
Introduccion a Arboles AVL
 
Radicacion
RadicacionRadicacion
Radicacion
 
Radicación
RadicaciónRadicación
Radicación
 
Operaciones numéricas con radicales
Operaciones numéricas con radicalesOperaciones numéricas con radicales
Operaciones numéricas con radicales
 
Radicales
RadicalesRadicales
Radicales
 
Trees
TreesTrees
Trees
 
áRbol avl
áRbol avláRbol avl
áRbol avl
 
Arboles AVL Rotaciones
Arboles AVL RotacionesArboles AVL Rotaciones
Arboles AVL Rotaciones
 
Radicacion (para los alumnos)
Radicacion (para los alumnos)Radicacion (para los alumnos)
Radicacion (para los alumnos)
 
Quincena2
Quincena2Quincena2
Quincena2
 
Arboles binarios
Arboles binariosArboles binarios
Arboles binarios
 
Propiedades de las Raíces
Propiedades de las RaícesPropiedades de las Raíces
Propiedades de las Raíces
 
Racionalización de radicales
Racionalización de radicalesRacionalización de radicales
Racionalización de radicales
 
Racionalización de radicales
Racionalización de radicalesRacionalización de radicales
Racionalización de radicales
 
Racionalización de denominadores
Racionalización de denominadoresRacionalización de denominadores
Racionalización de denominadores
 
Sarah 4
Sarah 4Sarah 4
Sarah 4
 
Exponentes fraccionarioshum
Exponentes fraccionarioshumExponentes fraccionarioshum
Exponentes fraccionarioshum
 

Similar a Raices

Tema 3 teoria potencias raices
Tema 3   teoria potencias raicesTema 3   teoria potencias raices
Tema 3 teoria potencias raices
mgarmon965
 
Uaa radicales
Uaa radicalesUaa radicales
Uaa radicales
Robert Luduena
 
Operaciones con radicales
Operaciones con radicalesOperaciones con radicales
Operaciones con radicales
ssuser0cd837
 
Operaciones con raices
Operaciones con raicesOperaciones con raices
Operaciones con raices
lurdes martin
 
Radicales ii
Radicales iiRadicales ii
Radicales ii
valandar
 
Radicales
RadicalesRadicales
Radicales
kelsky
 
Radicales
RadicalesRadicales
Radicales
kelsky
 
Radicales
RadicalesRadicales
Radicales
kelsky
 
Numerosreales3eso[1]
Numerosreales3eso[1]Numerosreales3eso[1]
Numerosreales3eso[1]
Rosa Navarro Cameo
 
Racionalización de radicales
Racionalización de radicales Racionalización de radicales
Racionalización de radicales
Entrenadora Personal
 
Radicales multiplicacion
Radicales multiplicacionRadicales multiplicacion
Radicales multiplicacion
Josmar Junior
 
Radicales
RadicalesRadicales
Radicales
guillepadel
 
Radicación con expresiones algebraicas para 9no grado
Radicación con expresiones algebraicas para 9no gradoRadicación con expresiones algebraicas para 9no grado
Radicación con expresiones algebraicas para 9no grado
perezducasaarmando
 
Ley de los radicales.docx
Ley de los radicales.docxLey de los radicales.docx
Ley de los radicales.docx
JOSEMANUELALVARADOPI
 
Radicales
RadicalesRadicales
Radicales
Luis Duran
 
Generalidades de R
Generalidades de RGeneralidades de R
Generalidades de R
Fabian Muñoz
 
Matemáticas luchy rodríguez
Matemáticas luchy rodríguezMatemáticas luchy rodríguez
Matemáticas luchy rodríguez
Juliana Isola
 
Expresiones Algebraicas
Expresiones AlgebraicasExpresiones Algebraicas
Expresiones Algebraicas
MaraLaya2
 
Números Irracionales
Números  IrracionalesNúmeros  Irracionales
Números Irracionales
Carmen Batiz
 
Asignación
AsignaciónAsignación

Similar a Raices (20)

Tema 3 teoria potencias raices
Tema 3   teoria potencias raicesTema 3   teoria potencias raices
Tema 3 teoria potencias raices
 
Uaa radicales
Uaa radicalesUaa radicales
Uaa radicales
 
Operaciones con radicales
Operaciones con radicalesOperaciones con radicales
Operaciones con radicales
 
Operaciones con raices
Operaciones con raicesOperaciones con raices
Operaciones con raices
 
Radicales ii
Radicales iiRadicales ii
Radicales ii
 
Radicales
RadicalesRadicales
Radicales
 
Radicales
RadicalesRadicales
Radicales
 
Radicales
RadicalesRadicales
Radicales
 
Numerosreales3eso[1]
Numerosreales3eso[1]Numerosreales3eso[1]
Numerosreales3eso[1]
 
Racionalización de radicales
Racionalización de radicales Racionalización de radicales
Racionalización de radicales
 
Radicales multiplicacion
Radicales multiplicacionRadicales multiplicacion
Radicales multiplicacion
 
Radicales
RadicalesRadicales
Radicales
 
Radicación con expresiones algebraicas para 9no grado
Radicación con expresiones algebraicas para 9no gradoRadicación con expresiones algebraicas para 9no grado
Radicación con expresiones algebraicas para 9no grado
 
Ley de los radicales.docx
Ley de los radicales.docxLey de los radicales.docx
Ley de los radicales.docx
 
Radicales
RadicalesRadicales
Radicales
 
Generalidades de R
Generalidades de RGeneralidades de R
Generalidades de R
 
Matemáticas luchy rodríguez
Matemáticas luchy rodríguezMatemáticas luchy rodríguez
Matemáticas luchy rodríguez
 
Expresiones Algebraicas
Expresiones AlgebraicasExpresiones Algebraicas
Expresiones Algebraicas
 
Números Irracionales
Números  IrracionalesNúmeros  Irracionales
Números Irracionales
 
Asignación
AsignaciónAsignación
Asignación
 

Último

Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Cátedra Banco Santander
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
marluzsagar
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
Ferrer17
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
dairatuctocastro
 
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores SabersinfinFiligramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Sabersinfin Portal
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Demetrio Ccesa Rayme
 
678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx
VALERIOPEREZBORDA
 
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptxCUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
nelsontobontrujillo
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
Adri G Ch
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
JonathanCovena1
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
FernandoEstebanLlont
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
maria larios
 
diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
TheeffitaSantosMedin
 
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docxPLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
william antonio Chacon Robles
 
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
Giuliana500489
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Cátedra Banco Santander
 
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdfTaller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
htebazileahcug
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
Cátedra Banco Santander
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 

Último (20)

Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
 
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores SabersinfinFiligramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
 
678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx
 
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptxCUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
 
diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
 
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docxPLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
 
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
 
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdfTaller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 

Raices

  • 1. Ayudantías de Matemáticas. Prof.: Gloria Loncoman. Ing. (E) Informática. Raíces Concepto: Muchos de quienes tratan esta materia hablan de raíz o de radical, usados como sinónimos. Mientras esto no afecte la comprensión del concepto no hay problema. En estricto rigor, raíz es una cantidad que se multiplica por sí misma una o más veces para presentarse como un número determinado. Para encontrar esa cantidad que se multiplica se recurre a la operación de extraer la raíz a partir del número determinado y se ejecuta utilizando el símbolo √, que se llama radical. Por ello es que se habla de operaciones con radicales al referirse a operaciones para trabajar con raíces. Encontrar o extraer la raíz es realizar la operación contraria o inversa de la potenciación, así como la suma es la operación inversa de la resta y viceversa, y la multiplicación es la operación contraria de la división y viceversa. Para graficarlo de algún modo: Potencia Raíz Los nombres de las partes que constituyen cada operación matemática son: X: Base de la potencia X: Valor de la raíz n: Exponente de la potencia n: Índice de raíz a: Valor de la potencia a: Cantidad subradical (o radicando) La raíz consiste en encontrar la base de la potencia conociendo el exponente (que en la raíz se llama índice) y la cantidad subradical. Propiedades: Debido a que las raíces pueden convertirse a potencias de exponente fraccionario, cumplen con todas las propiedades de potencias a partir de las cuales se pueden deducir las siguientes propiedades de raíces: 1) Multiplicación de raíces de igual índice: Se multiplican las bases y se conserva el índice.
  • 2. 2) División de raíces de igual índice: Se dividen las bases y se conserva el índice. 3) Raíz de raíz: Para obtener raíz de raíz se multiplican los índices y se conserva la base. 4) Raíz de una potencia cuyo exponente es igual al índice: Exponente e índice se anulan entre sí, por lo tanto desaparece el radical y la base queda aislada. 5) Propiedad de amplificación: Tanto el índice como el exponente de la potencia pueden amplificarse por un mismo valor. 6) Ingreso de un factor dentro de una raíz: (con la restricción que a>0 si n es par) Para introducir un factor dentro de una raíz se coloca el factor dentro del radical como potencia con exponente igual al índice y multiplicando a los demás factores. Observación: las propiedades anteriores son válidas solamente en el caso de que las raíces estén definidas en los números reales. Operaciones con Radicales. Las raíces que se encuentran dentro del signo radical pueden realizar operaciones entre sí. Pueden sumarse, restarse, multiplicarse o dividirse si cumplen con determinadas condiciones o reglas. Suma y resta de radicales
  • 3. Solamente pueden sumarse (o restarse) dos radicales cuando son radicales semejantes; es decir, si son radicales con el mismo índice e igual radicando (o base subradical). Podemos sumar y restar radicales solamente cuando estos tengan el mismo índice y contengan una misma base (subradical o radicando). Ejemplo: Caso 2 ¿Podremos sumar y restar radicales que tengan el mismo índice pero que tengan distinta base? Ejemplo: Aquí también se pide realizar una operación combinada de suma y resta. Sin embargo, no será posible porque los tres radicales poseen el mismo índice (2) y sus bases (o cantidades subradicales o radicandos) son diferentes, además de que son números primos y no se pueden factorizar. Pero, veamos otro ejemplo: Esta también es una operación combinada de sumas y restas de radicales que tienen el mismo índice (2) pero tienen distinta base. Pero aquí hay una diferencia: las bases se pueden factorizar, de tal modo que 1082 54 2 27 3 9 3 3 3 1
  • 4. Para quedar Producto o multiplicación de radicales Multiplicar radicales del mismo índice Se multiplican los radicando (las bases) y se conserva el índice Multiplicar radicales de distinto índice: Primero se reducen a índice común y luego se multiplican. Para realizar una multiplicación de radicales que tengan distinto índice es obligatorio reducir esos índices distintos a un índice común (igual para todos los radicales). Reducción de radicales a índice común 273 9 3 3 3 1 753 255 5 5 1
  • 5. ¿Cómo hacerlo? El primer paso es hallar el mínimo común múltiplo (m.c.m.) de los índices, que será el índice común. Luego, dividimos ese índice común por cada uno de los índices y cada resultado obtenido se multiplica por sus exponentes correspondientes. Veamos un ejemplo: Si tuviésemos que multiplicar entre sí las cantidades siguientes: La primera raíz tiene índice 2; la segunda, 3, y la tercera, 4. Entonces tenemos que encontrar el m.c.m. entre 2, 3 y 4, que resulta ser 12. Dividimos 12 por cada índice y el resultado de cada división lo multiplicamos por cada uno de los exponentes de las cantidades bases o radicandos; de la siguiente manera: 12 ÷ 2 (2 es el índice de la primera raíz) = 6, este 6 lo multiplicamos por 1 (1 es el exponente) y nos queda Después, 12 ÷ 3 (3 es el índice de la segunda raíz) = 4, este 4 lo multiplicamos por 2 en cada uno de los multiplicandos que hay dentro del raíz (ambos tiene exponente 2) y nos queda En seguida, hacemos 12 ÷ 4 (4 es el índice de la tercera raíz) = 3, este 3 lo multiplicamos por 2 (exponente del primer multiplicando dentro de la raíz) y por 3 (exponente del segundo multiplicando dentro de la raíz) y nos queda Ahora podemos hacer la operación, teniendo tres raíces con igual índice (12): Veamos otro ejemplo: Si tenemos el m.c.m. entre 2, 3 y 4 es 12 Entonces: Otro ejemplo:
  • 6. m.c.m. de 2 y 3 es = 6, que se convierte en el índice común. Hacemos 6 ÷ 2 = 3 x 1 = 3, para que tengamos Y hacemos 6 ÷ 3 = 2 x 1 = 2, para que tengamos Y ahora tenemos: Nótese que después de llevar las raíces a un índice común (6), factorizamos las bases o radicandos (12 = 22 x 3) y (36 = 22 x 32 ) y para llegar al resultado final sacamos afuera del signo radical un 2 (obtenido de 210 y dejando 24 dentro del signo radical), y un 3 (obtenido de 37 y dejando 3 dentro del signo radical). Ejercicios de multiplicación de radicales Ejercicio 1) Ejercicio 2) Cociente o división de radicales Dividir radicales del mismo índice Se dividen los radicando (las bases) y se conserva el índice
  • 7. Dividir radicales de distinto índice: Primero se reducen a índice común y luego se dividen. Sabemos que no podemos dividir raíces que tengan distinto índice, para también sabemos cómo igualar esos índices, y para hacerlo utilizamos la propiedad de amplificación: Veamos un ejemplo: El numerador tiene índice 2 (que no se escribe), el denominador tiene índice 3, buscamos entonces el m.c.m. entre 2 y 3, que seis, entonces amplificamos por 6 ambos términos de la división para igualar los índices a seis: Potencia de radicales Ya sabemos, o deberíamos saberlo, que todas las raíces pueden convertirse a potencias de exponente fraccionario. Hacer la conversión es muy sencillo: lo único que debemos hacer es pasar el grado (índice) del radical como denominador de una fracción cuyo numerador será el exponente que tenga la base (el radicando). Veamos algunos ejemplos: Ejemplo 1: En este caso, el grado del radical es 3, el cual pasó a dividir al exponente 6, convirtiendo a este en una fracción. El resultado de esta división (la fracción es una división: 6÷3 = 2) será el nuevo exponente para la cantidad subradical. De esta manera se ha realizado la potenciación. Ejemplo 2:
  • 8. Acá hicimos lo mismo que en el caso anterior (recordemos que cuando no se escribe el índice o grado de un radical se entiende, por convención, que es 2, raíz cuadrada). Raíz de un radical Para calcular la raíz de una raíz se multiplican los índices de las raíces y se conserva la cantidad subradical. Ejemplo: Racionalizar Consiste en quitar los radicales del denominador, lo cual facilita el cálculo de operaciones como la suma de fracciones. Podemos distinguir tres casos, para eliminar los radicales del denominador. a) Se multiplican el numerador y el denominador por . b) Se multiplican el numerador y el denominador por . c)
  • 9. y en general cuando el denominador sea un binomio con al menos un radical, se multiplican el numerador y denominador por el conjugado del denominador. El conjugado es la misma expresión pero con signo contrario. Simplificar Radicales Para cumplir con las condiciones que las propiedades de los radicales les imponen a estos cuando participan en alguna operación, uno de los métodos es la simplificación de radicales. Veámoslo con diferentes ejemplos: Simplificar Un radical se puede expresar como una potencia de exponente fraccionario. En nuestro ejemplo, se puede expresar como . Por tanto se puede simplificar igual que una fracción; o sea se divide el índice (12 que se coloca como denominador) y el exponente (9 que se coloca como numerador) por un mismo número. (9 y 12 son divisibles por 3, y quedan como 3 y 4) Ahora podemos hacer el camino inverso y una potencia con exponente fraccionario como podemos expresarla como un radical . También se puede simplificar directamente (cuando es posible), dividiendo el índice y el exponente por un mismo número (12 ÷ 3 = 4 y 9 ÷ 3 = 3). Otros casos y más ejemplos: Simplificar Simplificamos directamente dividiendo, en este caso, índice y exponente entre 4.