DIBUJO TÉCNICO II. 2º BACHILLERATO
GIROS
T 10. SISTEMA DIÉDRICO III
a1
a2
a2´
e´
I´
h´´
A´´
A ´´1
Vh´´
h´
e´´=I´´
En , (a diferencia de los cambios de plano, donde
cambiábamos los planos y los elementos permanecían quietos)
LOS GIROS son los elementos geométricos los que se mueven
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. HORIZONTAL.
Datos: punto P y eje e (1 de 4)
Cuando un punto gira alrededor de una recta,
, el centro es la intersección de la recta con el plano y el radio es la distancia del punto a la recta
DESCRIBE UNA CIRCUNFERENCIA CUYO PLANO ES PERPENDICULAR
A LA RECTA
El EJE DE GIRO será siempre una
o unarecta vertcal recta de punta
e´´
P´
e´
P´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
1. Haciendo centro en la proyección horizontal del eje
y se describe un arco de un determinado
ángulo y sentido, hasta la posición .
e´
radio P´
P
e´
1´
P1´
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. HORIZONTAL.
Datos: punto P y eje e (2 de 4)
e´´
P´
e´
P´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
2. Por la proyección vertical P´´, se traza una paralela
a la LT, traza vertical del plano que contiene a la
circunferencia del giro
a2
a2
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. HORIZONTAL.
Datos: punto P y eje e (3 de 4)
P1´
e´´
P´
P´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
3. Por la nueva proyección horizontal P ´, se traza
la a la
paralela anterior ( )
1
2
perpendicular a la LT hasta cortar en P ´´1
a
a2
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. HORIZONTAL.
Datos: punto P y eje e (4 de 4)
P1´
P1´´
e´´
P´
P´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. VERTICAL
Datos: punto P y eje e (1 de 4)
P´´
e´´
e´P´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
P´´
e´´
e´
1. Haciendo centro en la proyección vertical del eje y
se describe un arco de un determinado
ángulo y sentido, hasta la posición .
e´´
radio P´´
P ´
e´´
1
P´
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. VERTICAL
Datos: punto P y eje e (2 de 4)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
P1´´
P´´
e´´
e´
a1
2. Por la proyección horizontal P´´, se traza una paralela
a la LT, traza horizontal del plano que contiene a la
circunferencia del giro
a1
P´
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. VERTICAL
Datos: punto P y eje e (3 de 4)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
P1´´
P´´
P1´´
e´´
e´
a1
P´ P1´
3. Por la nueva proyección vertical P ´, se traza
la a la
paralela anterior ( )
1
1
perpendicular a la LT hasta cortar en P ´1
a
GIRO DE UN PUNTO ALREDEDOR DE UN EJE
PERPENDICULAR AL P. VERTICAL
Datos: punto P y eje e (4 de 4)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´´
e´
e´´ Vr´´
Hr´
A´´
A´
Existen dos casos :
1. Que la recta
2. Que la recta
corte al eje (MÁS FRECUENTE)
no corte al eje
GIRO DE UNA RECTA QUE CORTA AL EJE.
Girar la recta r, que corta al eje e,
perpendicular al plano horizontal,
en el punto A. )(1 de 4
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
B´
B´´
1. Se elige un punto arbitrario B de la recta r
GIRO DE UNA RECTA QUE CORTA AL EJE.
Girar la recta r, que corta al eje e,
perpendicular al plano horizontal,
en el punto A. (2 de 4)
r´´
e´
e´´ Vr´´
Hr´
A´´
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
B1´
B1´´
2. Se gira el punto B alrededor del eje un ángulo
determinado hasta colocarlo en su nueva posición
B ´B ´´.1 1
GIRO DE UNA RECTA QUE CORTA AL EJE.
Girar la recta r, que corta al eje e,
perpendicular al plano horizontal,
en el punto A. (3 de 4)
B´
B´´
r´´
e´
e´´ Vr´´
Hr´
A´´
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r1´´
r1´
Hr1´A1
B´
3. Se une B´con A´, que, como pertenece al eje es un
punto doble. Así obtenemos la recta r ´, que es la recta
dada girada.
1
GIRO DE UNA RECTA QUE CORTA AL EJE.
Girar la recta r, que corta al eje e,
perpendicular al plano horizontal,
en el punto A. (4 de 4)
B
B´´
r´´
e´
e´´ Vr´´
Hr´
A´´
r´
B1´
B1´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´´
r´
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (1 de 6)
Vr´´
Hr´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´
e1-A´
e´´
A´´
1.Se traza un eje e cualquiera, perpendicular al plano
horizontal, que corte a la recta r.
La intersección entre r y e es el punto A
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (2 de 6)
r´´
Vr´´
Hr´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´
e´-A´
e´´
A´´
B´´
B´
2. Se elige un punto cualquiera B de la recta r
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (3 de 6)
r´´
Vr´´
Hr´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´
e´-A´
e´´
A´´
B´´
B´B1´
3. Haciendo centro en e´ y de radio e´B´, trazamos
un arco de forma que B ´ y A´ estén alineados
según la paralela a la LT
1
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (4 de 6)
r´´
Vr´´
Hr´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r´
e´-A´
e´´
A´´
B´´
B´B1´
B1´´
4. Hallamos la , trazando
por B´´ la paralela a la LT, y por B ´, la perpendicular.
proyección vertical B ´´1
1
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (5 de 6)
r´´
Hr´
Vr´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
r1´
r1´´
r´
e´-A´
e´´
A´´
B´´
B´B1´
B1´´
5. Unimos el punto B con A y ya hemos
girado la recta hasta hacerla frontal
CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO.
Dada la recta r, convertirla en recta frontal mediante un giro. (6 de 6)
r´´
Vr´´
Hr´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado
a 15 mm del punto A. (1 de 5)
O
B´´
A´
B´
A´´
r´´
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado
a 15 mm del punto A. (2 de 5)
O
A-e´
1. Hallamos la recta r mediante las coordenadas de sus puntos A y B,
y trazamos un eje perpendicular al PH que corte a la
recta en el punto Ar
e´´
B´´
A´
B´
A´´
r´´
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado
a 15 mm del punto A. (3 de 5)
O
B1´´
r1´
r1´´
B1´
2. Elegimos un punto cualquiera, que puede ser el B,
y se gira hasta
La proyección horizontal ´ debe quedar
paralela a la LT
convertir la recta r en frontal.
r1
A-e´
e´´
B´´
A´
B´
A´´
r´´
r´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado
a 15 mm del punto A. (4 de 5)
3. Sobre la proyección vertical ´, que está en
verdadera magnitud y a partir del punto A,
se toma la distancia A´´C ´´= 15 mm
r1
1
O
A´´
B´´
C ´1 ´
B1´
r´´
15 mm
r´
B´
B1´A´-e´
e´´
r1´
r1´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UNA RECTA
Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado
a 15 mm del punto A. (5 de 5)
4.
: Por C ´´ se traza la paralela a la LT hasta ,
obteniendo C´´, y siendo C´ la proyección
horizontal
Se restituye el punto C a la posición original de la
recta r 1 r´´
O
A´´
B´´
C1´´
C´´
C´
B1´´
r´´
15 mm
r1
B´
B1´A´-e´
e´´
r1´´
r1´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
a1
e´´
e´
a2
O
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. (1 de 6)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. (2 de 6)
a2
a1
e´´
e´-A´
A´´ r´´Vr´´
r´
1. Se halla el punto A de intersección del plano con el eje.
Para ello trazamos la horizontal , de forma que
pase por , coincidiendo A´ con
r r´
e´ e´
O
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
a2
a1
e´´
e´-A´
M
A´´ r´´Vr´´
r´
2. Se
para ello se elige un
gira la traza horizontal 1.
punto M de intersección
de la traza con la perpendicular trazada desde
a
a1 e´
O
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. (3 de 6)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
a2
a1
e´´
e´-A´
M
M1
A´´ r´´Vr´´
r´
3. A continuación, se gira el punto M el ángulo
necesario hasta la posición M .1
O
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. (4 de 6)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
a2
a1
a1´
e´´
e´-A´
M
O´O
A´´ r´´Vr´´
r´
4. Se traza por M la ,
que corta a la LT en
1 perpendicular al segmento M
O´, nuevo vértice del plano girado
a1´ 1 ´e
M1
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. 5 de 6)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
GIRO DE UN PLANO
5. La nueva traza vertical ´ parte del nuevo vértice O´.
Para hallar otro punto de la nueva traza, se halla la
a
a
2
traza vertical V ´´, que tiene su proyección horizontal
´, paralela a ´.
r
r
1
1 1
a2
a1
a1´
a1´´
e´´
e´-A´
M
O´O
A´´ r´´-r1´´Vr´´ Vr ´´1
r´
r ´1
M1
Dado el plano y el eje e perpendicular al PH,
realizar un GIRO DEL PLANO
a
a. (6 de 6)
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
a1
b1
b1
a2
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
1. Se trata de dos planos paralelos que mediante giros
vamos a transformar en planos proyectantes verticales,
para lo cual
Las
son los puntos respectivamente
se elige como eje e una recta cualquiera,
perpendicular al PH y que esté contenida en el PV.
intersecciones del eje con los planos y
M y N
a b
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
a1
b1
b2
a2
e´-M´ N´-
e´´
M´´
N´´
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
2. Desde la proyección del eje se traza la
perpendicular a las trazas horizontales y ,
hasta cortarlas en A y B
e´
a b1 1
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
a1
b1
b2
a2
e´-M´ N´-
B
A
e´´
M´´
N´´
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
3. Se hasta situarlos en
la LT, en A´B´, de manera que las nuevas trazas
horizontales
giran los puntos A y B
´y ´sean perpendiculares a la LTa b1 1
a1
a1´ b1´
b1
b2
a2
e´-M´ N´-
B
A
A´ B´
e´´
M´´
N´´
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
4. Uniendo A´y B´con M´´ y N´´ respectivamente
obtenemos 2´y 2´.a b
a1
b1
b2
a2
e´-M´ N´-
B
A
A´ B´
e´´
M´´
N´´
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
a1´
a2´
b1´
b2´
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sean dos planos y , calcular la distancia entre ellos
mediante giros
a b
5. La distancia que separa los dos planos es
perpendicularmente ( ), ya que al ser
dos planos proyectantes esta distancia se convierte
en una y su proyección
vertical está en
la distancia que separa sus nuevas proyecciones
verticales PQ
recta frontal,
verdadera magnitud
a1
b1
b2
a2
e´-M´ N´-
B
A
A´
P
Q
B´
e´´
M´´
N´´VM
DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS
a1´
a2´
b1´
b2´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
P´
P´´
a2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1
e´N´
N´´
P´
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
1. Se elige como eje e una recta cualquiera,
perpendicular al PH y que esté contenida en el PV.
intersección del eje con el plano
N
La
es el punto
a
a2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1
e´N´
N´´
P´
M
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
2. Desde se traza la perpendicular
a 1 hasta cortarla en el punto M
e´
a
a2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1a1´
e´N´
N´´
P´
M
M´
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
3. hasta situarlo en la LT en M´,
de manera que
Se gira M
la nueva traza horizontal
1´sea perpendicular a la LTa
a2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1a1´
a2´
a2
e´N´
N´´
P´
M
M´
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
4. La nueva traza vertical 2´se halla
uniendo M´con N´´
a
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1a1´
a2´
a2
e´N´
N´´
P´
P1´
M
M´
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
5. Ahora giramos P el mismo ángulo que hallamos
girado , es decir, el mismo ángulo que hemos
girado M.
a
g
g
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1a1´
a2´
a2
e´N´
N´´
P´
M
M´
P´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
6. Para hallar P ´trazamos una perpendicular
a la LT desde P1´y por P´´ una paralela a la LT
1
g
g
P1´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
P1´´
Sea el punto P y el plano , calcular la distancia
entre ellos mediante giros
a
a1a1´
a2´
a2
e´N´
N´´
P´
M
M´
P´´P1´´
DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS
7. es
la distancia en del punto
P al plano
La distancia de P ´a la nueva traza ´
verdadera magnitud
1 a
a
2
g
g
P1´
VM
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Por medio de un , ,
y hallar gráficamente y
giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL
expresar numéricamente su medida real
M´´
M´
N´´
N´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Por medio de un , ,
y hallar gráficamente y
giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL
expresar numéricamente su medida real
M´´
M´
N´´=e´´
e´
N´
1. El eje e a utilizar es perpendicular por N al PV
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Por medio de un , ,
y hallar gráficamente y
giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL
expresar numéricamente su medida real
M´´
M ´´1
M ´1
M´
N´´=e´´= N ´´1
N´=N ´1
2. Alrededor del eje giramos el punto M hasta que tenga la misma cota que N.
Una vez convertido el segmento MN en horizontal de plano, su proyección horizontal
está en verdadera magnitud = 68 mm
NM =
Verdadera Magnitud
68 mm
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
e´
Tomando como eje de giro la recta e, girar el plano en el sentido inverso a las agujas del reloj
hasta que se transforme en proyectante horizontal
a
a1
a2
e´
e´´
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Tomando como eje de giro la recta e, girar el plano en el sentido inverso a las agujas del reloj
hasta que se transforme en proyectante horizontal
a
a1
a2
e´
I´
h´´ Vh´´
h´
e´´=I´´
1. Calculamos el punto I de intersección del plano con el eje e.
Este punto permanece fijo cuando se efectúa el giro. Para hallar la intersección nos
valemos de la horizontal de plano h
a
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Tomando como eje de giro la recta e, girar el plano en el sentido inverso a las agujas del reloj
hasta que se transforme en proyectante horizontal
a
a1
a2
a2´
e´
I´
h´´
A´´
A ´´1
Vh´´
h´
e´´=I´´
2. , ya que buscamos
un plano proyectante horizontal. Este giro consiste en girar A´´, pie de la perpendicular por e´´ a
en el sentido indicado hasta que tenga la misma cota que e
Giramos la traza 2, hasta convertirla en 2´, perpendicular a la LTa a
a2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
Tomando como eje de giro la recta e, girar el plano en el sentido inverso a las agujas del reloj
hasta que se transforme en proyectante horizontal
a
a1
a2
a2´
a1´
e´
I´=I ´1
h´´
A´´
A ´´1
Vh´´
h´
e´´=I´´=I ´´1
3. La nueva traza horizontal ´pasa por la intersección de ´con la LT y el punto I´, intersección
del eje e con
a a
a
1 2
DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS

S. DIÉDRICO. GIROS

  • 1.
    DIBUJO TÉCNICO II.2º BACHILLERATO GIROS T 10. SISTEMA DIÉDRICO III a1 a2 a2´ e´ I´ h´´ A´´ A ´´1 Vh´´ h´ e´´=I´´
  • 2.
    En , (adiferencia de los cambios de plano, donde cambiábamos los planos y los elementos permanecían quietos) LOS GIROS son los elementos geométricos los que se mueven GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. HORIZONTAL. Datos: punto P y eje e (1 de 4) Cuando un punto gira alrededor de una recta, , el centro es la intersección de la recta con el plano y el radio es la distancia del punto a la recta DESCRIBE UNA CIRCUNFERENCIA CUYO PLANO ES PERPENDICULAR A LA RECTA El EJE DE GIRO será siempre una o unarecta vertcal recta de punta e´´ P´ e´ P´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 3.
    1. Haciendo centroen la proyección horizontal del eje y se describe un arco de un determinado ángulo y sentido, hasta la posición . e´ radio P´ P e´ 1´ P1´ GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. HORIZONTAL. Datos: punto P y eje e (2 de 4) e´´ P´ e´ P´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 4.
    2. Por laproyección vertical P´´, se traza una paralela a la LT, traza vertical del plano que contiene a la circunferencia del giro a2 a2 GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. HORIZONTAL. Datos: punto P y eje e (3 de 4) P1´ e´´ P´ P´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 5.
    3. Por lanueva proyección horizontal P ´, se traza la a la paralela anterior ( ) 1 2 perpendicular a la LT hasta cortar en P ´´1 a a2 GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. HORIZONTAL. Datos: punto P y eje e (4 de 4) P1´ P1´´ e´´ P´ P´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 6.
    GIRO DE UNPUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. VERTICAL Datos: punto P y eje e (1 de 4) P´´ e´´ e´P´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 7.
    P´´ e´´ e´ 1. Haciendo centroen la proyección vertical del eje y se describe un arco de un determinado ángulo y sentido, hasta la posición . e´´ radio P´´ P ´ e´´ 1 P´ GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. VERTICAL Datos: punto P y eje e (2 de 4) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS P1´´
  • 8.
    P´´ e´´ e´ a1 2. Por laproyección horizontal P´´, se traza una paralela a la LT, traza horizontal del plano que contiene a la circunferencia del giro a1 P´ GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. VERTICAL Datos: punto P y eje e (3 de 4) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS P1´´
  • 9.
    P´´ P1´´ e´´ e´ a1 P´ P1´ 3. Porla nueva proyección vertical P ´, se traza la a la paralela anterior ( ) 1 1 perpendicular a la LT hasta cortar en P ´1 a GIRO DE UN PUNTO ALREDEDOR DE UN EJE PERPENDICULAR AL P. VERTICAL Datos: punto P y eje e (4 de 4) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 10.
    GIRO DE UNARECTA r´´ e´ e´´ Vr´´ Hr´ A´´ A´ Existen dos casos : 1. Que la recta 2. Que la recta corte al eje (MÁS FRECUENTE) no corte al eje GIRO DE UNA RECTA QUE CORTA AL EJE. Girar la recta r, que corta al eje e, perpendicular al plano horizontal, en el punto A. )(1 de 4 r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 11.
    GIRO DE UNARECTA B´ B´´ 1. Se elige un punto arbitrario B de la recta r GIRO DE UNA RECTA QUE CORTA AL EJE. Girar la recta r, que corta al eje e, perpendicular al plano horizontal, en el punto A. (2 de 4) r´´ e´ e´´ Vr´´ Hr´ A´´ r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 12.
    GIRO DE UNARECTA B1´ B1´´ 2. Se gira el punto B alrededor del eje un ángulo determinado hasta colocarlo en su nueva posición B ´B ´´.1 1 GIRO DE UNA RECTA QUE CORTA AL EJE. Girar la recta r, que corta al eje e, perpendicular al plano horizontal, en el punto A. (3 de 4) B´ B´´ r´´ e´ e´´ Vr´´ Hr´ A´´ r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 13.
    GIRO DE UNARECTA r1´´ r1´ Hr1´A1 B´ 3. Se une B´con A´, que, como pertenece al eje es un punto doble. Así obtenemos la recta r ´, que es la recta dada girada. 1 GIRO DE UNA RECTA QUE CORTA AL EJE. Girar la recta r, que corta al eje e, perpendicular al plano horizontal, en el punto A. (4 de 4) B B´´ r´´ e´ e´´ Vr´´ Hr´ A´´ r´ B1´ B1´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 14.
    GIRO DE UNARECTA r´´ r´ CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (1 de 6) Vr´´ Hr´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 15.
    GIRO DE UNARECTA r´ e1-A´ e´´ A´´ 1.Se traza un eje e cualquiera, perpendicular al plano horizontal, que corte a la recta r. La intersección entre r y e es el punto A CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (2 de 6) r´´ Vr´´ Hr´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 16.
    GIRO DE UNARECTA r´ e´-A´ e´´ A´´ B´´ B´ 2. Se elige un punto cualquiera B de la recta r CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (3 de 6) r´´ Vr´´ Hr´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 17.
    GIRO DE UNARECTA r´ e´-A´ e´´ A´´ B´´ B´B1´ 3. Haciendo centro en e´ y de radio e´B´, trazamos un arco de forma que B ´ y A´ estén alineados según la paralela a la LT 1 CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (4 de 6) r´´ Vr´´ Hr´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 18.
    GIRO DE UNARECTA r´ e´-A´ e´´ A´´ B´´ B´B1´ B1´´ 4. Hallamos la , trazando por B´´ la paralela a la LT, y por B ´, la perpendicular. proyección vertical B ´´1 1 CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (5 de 6) r´´ Hr´ Vr´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 19.
    GIRO DE UNARECTA r1´ r1´´ r´ e´-A´ e´´ A´´ B´´ B´B1´ B1´´ 5. Unimos el punto B con A y ya hemos girado la recta hasta hacerla frontal CONVERSIÓN DE UNA RECTA CUALQUIERA EN FRONTAL MEDIANTE GIRO. Dada la recta r, convertirla en recta frontal mediante un giro. (6 de 6) r´´ Vr´´ Hr´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 20.
    GIRO DE UNARECTA Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado a 15 mm del punto A. (1 de 5) O B´´ A´ B´ A´´ r´´ r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 21.
    GIRO DE UNARECTA Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado a 15 mm del punto A. (2 de 5) O A-e´ 1. Hallamos la recta r mediante las coordenadas de sus puntos A y B, y trazamos un eje perpendicular al PH que corte a la recta en el punto Ar e´´ B´´ A´ B´ A´´ r´´ r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 22.
    GIRO DE UNARECTA Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado a 15 mm del punto A. (3 de 5) O B1´´ r1´ r1´´ B1´ 2. Elegimos un punto cualquiera, que puede ser el B, y se gira hasta La proyección horizontal ´ debe quedar paralela a la LT convertir la recta r en frontal. r1 A-e´ e´´ B´´ A´ B´ A´´ r´´ r´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 23.
    GIRO DE UNARECTA Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado a 15 mm del punto A. (4 de 5) 3. Sobre la proyección vertical ´, que está en verdadera magnitud y a partir del punto A, se toma la distancia A´´C ´´= 15 mm r1 1 O A´´ B´´ C ´1 ´ B1´ r´´ 15 mm r´ B´ B1´A´-e´ e´´ r1´ r1´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 24.
    GIRO DE UNARECTA Dada la recta r: A (-5, 20, 5) B (10, 5, 15), hallar un punto C situado a 15 mm del punto A. (5 de 5) 4. : Por C ´´ se traza la paralela a la LT hasta , obteniendo C´´, y siendo C´ la proyección horizontal Se restituye el punto C a la posición original de la recta r 1 r´´ O A´´ B´´ C1´´ C´´ C´ B1´´ r´´ 15 mm r1 B´ B1´A´-e´ e´´ r1´´ r1´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 25.
    GIRO DE UNPLANO a1 e´´ e´ a2 O Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. (1 de 6) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 26.
    GIRO DE UNPLANO Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. (2 de 6) a2 a1 e´´ e´-A´ A´´ r´´Vr´´ r´ 1. Se halla el punto A de intersección del plano con el eje. Para ello trazamos la horizontal , de forma que pase por , coincidiendo A´ con r r´ e´ e´ O DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 27.
    GIRO DE UNPLANO a2 a1 e´´ e´-A´ M A´´ r´´Vr´´ r´ 2. Se para ello se elige un gira la traza horizontal 1. punto M de intersección de la traza con la perpendicular trazada desde a a1 e´ O Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. (3 de 6) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 28.
    GIRO DE UNPLANO a2 a1 e´´ e´-A´ M M1 A´´ r´´Vr´´ r´ 3. A continuación, se gira el punto M el ángulo necesario hasta la posición M .1 O Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. (4 de 6) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 29.
    GIRO DE UNPLANO a2 a1 a1´ e´´ e´-A´ M O´O A´´ r´´Vr´´ r´ 4. Se traza por M la , que corta a la LT en 1 perpendicular al segmento M O´, nuevo vértice del plano girado a1´ 1 ´e M1 Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. 5 de 6) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 30.
    GIRO DE UNPLANO 5. La nueva traza vertical ´ parte del nuevo vértice O´. Para hallar otro punto de la nueva traza, se halla la a a 2 traza vertical V ´´, que tiene su proyección horizontal ´, paralela a ´. r r 1 1 1 a2 a1 a1´ a1´´ e´´ e´-A´ M O´O A´´ r´´-r1´´Vr´´ Vr ´´1 r´ r ´1 M1 Dado el plano y el eje e perpendicular al PH, realizar un GIRO DEL PLANO a a. (6 de 6) DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 31.
    a1 b1 b1 a2 DISTANCIA ENTRE DOSPLANOS PARALELOS MEDIANTE GIROS Sean dos planos y , calcular la distancia entre ellos mediante giros a b DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 32.
    1. Se tratade dos planos paralelos que mediante giros vamos a transformar en planos proyectantes verticales, para lo cual Las son los puntos respectivamente se elige como eje e una recta cualquiera, perpendicular al PH y que esté contenida en el PV. intersecciones del eje con los planos y M y N a b DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS a1 b1 b2 a2 e´-M´ N´- e´´ M´´ N´´ Sean dos planos y , calcular la distancia entre ellos mediante giros a b DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 33.
    2. Desde laproyección del eje se traza la perpendicular a las trazas horizontales y , hasta cortarlas en A y B e´ a b1 1 DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS a1 b1 b2 a2 e´-M´ N´- B A e´´ M´´ N´´ Sean dos planos y , calcular la distancia entre ellos mediante giros a b DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 34.
    3. Se hastasituarlos en la LT, en A´B´, de manera que las nuevas trazas horizontales giran los puntos A y B ´y ´sean perpendiculares a la LTa b1 1 a1 a1´ b1´ b1 b2 a2 e´-M´ N´- B A A´ B´ e´´ M´´ N´´ DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS Sean dos planos y , calcular la distancia entre ellos mediante giros a b DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 35.
    4. Uniendo A´yB´con M´´ y N´´ respectivamente obtenemos 2´y 2´.a b a1 b1 b2 a2 e´-M´ N´- B A A´ B´ e´´ M´´ N´´ DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS a1´ a2´ b1´ b2´ Sean dos planos y , calcular la distancia entre ellos mediante giros a b DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 36.
    Sean dos planosy , calcular la distancia entre ellos mediante giros a b 5. La distancia que separa los dos planos es perpendicularmente ( ), ya que al ser dos planos proyectantes esta distancia se convierte en una y su proyección vertical está en la distancia que separa sus nuevas proyecciones verticales PQ recta frontal, verdadera magnitud a1 b1 b2 a2 e´-M´ N´- B A A´ P Q B´ e´´ M´´ N´´VM DISTANCIA ENTRE DOS PLANOS PARALELOS MEDIANTE GIROS a1´ a2´ b1´ b2´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 37.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1 DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS P´ P´´ a2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 38.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1 e´N´ N´´ P´ P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 1. Se elige como eje e una recta cualquiera, perpendicular al PH y que esté contenida en el PV. intersección del eje con el plano N La es el punto a a2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 39.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1 e´N´ N´´ P´ M P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 2. Desde se traza la perpendicular a 1 hasta cortarla en el punto M e´ a a2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 40.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1a1´ e´N´ N´´ P´ M M´ P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 3. hasta situarlo en la LT en M´, de manera que Se gira M la nueva traza horizontal 1´sea perpendicular a la LTa a2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 41.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1a1´ a2´ a2 e´N´ N´´ P´ M M´ P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 4. La nueva traza vertical 2´se halla uniendo M´con N´´ a DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 42.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1a1´ a2´ a2 e´N´ N´´ P´ P1´ M M´ P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 5. Ahora giramos P el mismo ángulo que hallamos girado , es decir, el mismo ángulo que hemos girado M. a g g DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 43.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1a1´ a2´ a2 e´N´ N´´ P´ M M´ P´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 6. Para hallar P ´trazamos una perpendicular a la LT desde P1´y por P´´ una paralela a la LT 1 g g P1´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS P1´´
  • 44.
    Sea el puntoP y el plano , calcular la distancia entre ellos mediante giros a a1a1´ a2´ a2 e´N´ N´´ P´ M M´ P´´P1´´ DISTANCIA DE UN PUNTO A UN PLANO MEDIANTE GIROS 7. es la distancia en del punto P al plano La distancia de P ´a la nueva traza ´ verdadera magnitud 1 a a 2 g g P1´ VM DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 45.
    Por medio deun , , y hallar gráficamente y giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL expresar numéricamente su medida real M´´ M´ N´´ N´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 46.
    Por medio deun , , y hallar gráficamente y giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL expresar numéricamente su medida real M´´ M´ N´´=e´´ e´ N´ 1. El eje e a utilizar es perpendicular por N al PV DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 47.
    Por medio deun , , y hallar gráficamente y giro alrededor de un eje que contenga al punto N convertir al segmento MN en HORIZONTAL expresar numéricamente su medida real M´´ M ´´1 M ´1 M´ N´´=e´´= N ´´1 N´=N ´1 2. Alrededor del eje giramos el punto M hasta que tenga la misma cota que N. Una vez convertido el segmento MN en horizontal de plano, su proyección horizontal está en verdadera magnitud = 68 mm NM = Verdadera Magnitud 68 mm DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS e´
  • 48.
    Tomando como ejede giro la recta e, girar el plano en el sentido inverso a las agujas del reloj hasta que se transforme en proyectante horizontal a a1 a2 e´ e´´ DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 49.
    Tomando como ejede giro la recta e, girar el plano en el sentido inverso a las agujas del reloj hasta que se transforme en proyectante horizontal a a1 a2 e´ I´ h´´ Vh´´ h´ e´´=I´´ 1. Calculamos el punto I de intersección del plano con el eje e. Este punto permanece fijo cuando se efectúa el giro. Para hallar la intersección nos valemos de la horizontal de plano h a DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 50.
    Tomando como ejede giro la recta e, girar el plano en el sentido inverso a las agujas del reloj hasta que se transforme en proyectante horizontal a a1 a2 a2´ e´ I´ h´´ A´´ A ´´1 Vh´´ h´ e´´=I´´ 2. , ya que buscamos un plano proyectante horizontal. Este giro consiste en girar A´´, pie de la perpendicular por e´´ a en el sentido indicado hasta que tenga la misma cota que e Giramos la traza 2, hasta convertirla en 2´, perpendicular a la LTa a a2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS
  • 51.
    Tomando como ejede giro la recta e, girar el plano en el sentido inverso a las agujas del reloj hasta que se transforme en proyectante horizontal a a1 a2 a2´ a1´ e´ I´=I ´1 h´´ A´´ A ´´1 Vh´´ h´ e´´=I´´=I ´´1 3. La nueva traza horizontal ´pasa por la intersección de ´con la LT y el punto I´, intersección del eje e con a a a 1 2 DT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T8. S. DIÉDRICO I. INTERSECCIONES ENTRE PLANOS Y RECTASDT II T10 S. DIÉDRICO III. GIROS