SlideShare una empresa de Scribd logo
1 de 12
Cuaderno de Actividades: Física I




  5) Mecánica del Cuerpo
          Rígido




Lic. Percy Víctor Cañote Fajardo    133
Cuaderno de Actividades: Física I



5) Mecánica del Cuerpo Rígido
5,1) Definición de CR

Es un sistema de partículas especial que no se deforma bajo el rango de
fuerzas que actúa sobre el. Se adopta para poder describir la componente
ROTACIONAL del movimiento de los cuerpos.



SP
                                                i dij
n↔∞                                                      j
dij ≡ cte


CR → cuerpos indeformables


5,2) Movimiento del Cuerpo Rígido

    El Movimiento del CR, en el caso planar, se puede describir de la siguiente
    manera,



                  Traslación                            rotación
        Mov. CR ≡ de un punto               +           en torno de
                  del CR                                dicho punto
                  → CM                                  → CM




                 cm

                              w
                                   cm
                                        
                                        v




Esta descomposición de movimientos ya ha sido vista en otros casos,




Lic. Percy Víctor Cañote Fajardo                                           134
Cuaderno de Actividades: Física I



“Mov. Parabólico” MP ≡ MRUx “+” MRUVy




i) Traslación

0’ = CM

           
r ≡ r0'/ 0 + r '
           
v ≡ v0'/ 0 + v '
           
a ≡ a0'/ 0 + a '
                 
  FR ≡ FR , ext ≡ MaCM




ii) Rotación

               d 
  τ R ,ext ≡      L
               dt


  ↑
                     ↑
                       
  F                   p
 
                           
τF ≡r xF                   L≡rx p

O: → pto fijo
   → CM
   → mov // al CM


Cuando las rotaciones se efectúan bajo un eje especial, llamado eje principal
                    
de inercia, EPI, al L se puede escribir así:
    
L = Iw ← EPI

I: momento de inercia respecto al EPI

            d 
τ R ,ext ≡
           dt
                  { 
               L ≡ Iw       }
→                  ↑ xyz
             
                 
          ≡ Iw = Iα


Lic. Percy Víctor Cañote Fajardo                                         135
Cuaderno de Actividades: Física I


            
τ R ,ext ≡ Iα

    El I tendría su equivalente en m, representando por lo tanto inercia
rotacional,

→      I≡M


Momento de Inercia, I
                                                            
La expresión general de I se extrae de la forma general del L , esto es,
          
L≡    ∫ r × v dm
     CR

                 
y, escribiendo v ≡ ω × r , con lo cual,

                              
L≡    ∫ r × v dm ≡ ∫ r × (ω × r ) dm , reemplazando el triple producto vectorial,
     CR                 CR


                  
r × (ω × r ) ≡ r 2ω − ( r .ω )r , entonces,

      ∫ r × v dm ≡ ∫ r × (ω × r ) dm ≡ ∫ { r ω − (r .ω )r } dm , desarrollando la integral y
                                                          
L≡                                                   2

     CR                 CR                CR



ordenando términos obtendríamos la expresión tensorial,
 t
L ≡ Iω
      t
donde I es el tensor de inercia descrito por,

    I          I xy   I xz 
t  xx                      
I ≡  I yx      I yy   I yz 
     I zx      I zy   I zz 
                           

en la cual las formas I ij son los productos de inercia y I ii los momentos
principales.

Los momentos principales siempre pueden escribirse de esta forma,

                             ξ


                                                ∫r
                                         ξ
                                       I CR ≡        2
                                                         dm
                                                CR




             
             r dm
Lic. Percy Víctor Cañote Fajardo                                                          136
Cuaderno de Actividades: Física I




iii) Energía


            1 2 1  
    EkR ≡     Iw ≡ L ⋅ w
            2     2

            
EPI: L ≡ I ⋅ w

EM ≡ E k + E p


Si
           
→ ∃ Fnc ∨ w Fnc ≡ 0 → E M ≡ cte

→ EM ≡ EKT + EkR + E p




S5P13) Halle los Is respecto a lo ejes x e y del cono circular recto de masa m y
       dimensiones representadas en la figura.
       Y



                               e

       0
                           h        x



z
 Y


                disco                     x, y
                                        I CR ≡ ???

                   rx
Z
                   x       h        X



Lic. Percy Víctor Cañote Fajardo                                            137
Cuaderno de Actividades: Física I




a) ξ ≡ x

Discos:

      ξ

                Asumiendo anillos de masa dm
                  ξ
                I disco ≡ ∫ dI
                            {
M
       R              anillos




Anillos:



                           Asumiendo pequeños arcos de masa dm,
                             ξ
      dm                   I anillo ≡ ∫ R 2 dm
                Ma
            R               Iξ ≡ R 2M
                             anillo

                                ≡ Ma R 2




                                    ∫
                      ξ
Regresando al disco: Idisco ≡              r 2 dm
                                   disco



anillo: dm ↔ M(masa del disco)


 da
                 dm                M 
           0 r dr r    dm ≡ σda ≡    2  {2πrdr}
                                   πR 



Lic. Percy Víctor Cañote Fajardo                                  138
Cuaderno de Actividades: Física I

     2M
≡       rdr
     R2


            { ∫ r dr }
                                                             4            2
                 R              2M           2M          R           MR
→ Iξ =                3
                                         ≡           x           =
                 0              R
                                     2
                                             R
                                                 2
                                                         4           2


                                dm 2
Iξ≡ x ≡ ∫ dIdisco ≡ ∫
 cono
            ξ
                                   r ( x)
                                 2
         ρ
        }
        m  2
          { πr ( x ) dx} r ( x ) ; r ( x ) = x , ρ =
                            2                 e        dm
      ≡∫ 
         V                                    h        dV
                   2

      ≡ ... ?


b) ξ ≡ y

Iξ≡ y ≡ ?
 cono




        z



                                 Teorema cuerpos planos: Iz = Ix + Iy

 x                     y



 M

                               Teorema de Steiner: I ≡ Icm + Md2
        cm



             d




 Y                              Y’


                     disco
                                                                                           Y’
                                                                              disco

                          rx
Z                               Z'                                                    Z’    X
                          x                      h                   X




Lic. Percy Víctor Cañote Fajardo                                                                139
Cuaderno de Actividades: Física I




→ Idisco ≡ I y ′ + I z′ ≡ 2Idisco
   x                        y′




y ′ // y        dI y ≡ dI cm + dm x 2 ≡ dI y ' + dm x 2

                    I y ≡ ∫ dI y

                I y ≡ ...?


S5P3) Una polea de doble peso tiene una masa de 100 kg y un radio de giro de
0,25 m. De los cables que se enrollan en la periferia de la polea cuelgan 2
pesas iguales de w = 200 N. Suponiendo que la fricción en el eje de apoyo y la
masa de los cables se desprecian, determine la aceleración del cuerpo que
baja. Use r2 = 2r1 ≡ 0,4 m.

SOLUCION:


   α
               r1      r2 P
           0
     Q
     T1
                           T2

 a1
   w 1

                         2 w ↓ a2 ≡ atp ≡ r2 α




Radio de giro: Es el radio que tendría una partícula de masa M de tal manera
        ξ         ξ
que su I ≡ MR ≡ I CR . El radio de giro asociado a un cuerpo debe interpretarse
               2


como el radio de una partícula de igual masa con idéntico I respecto del
mismo eje.


                ξ                                         ξ


                                M




Lic. Percy Víctor Cañote Fajardo                                           140
Cuaderno de Actividades: Física I

                                           ξ      ξ
≡                       R             M   Icr ≡ I part ≡ MR   2




En el caso de nuestro problema, es el radio que tendría una partícula con la
misma masa del cuerpo de tal manera que su I sea igual al de la polea
respecto de su eje axial.

Por lo tanto, usando la información del radio de giro de la polea, determinamos
su momento de inercia respecto a su eje axial,

Radio de giro: I ≡ MR2 ← R=0,25 y M=100

Iξ ≡ 100 (0,25)2 ≡ 6,25; ξ : eje axial


Analizando el disco:

                      atP     a
τ R ,ext ≡ Iα ≡ I ξ       ≡ Iξ 2
                      r2       r2

                      a2
 T2 r2 − T1r1 = I ξ      ...(1)
                      r2

Analizando cuerpo 2:

            w
w − T2 ≡      a2 ...(2)
            g

Analizando cuerpo 1:

            w                       ar
 T1 − w =     a1 ; a1 ≡ atQ ≡ α r1 ≡ 2 1
            g                        r2

            w a2 r1 w r1
T1 − w ≡           ≡      a2 ...(3)
            g r2     g r2

Tenemos un sistema consistente donde podemos calcular a2, T1 y T2, …
calcule!?
S5P4) Una cuerda pasa por una polea sin rozamiento, según indica la figura,
llevando una masa M1 en un extremo y estando enrollada por el otro a un
cilindro de masa M2 que rueda sobre un plano horizontal, ¿Cuál es la
aceleración de la
masa M1?
                                          m2
                                  µ

                                           p
                                                                  m1 ↓ a1
Lic. Percy Víctor Cañote Fajardo                                            141
Cuaderno de Actividades: Física I




SOLUCION:


  DCL (m1):                                                  DCL (m2):
                                                                    Q         T
               T
                                                                         W2

                      ↓ a1                                     f
              W1
                                                                         N



2da Ley traslasional para m1:

w1 − T ≡ m1a1...(1)


2da Ley rotacional para m2:

             ξp
τ R ,ext = I discoα : P se mueve paralelo al CM


                      1                          a    a
T ( 2r ) = I discoα ≡  M 2 r 2 + r 2 M 2  α , α ≡ tQ ≡ 1
             ξp

                      2                          2r 2r


   3
T ≡ m2 a1...( 2)
   8

Una vez mas, tenemos un sistema consistente de ecuaciones, donde podemos
calcular a1 y T,…calcule!?

¿? Es posible calcular la fuerza de fricción.

¿? Que tipo de fricción es.

¿? Y como se mueve el CM.



Lic. Percy Víctor Cañote Fajardo                                                  142
Cuaderno de Actividades: Física I



S5P5) La rueda O pesa 650 N y rueda a lo largo de un plano horizontal (figura.
El radio de giro de la masa de la rueda con respecto a su eje geométrico es (
  2
    ) m. El coeficiente de fricción entre la rueda y el plano es 0,25. Determine la
 3
aceleración del centro de la rueda y la aceleración angular de la rueda.


SOLUCION:


                                30N


                                                 50N
                            µ

                                       p          f




El efecto de giro de F1 = 30N respecto de P, es mayor que el de F2 ≡ 50 N.
Ahora, fíjense, el efecto traslasional de F2 es mayor que F1. Ambos enfoques
son consistentes con la fuerza de fricción f. Por lo tanto, el cuerpo se moverá
hacia la izquierda.

a) De lo anterior, aplicando la 2da Ley,

                                      w             30 + (0, 25 × 650) − 50
      FR ≡ ma CM →      30 + f − 50 =   acm → acm ≡                         ≡ 2, 2
                                      g                       65

b) α ≡ ?

Por la condición de rodadura, desde el punto P se observa la acm,

acm ≡ αr, donde r: radio de la rueda.

         a cm
αcm ≡
          r

Para calcular dicho radio, hacemos uso del radio de giro de la rueda,


                2
 ξ        Mr            ξ
I ≡
 cr                 ≡ I part ≡ MR ,ξ : eje axial del disco
                                  2


            2

1 2
  Mr ≡ MR 2 , R ≡ Rgiro
2


Lic. Percy Víctor Cañote Fajardo                                                       143
Cuaderno de Actividades: Física I



r = 2R

           2 2
r= 2        =
          3   3

        acm    2,2
αcm ≡       ≡         ≡ 3,3
         r    (2 / 3)




Lic. Percy Víctor Cañote Fajardo    144

Más contenido relacionado

La actualidad más candente

C A P 1 2 Cinematica De Una Particula 1 31 2011 I
C A P 1 2   Cinematica De Una Particula  1 31 2011 IC A P 1 2   Cinematica De Una Particula  1 31 2011 I
C A P 1 2 Cinematica De Una Particula 1 31 2011 IManuel Mendoza
 
Cap9 inductancia
Cap9 inductanciaCap9 inductancia
Cap9 inductanciagoku10
 
Cap2 campo electrico y ley de gauss
Cap2 campo electrico y ley de gaussCap2 campo electrico y ley de gauss
Cap2 campo electrico y ley de gaussgoku10
 
Cap 1 2- cinematica de una particula 1-31-2010 i
Cap 1 2- cinematica de una particula  1-31-2010 iCap 1 2- cinematica de una particula  1-31-2010 i
Cap 1 2- cinematica de una particula 1-31-2010 i0g4m3
 
Cap3 ley de gauss y ley de coulumb
Cap3 ley de gauss y ley de coulumbCap3 ley de gauss y ley de coulumb
Cap3 ley de gauss y ley de coulumbgoku10
 
Cap 5 condensadores y dielectricos 81-97
Cap 5 condensadores y dielectricos 81-97Cap 5 condensadores y dielectricos 81-97
Cap 5 condensadores y dielectricos 81-97SENCICO
 
Cap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaCap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaDiego De la Cruz
 
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiSENCICO
 
Clase intro mec_polares_3
Clase intro mec_polares_3Clase intro mec_polares_3
Clase intro mec_polares_3arnaugm
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45katerin
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45SENCICO
 

La actualidad más candente (12)

CINEMATICA
CINEMATICACINEMATICA
CINEMATICA
 
C A P 1 2 Cinematica De Una Particula 1 31 2011 I
C A P 1 2   Cinematica De Una Particula  1 31 2011 IC A P 1 2   Cinematica De Una Particula  1 31 2011 I
C A P 1 2 Cinematica De Una Particula 1 31 2011 I
 
Cap9 inductancia
Cap9 inductanciaCap9 inductancia
Cap9 inductancia
 
Cap2 campo electrico y ley de gauss
Cap2 campo electrico y ley de gaussCap2 campo electrico y ley de gauss
Cap2 campo electrico y ley de gauss
 
Cap 1 2- cinematica de una particula 1-31-2010 i
Cap 1 2- cinematica de una particula  1-31-2010 iCap 1 2- cinematica de una particula  1-31-2010 i
Cap 1 2- cinematica de una particula 1-31-2010 i
 
Cap3 ley de gauss y ley de coulumb
Cap3 ley de gauss y ley de coulumbCap3 ley de gauss y ley de coulumb
Cap3 ley de gauss y ley de coulumb
 
Cap 5 condensadores y dielectricos 81-97
Cap 5 condensadores y dielectricos 81-97Cap 5 condensadores y dielectricos 81-97
Cap 5 condensadores y dielectricos 81-97
 
Cap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaCap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particula
 
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
 
Clase intro mec_polares_3
Clase intro mec_polares_3Clase intro mec_polares_3
Clase intro mec_polares_3
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 

Destacado

Clima organizacional
Clima organizacionalClima organizacional
Clima organizacionalCECY50
 
09. sistema de partículas
09. sistema de partículas09. sistema de partículas
09. sistema de partículasleonardoenginer
 
Problemas de dinamica de un sistema de partículas
Problemas de dinamica de un sistema de partículasProblemas de dinamica de un sistema de partículas
Problemas de dinamica de un sistema de partículasJulio Corona Corona
 
Desarrollo empresarial socioproductivo web
Desarrollo empresarial socioproductivo webDesarrollo empresarial socioproductivo web
Desarrollo empresarial socioproductivo webFrancis Medina
 
Dinámica v sistema de partículas
Dinámica v   sistema de partículasDinámica v   sistema de partículas
Dinámica v sistema de partículasSergio Silvestri
 
Los estados de la materia
Los estados de la materiaLos estados de la materia
Los estados de la materiaJule Duarte
 
06 13 fisica-trabajo_energia_97
06   13 fisica-trabajo_energia_9706   13 fisica-trabajo_energia_97
06 13 fisica-trabajo_energia_97Quimica Tecnologia
 
Sistema de Particulas
Sistema de ParticulasSistema de Particulas
Sistema de Particulasatachme
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Andrea Alarcon
 
Trabajo y energia (fisica)
Trabajo y energia (fisica)Trabajo y energia (fisica)
Trabajo y energia (fisica)Christian Trvr
 
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdf
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdfFisica Vol I Alonso Finn Mecánica y Cinemática español pdf
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdfJorge Sanchez
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Michel Lizarazo
 
Fisica 1 Problemas resueltos, libro de alonso y finn
Fisica 1 Problemas resueltos, libro de alonso y finnFisica 1 Problemas resueltos, libro de alonso y finn
Fisica 1 Problemas resueltos, libro de alonso y finnLuis Krlos Hdz
 
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...enrique0975
 
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA Izion warek human
 
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓN
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓNEJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓN
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓNYokain
 

Destacado (20)

PROBLEMAS DE TRABAJO
PROBLEMAS DE TRABAJOPROBLEMAS DE TRABAJO
PROBLEMAS DE TRABAJO
 
Clima organizacional
Clima organizacionalClima organizacional
Clima organizacional
 
09. sistema de partículas
09. sistema de partículas09. sistema de partículas
09. sistema de partículas
 
Problemas de dinamica de un sistema de partículas
Problemas de dinamica de un sistema de partículasProblemas de dinamica de un sistema de partículas
Problemas de dinamica de un sistema de partículas
 
Desarrollo empresarial socioproductivo web
Desarrollo empresarial socioproductivo webDesarrollo empresarial socioproductivo web
Desarrollo empresarial socioproductivo web
 
Dinámica v sistema de partículas
Dinámica v   sistema de partículasDinámica v   sistema de partículas
Dinámica v sistema de partículas
 
Los estados de la materia
Los estados de la materiaLos estados de la materia
Los estados de la materia
 
06 13 fisica-trabajo_energia_97
06   13 fisica-trabajo_energia_9706   13 fisica-trabajo_energia_97
06 13 fisica-trabajo_energia_97
 
Sistema de Particulas
Sistema de ParticulasSistema de Particulas
Sistema de Particulas
 
Física I: Sistema de particulas
Física I:   Sistema de particulasFísica I:   Sistema de particulas
Física I: Sistema de particulas
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2
 
Trabajo y energia (fisica)
Trabajo y energia (fisica)Trabajo y energia (fisica)
Trabajo y energia (fisica)
 
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdf
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdfFisica Vol I Alonso Finn Mecánica y Cinemática español pdf
Fisica Vol I Alonso Finn Mecánica y Cinemática español pdf
 
Problemas resueltos de física.
Problemas resueltos de física.Problemas resueltos de física.
Problemas resueltos de física.
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.
 
Ejercicios resueltos: ENERGÍA
Ejercicios resueltos: ENERGÍAEjercicios resueltos: ENERGÍA
Ejercicios resueltos: ENERGÍA
 
Fisica 1 Problemas resueltos, libro de alonso y finn
Fisica 1 Problemas resueltos, libro de alonso y finnFisica 1 Problemas resueltos, libro de alonso y finn
Fisica 1 Problemas resueltos, libro de alonso y finn
 
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
 
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
 
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓN
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓNEJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓN
EJERCICIOS RESUELTOS PROBLEMARIO DE VELOCIDAD Y ACELERACIÓN
 

Similar a Cap 5 dinamica de cr 133-144-2009 i

Cap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoCap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoFelipe Carrasco
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 iManuel Mendoza
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 iManuel Mendoza
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45katerin
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-450g4m3
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45SENCICO
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 ikaterin
 
Capitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaCapitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaDiego De la Cruz
 
Capitulo 4 Dinámica de Sistemas de Partículas
Capitulo 4 Dinámica de Sistemas de PartículasCapitulo 4 Dinámica de Sistemas de Partículas
Capitulo 4 Dinámica de Sistemas de PartículasDiego De la Cruz
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 i0g4m3
 
Cap 3 w y e 68-84
Cap 3 w y e  68-84Cap 3 w y e  68-84
Cap 3 w y e 68-84katerin
 
Cap 3 w y e 68-84
Cap 3 w y e  68-84Cap 3 w y e  68-84
Cap 3 w y e 68-840g4m3
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 ikaterin
 
Cap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostaticaCap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostaticagoku10
 
Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74SENCICO
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74katerin
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74katerin
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-740g4m3
 

Similar a Cap 5 dinamica de cr 133-144-2009 i (20)

Cap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígidoCap5 mecánica de un cuerpo rígido
Cap5 mecánica de un cuerpo rígido
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 i
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 i
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 i
 
Cap4 sp 99-123-2011 i
Cap4 sp 99-123-2011 iCap4 sp 99-123-2011 i
Cap4 sp 99-123-2011 i
 
Capitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaCapitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y Energía
 
Capitulo 4 Dinámica de Sistemas de Partículas
Capitulo 4 Dinámica de Sistemas de PartículasCapitulo 4 Dinámica de Sistemas de Partículas
Capitulo 4 Dinámica de Sistemas de Partículas
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 i
 
Cap 3 w y e 68-84
Cap 3 w y e  68-84Cap 3 w y e  68-84
Cap 3 w y e 68-84
 
Cap 3 w y e 68-84
Cap 3 w y e  68-84Cap 3 w y e  68-84
Cap 3 w y e 68-84
 
Cap 3 w y e 68-84
Cap 3 w y e  68-84Cap 3 w y e  68-84
Cap 3 w y e 68-84
 
Cap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 iCap4 sp 99-123-2009 i
Cap4 sp 99-123-2009 i
 
Cap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostaticaCap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostatica
 
Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 

Más de Manuel Mendoza

Más de Manuel Mendoza (20)

Sep 8 fluidos
Sep 8 fluidosSep 8 fluidos
Sep 8 fluidos
 
Sep 8 fluidos
Sep 8 fluidosSep 8 fluidos
Sep 8 fluidos
 
Cap 12-2da lt
Cap 12-2da ltCap 12-2da lt
Cap 12-2da lt
 
Cap 11 1ra lt
Cap 11 1ra ltCap 11 1ra lt
Cap 11 1ra lt
 
Cap 10 t y q
Cap 10 t y qCap 10 t y q
Cap 10 t y q
 
Cap 9 fluidos 226-239
Cap 9 fluidos 226-239Cap 9 fluidos 226-239
Cap 9 fluidos 226-239
 
Cap 8 ondas 205-225 (1)
Cap 8 ondas 205-225 (1)Cap 8 ondas 205-225 (1)
Cap 8 ondas 205-225 (1)
 
Cap 7 mas 180-204
Cap 7 mas  180-204Cap 7 mas  180-204
Cap 7 mas 180-204
 
S6 fi pvcf
S6 fi pvcfS6 fi pvcf
S6 fi pvcf
 
Cap 6 elasticidad 156-168
Cap 6 elasticidad 156-168Cap 6 elasticidad 156-168
Cap 6 elasticidad 156-168
 
5 s302 pvcf 145-155
5 s302 pvcf 145-1555 s302 pvcf 145-155
5 s302 pvcf 145-155
 
5 s302 pvcf 145-155
5 s302 pvcf 145-1555 s302 pvcf 145-155
5 s302 pvcf 145-155
 
Cap 5 dinamica de cr 133-144-2009 i
Cap 5 dinamica de cr  133-144-2009 iCap 5 dinamica de cr  133-144-2009 i
Cap 5 dinamica de cr 133-144-2009 i
 
Cap 5 dinamica de cr 133-144-2009 i
Cap 5 dinamica de cr  133-144-2009 iCap 5 dinamica de cr  133-144-2009 i
Cap 5 dinamica de cr 133-144-2009 i
 
Problema abp
Problema abpProblema abp
Problema abp
 
Problema abp puenting[1]
Problema abp puenting[1]Problema abp puenting[1]
Problema abp puenting[1]
 
Problema abp puenting[1]
Problema abp puenting[1]Problema abp puenting[1]
Problema abp puenting[1]
 
4 s302 pvcf 124-132
4 s302 pvcf  124-1324 s302 pvcf  124-132
4 s302 pvcf 124-132
 
4 s302 pvcf 124-132
4 s302 pvcf  124-1324 s302 pvcf  124-132
4 s302 pvcf 124-132
 
4 s302 pvcf 124-132
4 s302 pvcf  124-1324 s302 pvcf  124-132
4 s302 pvcf 124-132
 

Último

FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdfPaulaAnglicaBustaman
 
animalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfanimalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfSofiaArias58
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024IES Vicent Andres Estelles
 
UNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto gradoUNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto gradoWilian24
 
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIA
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIACOMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIA
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIAWilian24
 
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdfinforme-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdfAndreaTurell
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 
Planeacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxPlaneacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxSarisdelosSantos1
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptxDemetrio Ccesa Rayme
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdfVanyraCumplido
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraJavier Andreu
 
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdfsesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdfmaria luisa pahuara allcca
 
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfEFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfsalazarjhomary
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONamelia poma
 
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 20241ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024hlitocs
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOluismii249
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 

Último (20)

FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
animalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfanimalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdf
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
UNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto gradoUNIDAD 3 -MAYO - IV CICLO para cuarto grado
UNIDAD 3 -MAYO - IV CICLO para cuarto grado
 
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIA
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIACOMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIA
COMPENDIO ECE 5 GRADO MATEMÁTICAS DE PRIMARIA
 
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdfinforme-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
informe-de-laboratorio-metodos-de-separacion-de-mezclas.pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
Planeacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docxPlaneacion para 1er Grado - (2023-2024)-1.docx
Planeacion para 1er Grado - (2023-2024)-1.docx
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
 
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdfsesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
 
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfEFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 20241ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 

Cap 5 dinamica de cr 133-144-2009 i

  • 1. Cuaderno de Actividades: Física I 5) Mecánica del Cuerpo Rígido Lic. Percy Víctor Cañote Fajardo 133
  • 2. Cuaderno de Actividades: Física I 5) Mecánica del Cuerpo Rígido 5,1) Definición de CR Es un sistema de partículas especial que no se deforma bajo el rango de fuerzas que actúa sobre el. Se adopta para poder describir la componente ROTACIONAL del movimiento de los cuerpos. SP i dij n↔∞ j dij ≡ cte CR → cuerpos indeformables 5,2) Movimiento del Cuerpo Rígido El Movimiento del CR, en el caso planar, se puede describir de la siguiente manera, Traslación rotación Mov. CR ≡ de un punto + en torno de del CR dicho punto → CM → CM cm w cm  v Esta descomposición de movimientos ya ha sido vista en otros casos, Lic. Percy Víctor Cañote Fajardo 134
  • 3. Cuaderno de Actividades: Física I “Mov. Parabólico” MP ≡ MRUx “+” MRUVy i) Traslación 0’ = CM    r ≡ r0'/ 0 + r '    v ≡ v0'/ 0 + v '    a ≡ a0'/ 0 + a '    FR ≡ FR , ext ≡ MaCM ii) Rotación d  τ R ,ext ≡ L dt ↑  ↑  F p       τF ≡r xF L≡rx p O: → pto fijo → CM → mov // al CM Cuando las rotaciones se efectúan bajo un eje especial, llamado eje principal  de inercia, EPI, al L se puede escribir así:   L = Iw ← EPI I: momento de inercia respecto al EPI d  τ R ,ext ≡ dt {  L ≡ Iw } → ↑ xyz    ≡ Iw = Iα Lic. Percy Víctor Cañote Fajardo 135
  • 4. Cuaderno de Actividades: Física I  τ R ,ext ≡ Iα El I tendría su equivalente en m, representando por lo tanto inercia rotacional, → I≡M Momento de Inercia, I  La expresión general de I se extrae de la forma general del L , esto es,    L≡ ∫ r × v dm CR    y, escribiendo v ≡ ω × r , con lo cual,       L≡ ∫ r × v dm ≡ ∫ r × (ω × r ) dm , reemplazando el triple producto vectorial, CR CR        r × (ω × r ) ≡ r 2ω − ( r .ω )r , entonces,  ∫ r × v dm ≡ ∫ r × (ω × r ) dm ≡ ∫ { r ω − (r .ω )r } dm , desarrollando la integral y          L≡ 2 CR CR CR ordenando términos obtendríamos la expresión tensorial,  t L ≡ Iω t donde I es el tensor de inercia descrito por, I I xy I xz  t  xx  I ≡  I yx I yy I yz   I zx I zy I zz    en la cual las formas I ij son los productos de inercia y I ii los momentos principales. Los momentos principales siempre pueden escribirse de esta forma, ξ ∫r ξ I CR ≡ 2 dm CR  r dm Lic. Percy Víctor Cañote Fajardo 136
  • 5. Cuaderno de Actividades: Física I iii) Energía 1 2 1   EkR ≡ Iw ≡ L ⋅ w 2 2   EPI: L ≡ I ⋅ w EM ≡ E k + E p Si   → ∃ Fnc ∨ w Fnc ≡ 0 → E M ≡ cte → EM ≡ EKT + EkR + E p S5P13) Halle los Is respecto a lo ejes x e y del cono circular recto de masa m y dimensiones representadas en la figura. Y e 0 h x z Y disco x, y I CR ≡ ??? rx Z x h X Lic. Percy Víctor Cañote Fajardo 137
  • 6. Cuaderno de Actividades: Física I a) ξ ≡ x Discos: ξ Asumiendo anillos de masa dm ξ I disco ≡ ∫ dI { M R anillos Anillos: Asumiendo pequeños arcos de masa dm, ξ dm I anillo ≡ ∫ R 2 dm Ma R Iξ ≡ R 2M anillo ≡ Ma R 2 ∫ ξ Regresando al disco: Idisco ≡ r 2 dm disco anillo: dm ↔ M(masa del disco) da dm  M  0 r dr r dm ≡ σda ≡  2  {2πrdr}  πR  Lic. Percy Víctor Cañote Fajardo 138
  • 7. Cuaderno de Actividades: Física I 2M ≡ rdr R2 { ∫ r dr } 4 2 R 2M 2M R MR → Iξ = 3 ≡ x = 0 R 2 R 2 4 2 dm 2 Iξ≡ x ≡ ∫ dIdisco ≡ ∫ cono ξ r ( x) 2 ρ } m  2   { πr ( x ) dx} r ( x ) ; r ( x ) = x , ρ = 2 e dm ≡∫  V h dV 2 ≡ ... ? b) ξ ≡ y Iξ≡ y ≡ ? cono z Teorema cuerpos planos: Iz = Ix + Iy x y M Teorema de Steiner: I ≡ Icm + Md2 cm d Y Y’ disco Y’ disco rx Z Z' Z’ X x h X Lic. Percy Víctor Cañote Fajardo 139
  • 8. Cuaderno de Actividades: Física I → Idisco ≡ I y ′ + I z′ ≡ 2Idisco x y′ y ′ // y dI y ≡ dI cm + dm x 2 ≡ dI y ' + dm x 2 I y ≡ ∫ dI y I y ≡ ...? S5P3) Una polea de doble peso tiene una masa de 100 kg y un radio de giro de 0,25 m. De los cables que se enrollan en la periferia de la polea cuelgan 2 pesas iguales de w = 200 N. Suponiendo que la fricción en el eje de apoyo y la masa de los cables se desprecian, determine la aceleración del cuerpo que baja. Use r2 = 2r1 ≡ 0,4 m. SOLUCION: α r1 r2 P 0 Q T1 T2 a1 w 1 2 w ↓ a2 ≡ atp ≡ r2 α Radio de giro: Es el radio que tendría una partícula de masa M de tal manera ξ ξ que su I ≡ MR ≡ I CR . El radio de giro asociado a un cuerpo debe interpretarse 2 como el radio de una partícula de igual masa con idéntico I respecto del mismo eje. ξ ξ M Lic. Percy Víctor Cañote Fajardo 140
  • 9. Cuaderno de Actividades: Física I ξ ξ ≡ R M Icr ≡ I part ≡ MR 2 En el caso de nuestro problema, es el radio que tendría una partícula con la misma masa del cuerpo de tal manera que su I sea igual al de la polea respecto de su eje axial. Por lo tanto, usando la información del radio de giro de la polea, determinamos su momento de inercia respecto a su eje axial, Radio de giro: I ≡ MR2 ← R=0,25 y M=100 Iξ ≡ 100 (0,25)2 ≡ 6,25; ξ : eje axial Analizando el disco: atP a τ R ,ext ≡ Iα ≡ I ξ ≡ Iξ 2 r2 r2 a2 T2 r2 − T1r1 = I ξ ...(1) r2 Analizando cuerpo 2: w w − T2 ≡ a2 ...(2) g Analizando cuerpo 1: w ar T1 − w = a1 ; a1 ≡ atQ ≡ α r1 ≡ 2 1 g r2 w a2 r1 w r1 T1 − w ≡ ≡ a2 ...(3) g r2 g r2 Tenemos un sistema consistente donde podemos calcular a2, T1 y T2, … calcule!? S5P4) Una cuerda pasa por una polea sin rozamiento, según indica la figura, llevando una masa M1 en un extremo y estando enrollada por el otro a un cilindro de masa M2 que rueda sobre un plano horizontal, ¿Cuál es la aceleración de la masa M1? m2 µ p m1 ↓ a1 Lic. Percy Víctor Cañote Fajardo 141
  • 10. Cuaderno de Actividades: Física I SOLUCION: DCL (m1): DCL (m2): Q T T W2 ↓ a1 f W1 N 2da Ley traslasional para m1: w1 − T ≡ m1a1...(1) 2da Ley rotacional para m2: ξp τ R ,ext = I discoα : P se mueve paralelo al CM 1  a a T ( 2r ) = I discoα ≡  M 2 r 2 + r 2 M 2  α , α ≡ tQ ≡ 1 ξp 2  2r 2r 3 T ≡ m2 a1...( 2) 8 Una vez mas, tenemos un sistema consistente de ecuaciones, donde podemos calcular a1 y T,…calcule!? ¿? Es posible calcular la fuerza de fricción. ¿? Que tipo de fricción es. ¿? Y como se mueve el CM. Lic. Percy Víctor Cañote Fajardo 142
  • 11. Cuaderno de Actividades: Física I S5P5) La rueda O pesa 650 N y rueda a lo largo de un plano horizontal (figura. El radio de giro de la masa de la rueda con respecto a su eje geométrico es ( 2 ) m. El coeficiente de fricción entre la rueda y el plano es 0,25. Determine la 3 aceleración del centro de la rueda y la aceleración angular de la rueda. SOLUCION: 30N 50N µ p f El efecto de giro de F1 = 30N respecto de P, es mayor que el de F2 ≡ 50 N. Ahora, fíjense, el efecto traslasional de F2 es mayor que F1. Ambos enfoques son consistentes con la fuerza de fricción f. Por lo tanto, el cuerpo se moverá hacia la izquierda. a) De lo anterior, aplicando la 2da Ley, w 30 + (0, 25 × 650) − 50 FR ≡ ma CM → 30 + f − 50 =   acm → acm ≡ ≡ 2, 2 g 65 b) α ≡ ? Por la condición de rodadura, desde el punto P se observa la acm, acm ≡ αr, donde r: radio de la rueda. a cm αcm ≡ r Para calcular dicho radio, hacemos uso del radio de giro de la rueda, 2 ξ Mr ξ I ≡ cr ≡ I part ≡ MR ,ξ : eje axial del disco 2 2 1 2 Mr ≡ MR 2 , R ≡ Rgiro 2 Lic. Percy Víctor Cañote Fajardo 143
  • 12. Cuaderno de Actividades: Física I r = 2R 2 2 r= 2 = 3 3 acm 2,2 αcm ≡ ≡ ≡ 3,3 r (2 / 3) Lic. Percy Víctor Cañote Fajardo 144