SlideShare una empresa de Scribd logo
1 de 15
CÁLCULO DE ÁREAS SOMBREADAS
EJEMPLOS ILUSTRATIVOS
Pregunta 8
Si ABCD es un cuadrado de 4 m de lado y "O" es centro, entonces el área de la
región sombreada es:
Entonces el área de la región sombreada es un triángulo, que es igual a la cuarta
parte del cuadrado.
A = 42 /4 = 4 m2
Pregunta 9
Sabiendo que ABCD es un rectángulo, calcular el área de la región sombreada:
Solución:
Dividimos los triángulos en áreas más simples tal como se muestra en la siguiente
figura:
Pregunta 10
Sabiendo que el lado del cuadrado ABCD mide 4 m y que M y N son puntos medios,
calcular el área de la región sombreada.
Solución:
En el siguiente gráfico indicamos las distancias deacuerdo a los datos del problema:
Calculamos el área sombreada restando al área del cuadrado menos dos veces el
área del triángulo menos la cuarta parte del área del círculo.
1) En la figura se tiene un cuadrado de lado ℓ = 4 cm. En las esquinas se tiene 4 cuadrados
de lado ℓ/3. Calcular el área de la región sombreada
Solución:
a) Cálculo del área del cuadrado de ℓ = 4 cm :
A = ℓ2 = (4cm)2 = 16 cm2
b) Cálculo del área del cuadrado de lado ℓ/3:
A =
c) Cálculo del área de la región sombreada
Área Sombreada = A - 4A =
Área Sombreada =
2) Calcular el área de la región sombreada
Solución:
a) Cálculo del área del círculo
b) Cálculo del área del cuadrado
22
2
78,1
9
16
3
4
cmcmcm 





)78,1(416 22
cmcm 
222
88,812,716 cmcmcm 
22222
24,501614,316)4( cmcmcmcmArA  
Si el radio de la circunferencia es 4cm, entonces el lado del cuadrado es 8 cm, es decir, Si
= 4 cm  ℓ = 8cm
Entonces el área del cuadrado es:
A = ℓ2 = (8cm)2 = 64 cm2
c) Cálculo del área de la región sombreada
Se obtiene al restar el área del círculo de la del cuadrado
3) Calcular el área de la región sombreada (sector circular) en donde cm y el 
tiene un tercio de 3600
Solución:
a) Cálculo del radio r:
Si 
b) Cálculo del ángulo 
c) Cálculo del área del sector circular:
4) Calcular el área de la región sombreada (corona circular) en donde cm.
Solución:
r
3
1
27
1







r
cmr
3
1
27
1







   cmr 32727
1
27 3
3
13
1







00
120360
3
1

4 2
2 4r
a) Cálculo del radio sub dos:
Si cm 
b) Cálculo del radio sub uno:
Si
c) Cálculo del área del círculo de radio sub dos:
d) Cálculo del área del círculo de radio sub uno:
e) Cálculo del área de la corona circular
5) Calcular el área de la región sombreada (trapecio circular) en donde cm .
Solución:
a) Cálculo del radio sub uno:
Si cm  cm = cm = cm
 cm
b) Cálculo del radio sub uno:
Si 
c) Cálculo del sector circular de radio sub uno:
d) Cálculo del sector circular de radio sub dos:
4 2
2 4r cmcmcmcmr 2444 2 12
1
4
2
2 
cmrcmrrr 4222 1121 
222
2
2
56,12414,3)2(14,3 cmcmcmArA  
2
1
1
16
1







r
2
1
1
16
1







r
2
1
1
1
16






r  2
1
16 2 1
16
41 r
2
1
2
r
r  cm
cm
r 2
2
4
2 
e) Cálculo del área del trapecio circular:
6) De una pizza se ha comido como indica la figura:
La pizza cabe exactamente en una caja cuadrada que tiene 160 cm de perímetro. Calcular
el área y la longitud del arco de la parte comida.
Solución.- Primera forma:
a) Cálculo del lado de la caja cuadrada
Si el perímetro es   

b) Cálculo del radio de la pizza
Si
Si
c) Cálculo del área total de la pizza
d) Cálculo del área de la parte comida
Como la parte comida es = de la pizza,
Entonces:
2
1
64

4P
4
P
 cm
cm
40
4
160

cmDDiámetrocm 40)(40 
cm
cm
r
D
rradiocmD 20
2
40
2
)(40 
2
1
64

8
1
64
1
64
1
2 1
2
1

e) Cálculo del perímetro de la pizza
f) Cálculo de la longitud del arco de la parte comida
Solución.- Segunda forma:
a) Cálculo del lado de la caja cuadrada
Si el perímetro es   

b) Cálculo del radio de la pizza
Si
Si
c) Cálculo del ángulo 
d) Cálculo del área de la parte comida
e) Cálculo de la longitud del arco de la parte comida
Nota: Recuerde que tanto en Matemática como en la vida diaria el mismo problema tiene
varias formas de solución. En este contexto, la Matemática cumple un rol estratégico, ya
que esta ciencia permite ver soluciones en donde otros no observan.
7) Calcular el área de la región sombreada en donde d = cm y b =
cm.
cmcmPrP 6,1252014,322  
cmcmaPa 7,156,125
8
1
8
1


4P
4
P
 cm
cm
40
4
160

cmDDiámetrocm 40)(40 
cm
cm
r
D
rradiocmD 20
2
40
2
)(40 
0
00
45
8
360360
 
n
cm
cm
a
r
a 7,15
360
452014,32
ˆ
360
2
0
0
0




2
1
100
2
1
64
1







Solución:
a) Cálculo de la diagonal:
Si d = cm 
b) Cálculo de la base:
Si b = cm 
c) Cálculo de la altura aplicando el Teorema de Pitágoras:
d) Cálculo del área de la región pintada, la misma que es un triángulo:
A =
9) Si d = cm. Calcular el área de la región sombreada
Solución:
a) Cálculo de la diagonal
Si d = cm 
b) Cálculo del lado del cuadrado
2
1
100 cmcmd 101002 1

2
1
64
1







  cmb 86464
1
64 2 1
2
12
1







22222
bdabad 
cmcmcmcmcmcma 63664100)8()10( 22222

2
2
24
2
48
2
68
2
cm
cmcmcmab




2
1
26 
2
1
26  cmdcmd 2626 2 1

Por Pitágoras
c) Cálculo del área del cuadrado
d) Cálculo del área del triángulo sin sombrear
e) Cálculo del área sombreada
EJERCICIOS DE REFUERZO
1) ¿El área de un rectángulo equilátero cuya diagonal mide 2 cm es?
a)
2) El área de la figura es:
3) En la figura se tiene un cuadrado de lado 2a. En las esquinas se tiene 4 cuadrados de lado
a/2, entonces el área sombreada es:
2
2
2
22222 d
dd  
  cmcm
cmcm
636
2
236
2
26 2
2
2



a) 2 cm2 b)4 cm2 c) 1 cm2 d) 3 cm2
a) 10 cm2 b) 12 cm2 c) 14 cm2 d) 16 cm2
b)
a) 2 a2 b) 3 a2 c) 6 a2 d) 8 a2
b)
4) El centro de un cuadrado de 2 cm de lado coincide en el vértice de otro cuadrado
congruente. ¿Cuál es el área en cm2, de la parte común de estos dos cuadrados?
a) 1 cm2 b) 1,5 cm2 c) 2 cm2 d) 2,5 cm2
a)
5) Calcular el área sombreada de la siguiente figura
a) 13/2 cm2 b) 13 cm2 c) 15/2 cm2 d) 7,5 cm2
a)
6) El lado del cuadrado es 6 cm. Calcular el área de la región sombreada
a) (36-π) cm2 b) (44-π) cm2 c) 4(9-π) cm2 d) (36-4π) cm2
a)
7) El radio de la circunferencia es 2 cm. Calcular el área de la región sombreada
a) (36-π) cm2 b) (44-π) cm2 c) 4(4-π) cm2 d) (5-4π) cm2
c)
8) Si r=4 cm. Calcular el área de la región sombreada
a) 46π cm2 b) 44π cm2 c) 40π cm2 d) 32π cm2
d)
9) El lado del cuadrado es 4 cm. Calcular el área de la región sombreada
a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 16 cm2
c)
10) Calcular el área de la región sombreada
a) 18 cm2 b) 36 cm2 c) 16 cm2 d) 49 cm2
b)
11) Calcular el área de la región sombreada
a) 64π cm2 b) 32π cm2 c) 16π cm2 d) 8π cm2
b)
12) El área de la región sombrea es:
a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 10 cm2
c)
13) Con 625 baldosas cuadradas de 20cm de lado se desea embaldosar una sala cuadrada.
¿Cuál es largo de la sala?
a) 25 m b) 5 m c) 4 m d) 10 m
b)
14) Se desea recortar un espejo de forma circular de radio 30 cm a partir de un cuadrado.
¿Cuál es el área del menor cuadrado?
a) 3600 cm2 b) 240 cm2 c) 900 cm2 d) 1000 cm2
a)
15) Calcular el área de la región sombreada
a) 16(4-π) cm2 b) 4(16-π) cm2 c) 16(5-π) cm2 d) 26(4-π) cm2
a)
16) Calcular el área de la región sombreada (corona circular) en donde 𝑟2 = 2 cm
a) 12π cm2 b) 16π cm2 c) 5π cm2 d) 4π cm2
a)
17) Calcular el área de la región sombreada (trapecio circular) en donde r1= 4 cm
a) 2π cm2 b) 4π cm2 c) 3π cm2 d) 6π cm2
c)
18) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 4(4-π) cm2 b) 4(π-1) cm2 c) 4(5-π) cm2 d) 4(π-2) cm2
a)
19) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 16(π-1) cm2 b) 4π cm2 c) 3π cm2 d) 8(π-2) cm2
d)
20) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 16(π-2) cm2 b) 8(π-2) cm2 c) 4(π-2) cm2 d) 2π-4 cm2
b)
21) Calcular el área de la región sombreada en donde d =10 cm y b =8 cm.
a) 24 cm2 b) 44 cm2 c) 48 cm2 d) 12 cm2
a)
22) El diámetro de la circunferencia es 4 cm. Calcular el área de la región sombreada
a) 8 cm2 b) 16 cm2 c) 32 cm2 d) 64 cm2
a)
23) En la figura, el perímetro del cuadrado es 24 . El área sombreada es:
a) 4π-2 b) 3π-2 c) 2π-1 d) π-2
d)
REFERENCIAS BIBLIOGRÁFICAS
AYALA, ORLANDO, (2006), Matemática Recreativa, M & V GRÁFIC. Ibarra, Ecuador
SUÁREZ, MARIO
BENALCÁZAR, Marco, (2002), Unidades para Producir Medios Instruccionales en
Educación, SUÁREZ, Mario Ed. Graficolor, Ibarra, Ecuador.
SUÁREZ, Mario, (2004), Interaprendizaje Holístico de Matemática, Ed. Gráficas Planeta,
Ibarra, Ecuador.
SUÁREZ, Mario, (2004), Hacia un Interaprendizaje Holístico de Álgebra y Geometría,
Ed. Gráficas
Planeta, Ibarra, Ecuador.
SUAREZ IBUJÉS MARIO ORLANDO
mgsmariosuarez@gmail.com
mosuarez@utn.edu.ec
Telf: 06 2632 166
085619601

Más contenido relacionado

La actualidad más candente

Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadasMiguel Vilela
 
Taller de áreas sombreadas
Taller de áreas sombreadasTaller de áreas sombreadas
Taller de áreas sombreadasReymundo Salcedo
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadasdiomeposada
 
Problemas de aplicacion teorema de pitagoras 9°
Problemas de aplicacion teorema de pitagoras 9°Problemas de aplicacion teorema de pitagoras 9°
Problemas de aplicacion teorema de pitagoras 9°luis fajardo urbiña
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas saliradu
 
Taller area sombreada preicfes
Taller area sombreada preicfesTaller area sombreada preicfes
Taller area sombreada preicfesalejosandovalv
 
Perímetros y áreas de regiones planas arreglado
Perímetros y áreas de regiones planas arregladoPerímetros y áreas de regiones planas arreglado
Perímetros y áreas de regiones planas arregladoLuis Diego Yaipen Gonzales
 
10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticasCecy Felix
 
Guia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesGuia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesJaimemorales62
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentesLeoncito Salvaje
 
Triangulos notables
Triangulos notablesTriangulos notables
Triangulos notablesAltlv DC
 
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016 Mery Lucy Flores M.
 

La actualidad más candente (20)

Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
Taller de áreas sombreadas
Taller de áreas sombreadasTaller de áreas sombreadas
Taller de áreas sombreadas
 
Solucionario semana 1
Solucionario semana 1Solucionario semana 1
Solucionario semana 1
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
Solucionario semana 1 (4)
Solucionario semana 1 (4)Solucionario semana 1 (4)
Solucionario semana 1 (4)
 
Práctica calificada área de regiones poligonales
Práctica calificada   área de regiones poligonalesPráctica calificada   área de regiones poligonales
Práctica calificada área de regiones poligonales
 
Problemas de aplicacion teorema de pitagoras 9°
Problemas de aplicacion teorema de pitagoras 9°Problemas de aplicacion teorema de pitagoras 9°
Problemas de aplicacion teorema de pitagoras 9°
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Taller area sombreada preicfes
Taller area sombreada preicfesTaller area sombreada preicfes
Taller area sombreada preicfes
 
Perímetros y áreas de regiones planas arreglado
Perímetros y áreas de regiones planas arregladoPerímetros y áreas de regiones planas arreglado
Perímetros y áreas de regiones planas arreglado
 
10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas10 problemas de ecuaciones cuadráticas
10 problemas de ecuaciones cuadráticas
 
Guia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesGuia de ejercicios de Inecuaciones
Guia de ejercicios de Inecuaciones
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentes
 
Sistema de medidas angulares (2)
Sistema de medidas angulares (2)Sistema de medidas angulares (2)
Sistema de medidas angulares (2)
 
IDENTIDADES TRIGONOMETRICAS
IDENTIDADES TRIGONOMETRICASIDENTIDADES TRIGONOMETRICAS
IDENTIDADES TRIGONOMETRICAS
 
División algebraica
División algebraicaDivisión algebraica
División algebraica
 
AREAS SOMBREADAS
AREAS SOMBREADASAREAS SOMBREADAS
AREAS SOMBREADAS
 
Triangulos notables
Triangulos notablesTriangulos notables
Triangulos notables
 
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016 Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016
Solucionario PRE SAN MARCOS- Semana 12 Ciclo 2016
 

Destacado

Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumensitayanis
 
36640308 reas-sombreadas
36640308 reas-sombreadas36640308 reas-sombreadas
36640308 reas-sombreadasEmilio Girón
 
Geometria 4° 3 b
Geometria 4° 3 bGeometria 4° 3 b
Geometria 4° 3 b349juan
 
cepre uni mate
cepre uni matecepre uni mate
cepre uni matetigreaxul
 
SOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNISOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNI5amv3l
 
problemas-matematicas-uni
problemas-matematicas-uniproblemas-matematicas-uni
problemas-matematicas-uniJimmy Espinoza
 
RÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓNRÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓNPUCESA
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achuradasitayanis
 
Perimetro y area de figuras
Perimetro y area de figurasPerimetro y area de figuras
Perimetro y area de figurasmaestrajaneth
 
Areas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos MateAreas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos MateAna Sofia Gonzalez
 
Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 201019671966
 
El cuento. estructura y elementos
El cuento. estructura y elementosEl cuento. estructura y elementos
El cuento. estructura y elementosnafm89
 

Destacado (17)

Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumen
 
57593831 modelando-con-funciones
57593831 modelando-con-funciones57593831 modelando-con-funciones
57593831 modelando-con-funciones
 
36640308 reas-sombreadas
36640308 reas-sombreadas36640308 reas-sombreadas
36640308 reas-sombreadas
 
Geometria 4° 3 b
Geometria 4° 3 bGeometria 4° 3 b
Geometria 4° 3 b
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
 
cepre uni mate
cepre uni matecepre uni mate
cepre uni mate
 
SOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNISOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNI
 
Rúbricas de evaluación
Rúbricas de evaluaciónRúbricas de evaluación
Rúbricas de evaluación
 
problemas-matematicas-uni
problemas-matematicas-uniproblemas-matematicas-uni
problemas-matematicas-uni
 
Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)
 
RÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓNRÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓN
 
Ejercicios perimetros
Ejercicios perimetrosEjercicios perimetros
Ejercicios perimetros
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achurada
 
Perimetro y area de figuras
Perimetro y area de figurasPerimetro y area de figuras
Perimetro y area de figuras
 
Areas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos MateAreas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos Mate
 
Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010
 
El cuento. estructura y elementos
El cuento. estructura y elementosEl cuento. estructura y elementos
El cuento. estructura y elementos
 

Similar a Cálculo de áreas sombreadas

ÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docxÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docxCsarCastro17
 
Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]rayoveloz10
 
Calculo areas-sombreadas
Calculo areas-sombreadasCalculo areas-sombreadas
Calculo areas-sombreadasRoberto Murguia
 
Taller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasTaller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasElden Tocto
 
Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01Elden Tocto
 
áRea de regiones poligonales 1
áRea de regiones poligonales 1áRea de regiones poligonales 1
áRea de regiones poligonales 1remi2013
 
Rm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin claveRm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin claveLuis Angel Rene
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Demetrio Ccesa Rayme
 
Perimetros y areas octavo
Perimetros y areas octavoPerimetros y areas octavo
Perimetros y areas octavoJessica Vp
 
áReas de regiones poligonales 2
áReas de regiones poligonales 2áReas de regiones poligonales 2
áReas de regiones poligonales 2remi2013
 

Similar a Cálculo de áreas sombreadas (20)

ÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docxÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docx
 
Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]
 
Calculo areas-sombreadas
Calculo areas-sombreadasCalculo areas-sombreadas
Calculo areas-sombreadas
 
Taller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasTaller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadas
 
Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01
 
R.m. areas y perimetros (1)
R.m. areas y perimetros (1)R.m. areas y perimetros (1)
R.m. areas y perimetros (1)
 
áRea de regiones poligonales 1
áRea de regiones poligonales 1áRea de regiones poligonales 1
áRea de regiones poligonales 1
 
Rm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin claveRm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin clave
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
 
Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
 
Perimetros y areas octavo
Perimetros y areas octavoPerimetros y areas octavo
Perimetros y areas octavo
 
Guia areas y perimetros 2014
Guia areas y perimetros 2014Guia areas y perimetros 2014
Guia areas y perimetros 2014
 
áReas de regiones poligonales 2
áReas de regiones poligonales 2áReas de regiones poligonales 2
áReas de regiones poligonales 2
 

Último

REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdfInformacionesCMI
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdfDemetrio Ccesa Rayme
 
Plantilla de Bitácora Participación Estudiantil Ecuador
Plantilla de Bitácora Participación Estudiantil EcuadorPlantilla de Bitácora Participación Estudiantil Ecuador
Plantilla de Bitácora Participación Estudiantil EcuadorJose Santos
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Proyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato EcuadorProyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato EcuadorJose Santos
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdfDemetrio Ccesa Rayme
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfGonella
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesChema R.
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióPere Miquel Rosselló Espases
 
Padre tu palabra es_himno letra y ACORDES.pdf
Padre tu palabra es_himno letra y ACORDES.pdfPadre tu palabra es_himno letra y ACORDES.pdf
Padre tu palabra es_himno letra y ACORDES.pdfAni Ann
 
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
El Futuro de la Educacion Digital  JS1  Ccesa007.pdfEl Futuro de la Educacion Digital  JS1  Ccesa007.pdf
El Futuro de la Educacion Digital JS1 Ccesa007.pdfDemetrio Ccesa Rayme
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfVerenice Del Rio
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.JonathanCovena1
 
Presentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfPresentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfFranciscoJavierEstra11
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Pere Miquel Rosselló Espases
 
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVOSESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVOJuanaBellidocollahua
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdfDemetrio Ccesa Rayme
 

Último (20)

REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
 
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdfDiseño Universal de Aprendizaje en Nuevos Escenarios  JS2  Ccesa007.pdf
Diseño Universal de Aprendizaje en Nuevos Escenarios JS2 Ccesa007.pdf
 
Plantilla de Bitácora Participación Estudiantil Ecuador
Plantilla de Bitácora Participación Estudiantil EcuadorPlantilla de Bitácora Participación Estudiantil Ecuador
Plantilla de Bitácora Participación Estudiantil Ecuador
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Proyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato EcuadorProyecto de Participación Estudiantil Completo - Bachillerato Ecuador
Proyecto de Participación Estudiantil Completo - Bachillerato Ecuador
 
¿Que es Fuerza? online 2024 Repaso CRECE.pptx
¿Que es Fuerza? online 2024 Repaso CRECE.pptx¿Que es Fuerza? online 2024 Repaso CRECE.pptx
¿Que es Fuerza? online 2024 Repaso CRECE.pptx
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
Apunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdfApunte clase teorica propiedades de la Madera.pdf
Apunte clase teorica propiedades de la Madera.pdf
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
Padre tu palabra es_himno letra y ACORDES.pdf
Padre tu palabra es_himno letra y ACORDES.pdfPadre tu palabra es_himno letra y ACORDES.pdf
Padre tu palabra es_himno letra y ACORDES.pdf
 
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
El Futuro de la Educacion Digital  JS1  Ccesa007.pdfEl Futuro de la Educacion Digital  JS1  Ccesa007.pdf
El Futuro de la Educacion Digital JS1 Ccesa007.pdf
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
El liderazgo en la empresa sostenible, introducción, definición y ejemplo.
 
Presentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdfPresentación de la propuesta de clase.pdf
Presentación de la propuesta de clase.pdf
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
 
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVOSESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
SESION DE APRENDIZAJE PARA3ER GRADO -EL SISTEMA DIGESTIVO
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 

Cálculo de áreas sombreadas

  • 1. CÁLCULO DE ÁREAS SOMBREADAS EJEMPLOS ILUSTRATIVOS Pregunta 8 Si ABCD es un cuadrado de 4 m de lado y "O" es centro, entonces el área de la región sombreada es: Entonces el área de la región sombreada es un triángulo, que es igual a la cuarta parte del cuadrado. A = 42 /4 = 4 m2 Pregunta 9 Sabiendo que ABCD es un rectángulo, calcular el área de la región sombreada: Solución: Dividimos los triángulos en áreas más simples tal como se muestra en la siguiente figura:
  • 2. Pregunta 10 Sabiendo que el lado del cuadrado ABCD mide 4 m y que M y N son puntos medios, calcular el área de la región sombreada. Solución: En el siguiente gráfico indicamos las distancias deacuerdo a los datos del problema: Calculamos el área sombreada restando al área del cuadrado menos dos veces el área del triángulo menos la cuarta parte del área del círculo.
  • 3. 1) En la figura se tiene un cuadrado de lado ℓ = 4 cm. En las esquinas se tiene 4 cuadrados de lado ℓ/3. Calcular el área de la región sombreada Solución: a) Cálculo del área del cuadrado de ℓ = 4 cm : A = ℓ2 = (4cm)2 = 16 cm2 b) Cálculo del área del cuadrado de lado ℓ/3: A = c) Cálculo del área de la región sombreada Área Sombreada = A - 4A = Área Sombreada = 2) Calcular el área de la región sombreada Solución: a) Cálculo del área del círculo b) Cálculo del área del cuadrado 22 2 78,1 9 16 3 4 cmcmcm       )78,1(416 22 cmcm  222 88,812,716 cmcmcm  22222 24,501614,316)4( cmcmcmcmArA  
  • 4. Si el radio de la circunferencia es 4cm, entonces el lado del cuadrado es 8 cm, es decir, Si = 4 cm  ℓ = 8cm Entonces el área del cuadrado es: A = ℓ2 = (8cm)2 = 64 cm2 c) Cálculo del área de la región sombreada Se obtiene al restar el área del círculo de la del cuadrado 3) Calcular el área de la región sombreada (sector circular) en donde cm y el  tiene un tercio de 3600 Solución: a) Cálculo del radio r: Si  b) Cálculo del ángulo  c) Cálculo del área del sector circular: 4) Calcular el área de la región sombreada (corona circular) en donde cm. Solución: r 3 1 27 1        r cmr 3 1 27 1           cmr 32727 1 27 3 3 13 1        00 120360 3 1  4 2 2 4r
  • 5. a) Cálculo del radio sub dos: Si cm  b) Cálculo del radio sub uno: Si c) Cálculo del área del círculo de radio sub dos: d) Cálculo del área del círculo de radio sub uno: e) Cálculo del área de la corona circular 5) Calcular el área de la región sombreada (trapecio circular) en donde cm . Solución: a) Cálculo del radio sub uno: Si cm  cm = cm = cm  cm b) Cálculo del radio sub uno: Si  c) Cálculo del sector circular de radio sub uno: d) Cálculo del sector circular de radio sub dos: 4 2 2 4r cmcmcmcmr 2444 2 12 1 4 2 2  cmrcmrrr 4222 1121  222 2 2 56,12414,3)2(14,3 cmcmcmArA   2 1 1 16 1        r 2 1 1 16 1        r 2 1 1 1 16       r  2 1 16 2 1 16 41 r 2 1 2 r r  cm cm r 2 2 4 2 
  • 6. e) Cálculo del área del trapecio circular: 6) De una pizza se ha comido como indica la figura: La pizza cabe exactamente en una caja cuadrada que tiene 160 cm de perímetro. Calcular el área y la longitud del arco de la parte comida. Solución.- Primera forma: a) Cálculo del lado de la caja cuadrada Si el perímetro es     b) Cálculo del radio de la pizza Si Si c) Cálculo del área total de la pizza d) Cálculo del área de la parte comida Como la parte comida es = de la pizza, Entonces: 2 1 64  4P 4 P  cm cm 40 4 160  cmDDiámetrocm 40)(40  cm cm r D rradiocmD 20 2 40 2 )(40  2 1 64  8 1 64 1 64 1 2 1 2 1 
  • 7. e) Cálculo del perímetro de la pizza f) Cálculo de la longitud del arco de la parte comida Solución.- Segunda forma: a) Cálculo del lado de la caja cuadrada Si el perímetro es     b) Cálculo del radio de la pizza Si Si c) Cálculo del ángulo  d) Cálculo del área de la parte comida e) Cálculo de la longitud del arco de la parte comida Nota: Recuerde que tanto en Matemática como en la vida diaria el mismo problema tiene varias formas de solución. En este contexto, la Matemática cumple un rol estratégico, ya que esta ciencia permite ver soluciones en donde otros no observan. 7) Calcular el área de la región sombreada en donde d = cm y b = cm. cmcmPrP 6,1252014,322   cmcmaPa 7,156,125 8 1 8 1   4P 4 P  cm cm 40 4 160  cmDDiámetrocm 40)(40  cm cm r D rradiocmD 20 2 40 2 )(40  0 00 45 8 360360   n cm cm a r a 7,15 360 452014,32 ˆ 360 2 0 0 0     2 1 100 2 1 64 1       
  • 8. Solución: a) Cálculo de la diagonal: Si d = cm  b) Cálculo de la base: Si b = cm  c) Cálculo de la altura aplicando el Teorema de Pitágoras: d) Cálculo del área de la región pintada, la misma que es un triángulo: A = 9) Si d = cm. Calcular el área de la región sombreada Solución: a) Cálculo de la diagonal Si d = cm  b) Cálculo del lado del cuadrado 2 1 100 cmcmd 101002 1  2 1 64 1          cmb 86464 1 64 2 1 2 12 1        22222 bdabad  cmcmcmcmcmcma 63664100)8()10( 22222  2 2 24 2 48 2 68 2 cm cmcmcmab     2 1 26  2 1 26  cmdcmd 2626 2 1 
  • 9. Por Pitágoras c) Cálculo del área del cuadrado d) Cálculo del área del triángulo sin sombrear e) Cálculo del área sombreada EJERCICIOS DE REFUERZO 1) ¿El área de un rectángulo equilátero cuya diagonal mide 2 cm es? a) 2) El área de la figura es: 3) En la figura se tiene un cuadrado de lado 2a. En las esquinas se tiene 4 cuadrados de lado a/2, entonces el área sombreada es: 2 2 2 22222 d dd     cmcm cmcm 636 2 236 2 26 2 2 2    a) 2 cm2 b)4 cm2 c) 1 cm2 d) 3 cm2 a) 10 cm2 b) 12 cm2 c) 14 cm2 d) 16 cm2 b) a) 2 a2 b) 3 a2 c) 6 a2 d) 8 a2 b)
  • 10. 4) El centro de un cuadrado de 2 cm de lado coincide en el vértice de otro cuadrado congruente. ¿Cuál es el área en cm2, de la parte común de estos dos cuadrados? a) 1 cm2 b) 1,5 cm2 c) 2 cm2 d) 2,5 cm2 a) 5) Calcular el área sombreada de la siguiente figura a) 13/2 cm2 b) 13 cm2 c) 15/2 cm2 d) 7,5 cm2 a) 6) El lado del cuadrado es 6 cm. Calcular el área de la región sombreada a) (36-π) cm2 b) (44-π) cm2 c) 4(9-π) cm2 d) (36-4π) cm2 a) 7) El radio de la circunferencia es 2 cm. Calcular el área de la región sombreada a) (36-π) cm2 b) (44-π) cm2 c) 4(4-π) cm2 d) (5-4π) cm2 c) 8) Si r=4 cm. Calcular el área de la región sombreada
  • 11. a) 46π cm2 b) 44π cm2 c) 40π cm2 d) 32π cm2 d) 9) El lado del cuadrado es 4 cm. Calcular el área de la región sombreada a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 16 cm2 c) 10) Calcular el área de la región sombreada a) 18 cm2 b) 36 cm2 c) 16 cm2 d) 49 cm2 b) 11) Calcular el área de la región sombreada
  • 12. a) 64π cm2 b) 32π cm2 c) 16π cm2 d) 8π cm2 b) 12) El área de la región sombrea es: a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 10 cm2 c) 13) Con 625 baldosas cuadradas de 20cm de lado se desea embaldosar una sala cuadrada. ¿Cuál es largo de la sala? a) 25 m b) 5 m c) 4 m d) 10 m b) 14) Se desea recortar un espejo de forma circular de radio 30 cm a partir de un cuadrado. ¿Cuál es el área del menor cuadrado? a) 3600 cm2 b) 240 cm2 c) 900 cm2 d) 1000 cm2 a) 15) Calcular el área de la región sombreada a) 16(4-π) cm2 b) 4(16-π) cm2 c) 16(5-π) cm2 d) 26(4-π) cm2 a) 16) Calcular el área de la región sombreada (corona circular) en donde 𝑟2 = 2 cm
  • 13. a) 12π cm2 b) 16π cm2 c) 5π cm2 d) 4π cm2 a) 17) Calcular el área de la región sombreada (trapecio circular) en donde r1= 4 cm a) 2π cm2 b) 4π cm2 c) 3π cm2 d) 6π cm2 c) 18) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada a) 4(4-π) cm2 b) 4(π-1) cm2 c) 4(5-π) cm2 d) 4(π-2) cm2 a) 19) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada a) 16(π-1) cm2 b) 4π cm2 c) 3π cm2 d) 8(π-2) cm2 d) 20) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
  • 14. a) 16(π-2) cm2 b) 8(π-2) cm2 c) 4(π-2) cm2 d) 2π-4 cm2 b) 21) Calcular el área de la región sombreada en donde d =10 cm y b =8 cm. a) 24 cm2 b) 44 cm2 c) 48 cm2 d) 12 cm2 a) 22) El diámetro de la circunferencia es 4 cm. Calcular el área de la región sombreada a) 8 cm2 b) 16 cm2 c) 32 cm2 d) 64 cm2 a) 23) En la figura, el perímetro del cuadrado es 24 . El área sombreada es: a) 4π-2 b) 3π-2 c) 2π-1 d) π-2 d) REFERENCIAS BIBLIOGRÁFICAS AYALA, ORLANDO, (2006), Matemática Recreativa, M & V GRÁFIC. Ibarra, Ecuador SUÁREZ, MARIO
  • 15. BENALCÁZAR, Marco, (2002), Unidades para Producir Medios Instruccionales en Educación, SUÁREZ, Mario Ed. Graficolor, Ibarra, Ecuador. SUÁREZ, Mario, (2004), Interaprendizaje Holístico de Matemática, Ed. Gráficas Planeta, Ibarra, Ecuador. SUÁREZ, Mario, (2004), Hacia un Interaprendizaje Holístico de Álgebra y Geometría, Ed. Gráficas Planeta, Ibarra, Ecuador. SUAREZ IBUJÉS MARIO ORLANDO mgsmariosuarez@gmail.com mosuarez@utn.edu.ec Telf: 06 2632 166 085619601