SlideShare una empresa de Scribd logo
CÁLCULO DE ÁREAS SOMBREADAS
EJEMPLOS ILUSTRATIVOS
Pregunta 8
Si ABCD es un cuadrado de 4 m de lado y "O" es centro, entonces el área de la
región sombreada es:
Entonces el área de la región sombreada es un triángulo, que es igual a la cuarta
parte del cuadrado.
A = 42 /4 = 4 m2
Pregunta 9
Sabiendo que ABCD es un rectángulo, calcular el área de la región sombreada:
Solución:
Dividimos los triángulos en áreas más simples tal como se muestra en la siguiente
figura:
Pregunta 10
Sabiendo que el lado del cuadrado ABCD mide 4 m y que M y N son puntos medios,
calcular el área de la región sombreada.
Solución:
En el siguiente gráfico indicamos las distancias deacuerdo a los datos del problema:
Calculamos el área sombreada restando al área del cuadrado menos dos veces el
área del triángulo menos la cuarta parte del área del círculo.
1) En la figura se tiene un cuadrado de lado ℓ = 4 cm. En las esquinas se tiene 4 cuadrados
de lado ℓ/3. Calcular el área de la región sombreada
Solución:
a) Cálculo del área del cuadrado de ℓ = 4 cm :
A = ℓ2 = (4cm)2 = 16 cm2
b) Cálculo del área del cuadrado de lado ℓ/3:
A =
c) Cálculo del área de la región sombreada
Área Sombreada = A - 4A =
Área Sombreada =
2) Calcular el área de la región sombreada
Solución:
a) Cálculo del área del círculo
b) Cálculo del área del cuadrado
22
2
78,1
9
16
3
4
cmcmcm 





)78,1(416 22
cmcm 
222
88,812,716 cmcmcm 
22222
24,501614,316)4( cmcmcmcmArA  
Si el radio de la circunferencia es 4cm, entonces el lado del cuadrado es 8 cm, es decir, Si
= 4 cm  ℓ = 8cm
Entonces el área del cuadrado es:
A = ℓ2 = (8cm)2 = 64 cm2
c) Cálculo del área de la región sombreada
Se obtiene al restar el área del círculo de la del cuadrado
3) Calcular el área de la región sombreada (sector circular) en donde cm y el 
tiene un tercio de 3600
Solución:
a) Cálculo del radio r:
Si 
b) Cálculo del ángulo 
c) Cálculo del área del sector circular:
4) Calcular el área de la región sombreada (corona circular) en donde cm.
Solución:
r
3
1
27
1







r
cmr
3
1
27
1







   cmr 32727
1
27 3
3
13
1







00
120360
3
1

4 2
2 4r
a) Cálculo del radio sub dos:
Si cm 
b) Cálculo del radio sub uno:
Si
c) Cálculo del área del círculo de radio sub dos:
d) Cálculo del área del círculo de radio sub uno:
e) Cálculo del área de la corona circular
5) Calcular el área de la región sombreada (trapecio circular) en donde cm .
Solución:
a) Cálculo del radio sub uno:
Si cm  cm = cm = cm
 cm
b) Cálculo del radio sub uno:
Si 
c) Cálculo del sector circular de radio sub uno:
d) Cálculo del sector circular de radio sub dos:
4 2
2 4r cmcmcmcmr 2444 2 12
1
4
2
2 
cmrcmrrr 4222 1121 
222
2
2
56,12414,3)2(14,3 cmcmcmArA  
2
1
1
16
1







r
2
1
1
16
1







r
2
1
1
1
16






r  2
1
16 2 1
16
41 r
2
1
2
r
r  cm
cm
r 2
2
4
2 
e) Cálculo del área del trapecio circular:
6) De una pizza se ha comido como indica la figura:
La pizza cabe exactamente en una caja cuadrada que tiene 160 cm de perímetro. Calcular
el área y la longitud del arco de la parte comida.
Solución.- Primera forma:
a) Cálculo del lado de la caja cuadrada
Si el perímetro es   

b) Cálculo del radio de la pizza
Si
Si
c) Cálculo del área total de la pizza
d) Cálculo del área de la parte comida
Como la parte comida es = de la pizza,
Entonces:
2
1
64

4P
4
P
 cm
cm
40
4
160

cmDDiámetrocm 40)(40 
cm
cm
r
D
rradiocmD 20
2
40
2
)(40 
2
1
64

8
1
64
1
64
1
2 1
2
1

e) Cálculo del perímetro de la pizza
f) Cálculo de la longitud del arco de la parte comida
Solución.- Segunda forma:
a) Cálculo del lado de la caja cuadrada
Si el perímetro es   

b) Cálculo del radio de la pizza
Si
Si
c) Cálculo del ángulo 
d) Cálculo del área de la parte comida
e) Cálculo de la longitud del arco de la parte comida
Nota: Recuerde que tanto en Matemática como en la vida diaria el mismo problema tiene
varias formas de solución. En este contexto, la Matemática cumple un rol estratégico, ya
que esta ciencia permite ver soluciones en donde otros no observan.
7) Calcular el área de la región sombreada en donde d = cm y b =
cm.
cmcmPrP 6,1252014,322  
cmcmaPa 7,156,125
8
1
8
1


4P
4
P
 cm
cm
40
4
160

cmDDiámetrocm 40)(40 
cm
cm
r
D
rradiocmD 20
2
40
2
)(40 
0
00
45
8
360360
 
n
cm
cm
a
r
a 7,15
360
452014,32
ˆ
360
2
0
0
0




2
1
100
2
1
64
1







Solución:
a) Cálculo de la diagonal:
Si d = cm 
b) Cálculo de la base:
Si b = cm 
c) Cálculo de la altura aplicando el Teorema de Pitágoras:
d) Cálculo del área de la región pintada, la misma que es un triángulo:
A =
9) Si d = cm. Calcular el área de la región sombreada
Solución:
a) Cálculo de la diagonal
Si d = cm 
b) Cálculo del lado del cuadrado
2
1
100 cmcmd 101002 1

2
1
64
1







  cmb 86464
1
64 2 1
2
12
1







22222
bdabad 
cmcmcmcmcmcma 63664100)8()10( 22222

2
2
24
2
48
2
68
2
cm
cmcmcmab




2
1
26 
2
1
26  cmdcmd 2626 2 1

Por Pitágoras
c) Cálculo del área del cuadrado
d) Cálculo del área del triángulo sin sombrear
e) Cálculo del área sombreada
EJERCICIOS DE REFUERZO
1) ¿El área de un rectángulo equilátero cuya diagonal mide 2 cm es?
a)
2) El área de la figura es:
3) En la figura se tiene un cuadrado de lado 2a. En las esquinas se tiene 4 cuadrados de lado
a/2, entonces el área sombreada es:
2
2
2
22222 d
dd  
  cmcm
cmcm
636
2
236
2
26 2
2
2



a) 2 cm2 b)4 cm2 c) 1 cm2 d) 3 cm2
a) 10 cm2 b) 12 cm2 c) 14 cm2 d) 16 cm2
b)
a) 2 a2 b) 3 a2 c) 6 a2 d) 8 a2
b)
4) El centro de un cuadrado de 2 cm de lado coincide en el vértice de otro cuadrado
congruente. ¿Cuál es el área en cm2, de la parte común de estos dos cuadrados?
a) 1 cm2 b) 1,5 cm2 c) 2 cm2 d) 2,5 cm2
a)
5) Calcular el área sombreada de la siguiente figura
a) 13/2 cm2 b) 13 cm2 c) 15/2 cm2 d) 7,5 cm2
a)
6) El lado del cuadrado es 6 cm. Calcular el área de la región sombreada
a) (36-π) cm2 b) (44-π) cm2 c) 4(9-π) cm2 d) (36-4π) cm2
a)
7) El radio de la circunferencia es 2 cm. Calcular el área de la región sombreada
a) (36-π) cm2 b) (44-π) cm2 c) 4(4-π) cm2 d) (5-4π) cm2
c)
8) Si r=4 cm. Calcular el área de la región sombreada
a) 46π cm2 b) 44π cm2 c) 40π cm2 d) 32π cm2
d)
9) El lado del cuadrado es 4 cm. Calcular el área de la región sombreada
a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 16 cm2
c)
10) Calcular el área de la región sombreada
a) 18 cm2 b) 36 cm2 c) 16 cm2 d) 49 cm2
b)
11) Calcular el área de la región sombreada
a) 64π cm2 b) 32π cm2 c) 16π cm2 d) 8π cm2
b)
12) El área de la región sombrea es:
a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 10 cm2
c)
13) Con 625 baldosas cuadradas de 20cm de lado se desea embaldosar una sala cuadrada.
¿Cuál es largo de la sala?
a) 25 m b) 5 m c) 4 m d) 10 m
b)
14) Se desea recortar un espejo de forma circular de radio 30 cm a partir de un cuadrado.
¿Cuál es el área del menor cuadrado?
a) 3600 cm2 b) 240 cm2 c) 900 cm2 d) 1000 cm2
a)
15) Calcular el área de la región sombreada
a) 16(4-π) cm2 b) 4(16-π) cm2 c) 16(5-π) cm2 d) 26(4-π) cm2
a)
16) Calcular el área de la región sombreada (corona circular) en donde 𝑟2 = 2 cm
a) 12π cm2 b) 16π cm2 c) 5π cm2 d) 4π cm2
a)
17) Calcular el área de la región sombreada (trapecio circular) en donde r1= 4 cm
a) 2π cm2 b) 4π cm2 c) 3π cm2 d) 6π cm2
c)
18) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 4(4-π) cm2 b) 4(π-1) cm2 c) 4(5-π) cm2 d) 4(π-2) cm2
a)
19) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 16(π-1) cm2 b) 4π cm2 c) 3π cm2 d) 8(π-2) cm2
d)
20) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
a) 16(π-2) cm2 b) 8(π-2) cm2 c) 4(π-2) cm2 d) 2π-4 cm2
b)
21) Calcular el área de la región sombreada en donde d =10 cm y b =8 cm.
a) 24 cm2 b) 44 cm2 c) 48 cm2 d) 12 cm2
a)
22) El diámetro de la circunferencia es 4 cm. Calcular el área de la región sombreada
a) 8 cm2 b) 16 cm2 c) 32 cm2 d) 64 cm2
a)
23) En la figura, el perímetro del cuadrado es 24 . El área sombreada es:
a) 4π-2 b) 3π-2 c) 2π-1 d) π-2
d)
REFERENCIAS BIBLIOGRÁFICAS
AYALA, ORLANDO, (2006), Matemática Recreativa, M & V GRÁFIC. Ibarra, Ecuador
SUÁREZ, MARIO
BENALCÁZAR, Marco, (2002), Unidades para Producir Medios Instruccionales en
Educación, SUÁREZ, Mario Ed. Graficolor, Ibarra, Ecuador.
SUÁREZ, Mario, (2004), Interaprendizaje Holístico de Matemática, Ed. Gráficas Planeta,
Ibarra, Ecuador.
SUÁREZ, Mario, (2004), Hacia un Interaprendizaje Holístico de Álgebra y Geometría,
Ed. Gráficas
Planeta, Ibarra, Ecuador.
SUAREZ IBUJÉS MARIO ORLANDO
mgsmariosuarez@gmail.com
mosuarez@utn.edu.ec
Telf: 06 2632 166
085619601

Más contenido relacionado

La actualidad más candente

Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007
Demetrio Ccesa Rayme
 
Cocientes notables
Cocientes notablesCocientes notables
Cocientes notables
John Carlos Vásquez Huamán
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
Danie Romani C
 
Práctica calificada área de regiones poligonales
Práctica calificada   área de regiones poligonalesPráctica calificada   área de regiones poligonales
Práctica calificada área de regiones poligonales
Ines Maybel Santivañez Richter
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadas
Miguel Vilela
 
Aduni repaso geometria 1
Aduni repaso geometria 1Aduni repaso geometria 1
Aduni repaso geometria 1
Gerson Quiroz
 
05 prueba funcion cuadratica
05 prueba funcion cuadratica05 prueba funcion cuadratica
05 prueba funcion cuadratica
Hrod-land Oiasso Aldana
 
Triangulos Ejercicios basicos
Triangulos Ejercicios basicosTriangulos Ejercicios basicos
Triangulos Ejercicios basicos
Guillermo Matos Ascona
 
AREAS SOMBREADAS
AREAS SOMBREADASAREAS SOMBREADAS
AREAS SOMBREADAS
Alfredo Sardon Colque
 
Practica 8 area de regiones planas seleccion
Practica 8 area de regiones planas seleccionPractica 8 area de regiones planas seleccion
Practica 8 area de regiones planas seleccion
Karlos Dieter Nunez Huayapa
 
Razones trigonometricas de angulos notables
Razones trigonometricas de angulos notablesRazones trigonometricas de angulos notables
Razones trigonometricas de angulos notables
EDWIN RONALD CRUZ RUIZ
 
Geometria 4° 3 b
Geometria 4° 3 bGeometria 4° 3 b
Geometria 4° 3 b
349juan
 
Semana05 ord-2013-i
Semana05 ord-2013-iSemana05 ord-2013-i
Semana05 ord-2013-i
PacoTom14
 
Semana 3
Semana 3Semana 3
Vectores nuestra señora de la asunción
Vectores nuestra señora de la asunciónVectores nuestra señora de la asunción
Vectores nuestra señora de la asunción
romeljimont
 
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Demetrio Ccesa Rayme
 
Combinación de casos de factoreo
Combinación de casos de factoreoCombinación de casos de factoreo
Combinación de casos de factoreo
EmiSparaino
 
Libro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitariaLibro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitaria
Ruben Espiritu Gonzales
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas
saliradu
 
Teoria de exponentes potencia y radicacion
Teoria de exponentes potencia y radicacionTeoria de exponentes potencia y radicacion
Teoria de exponentes potencia y radicacion
Juan Jose Tello
 

La actualidad más candente (20)

Teoría y problemas de Geometría ADUNI ccesa007
Teoría y problemas de Geometría ADUNI  ccesa007Teoría y problemas de Geometría ADUNI  ccesa007
Teoría y problemas de Geometría ADUNI ccesa007
 
Cocientes notables
Cocientes notablesCocientes notables
Cocientes notables
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
 
Práctica calificada área de regiones poligonales
Práctica calificada   área de regiones poligonalesPráctica calificada   área de regiones poligonales
Práctica calificada área de regiones poligonales
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadasCálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
Aduni repaso geometria 1
Aduni repaso geometria 1Aduni repaso geometria 1
Aduni repaso geometria 1
 
05 prueba funcion cuadratica
05 prueba funcion cuadratica05 prueba funcion cuadratica
05 prueba funcion cuadratica
 
Triangulos Ejercicios basicos
Triangulos Ejercicios basicosTriangulos Ejercicios basicos
Triangulos Ejercicios basicos
 
AREAS SOMBREADAS
AREAS SOMBREADASAREAS SOMBREADAS
AREAS SOMBREADAS
 
Practica 8 area de regiones planas seleccion
Practica 8 area de regiones planas seleccionPractica 8 area de regiones planas seleccion
Practica 8 area de regiones planas seleccion
 
Razones trigonometricas de angulos notables
Razones trigonometricas de angulos notablesRazones trigonometricas de angulos notables
Razones trigonometricas de angulos notables
 
Geometria 4° 3 b
Geometria 4° 3 bGeometria 4° 3 b
Geometria 4° 3 b
 
Semana05 ord-2013-i
Semana05 ord-2013-iSemana05 ord-2013-i
Semana05 ord-2013-i
 
Semana 3
Semana 3Semana 3
Semana 3
 
Vectores nuestra señora de la asunción
Vectores nuestra señora de la asunciónVectores nuestra señora de la asunción
Vectores nuestra señora de la asunción
 
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007Teoría y problemas de Razonamiento Matemático ADUNI  ccesa007
Teoría y problemas de Razonamiento Matemático ADUNI ccesa007
 
Combinación de casos de factoreo
Combinación de casos de factoreoCombinación de casos de factoreo
Combinación de casos de factoreo
 
Libro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitariaLibro de trigonometria de preparatoria preuniversitaria
Libro de trigonometria de preparatoria preuniversitaria
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
Teoria de exponentes potencia y radicacion
Teoria de exponentes potencia y radicacionTeoria de exponentes potencia y radicacion
Teoria de exponentes potencia y radicacion
 

Destacado

Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumen
sitayanis
 
57593831 modelando-con-funciones
57593831 modelando-con-funciones57593831 modelando-con-funciones
57593831 modelando-con-funciones
Josecarlos Jair Leon Quiroz
 
36640308 reas-sombreadas
36640308 reas-sombreadas36640308 reas-sombreadas
36640308 reas-sombreadas
Emilio Girón
 
Taller area sombreada preicfes
Taller area sombreada preicfesTaller area sombreada preicfes
Taller area sombreada preicfes
alejosandovalv
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
yojanvladimir
 
cepre uni mate
cepre uni matecepre uni mate
cepre uni mate
tigreaxul
 
SOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNISOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNI
5amv3l
 
Rúbricas de evaluación
Rúbricas de evaluaciónRúbricas de evaluación
Rúbricas de evaluación
Jhinojosa Ivonne
 
problemas-matematicas-uni
problemas-matematicas-uniproblemas-matematicas-uni
problemas-matematicas-uni
Jimmy Espinoza
 
Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)
Jesus Santos Alvarez
 
RÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓNRÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓN
PUCESA
 
Ejercicios perimetros
Ejercicios perimetrosEjercicios perimetros
Ejercicios perimetros
Roxana Haydee Espinoza Diaz
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achurada
sitayanis
 
Perimetro y area de figuras
Perimetro y area de figurasPerimetro y area de figuras
Perimetro y area de figuras
maestrajaneth
 
Areas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos MateAreas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos Mate
Ana Sofia Gonzalez
 
Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010
19671966
 
El cuento. estructura y elementos
El cuento. estructura y elementosEl cuento. estructura y elementos
El cuento. estructura y elementos
nafm89
 

Destacado (17)

Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumen
 
57593831 modelando-con-funciones
57593831 modelando-con-funciones57593831 modelando-con-funciones
57593831 modelando-con-funciones
 
36640308 reas-sombreadas
36640308 reas-sombreadas36640308 reas-sombreadas
36640308 reas-sombreadas
 
Taller area sombreada preicfes
Taller area sombreada preicfesTaller area sombreada preicfes
Taller area sombreada preicfes
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
 
cepre uni mate
cepre uni matecepre uni mate
cepre uni mate
 
SOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNISOLUCIONARIO ANUAL UNI
SOLUCIONARIO ANUAL UNI
 
Rúbricas de evaluación
Rúbricas de evaluaciónRúbricas de evaluación
Rúbricas de evaluación
 
problemas-matematicas-uni
problemas-matematicas-uniproblemas-matematicas-uni
problemas-matematicas-uni
 
Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)Acv 2014 rm_01 (2)
Acv 2014 rm_01 (2)
 
RÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓNRÚBRICAS DE EVALUACIÓN
RÚBRICAS DE EVALUACIÓN
 
Ejercicios perimetros
Ejercicios perimetrosEjercicios perimetros
Ejercicios perimetros
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achurada
 
Perimetro y area de figuras
Perimetro y area de figurasPerimetro y area de figuras
Perimetro y area de figuras
 
Areas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos MateAreas Sombreadas; Proyectos Mate
Areas Sombreadas; Proyectos Mate
 
Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010Geometria secuencial para educacion basica 2010
Geometria secuencial para educacion basica 2010
 
El cuento. estructura y elementos
El cuento. estructura y elementosEl cuento. estructura y elementos
El cuento. estructura y elementos
 

Similar a Cálculo de áreas sombreadas

ÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docxÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docx
CsarCastro17
 
Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]
rayoveloz10
 
Calculo areas-sombreadas
Calculo areas-sombreadasCalculo areas-sombreadas
Calculo areas-sombreadas
Roberto Murguia
 
Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01
Elden Tocto
 
Taller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasTaller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadas
Elden Tocto
 
R.m. areas y perimetros (1)
R.m. areas y perimetros (1)R.m. areas y perimetros (1)
R.m. areas y perimetros (1)
GuillenProfitoPreuni
 
áRea de regiones poligonales 1
áRea de regiones poligonales 1áRea de regiones poligonales 1
áRea de regiones poligonales 1
remi2013
 
Rm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin claveRm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin clave
Luis Angel Rene
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
Cesc Calderon Zevallos
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007
Demetrio Ccesa Rayme
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
Demetrio Ccesa Rayme
 
Perimetros y areas octavo
Perimetros y areas octavoPerimetros y areas octavo
Perimetros y areas octavo
Jessica Vp
 
Guia areas y perimetros 2014
Guia areas y perimetros 2014Guia areas y perimetros 2014
Guia areas y perimetros 2014
Chilean Eagles College Nº 3
 
áReas de regiones poligonales 2
áReas de regiones poligonales 2áReas de regiones poligonales 2
áReas de regiones poligonales 2
remi2013
 

Similar a Cálculo de áreas sombreadas (20)

ÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docxÁREAS SOMBREADAS.docx
ÁREAS SOMBREADAS.docx
 
Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]Cálculo de áreas_sombreadas[1]
Cálculo de áreas_sombreadas[1]
 
Calculo areas-sombreadas
Calculo areas-sombreadasCalculo areas-sombreadas
Calculo areas-sombreadas
 
Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01Taller de problemas sobre areas sombreadas01
Taller de problemas sobre areas sombreadas01
 
Taller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasTaller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadas
 
R.m. areas y perimetros (1)
R.m. areas y perimetros (1)R.m. areas y perimetros (1)
R.m. areas y perimetros (1)
 
áRea de regiones poligonales 1
áRea de regiones poligonales 1áRea de regiones poligonales 1
áRea de regiones poligonales 1
 
Rm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin claveRm practica12 practica rm 12_sin clave
Rm practica12 practica rm 12_sin clave
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007Teoria y problemas de area de figuras planas af125 ccesa007
Teoria y problemas de area de figuras planas af125 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007Teoria y problemas de area de figuras planas af225 ccesa007
Teoria y problemas de area de figuras planas af225 ccesa007
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
 
Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007Teoria y problemas de area de figuras planas af523 ccesa007
Teoria y problemas de area de figuras planas af523 ccesa007
 
Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007Teoria y problemas de area de figuras planas af524 ccesa007
Teoria y problemas de area de figuras planas af524 ccesa007
 
Perimetros y areas octavo
Perimetros y areas octavoPerimetros y areas octavo
Perimetros y areas octavo
 
Guia areas y perimetros 2014
Guia areas y perimetros 2014Guia areas y perimetros 2014
Guia areas y perimetros 2014
 
áReas de regiones poligonales 2
áReas de regiones poligonales 2áReas de regiones poligonales 2
áReas de regiones poligonales 2
 

Último

200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural
shirherrer
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdfPOESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
karlavasquez49
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Alejandrino Halire Ccahuana
 
Los Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres VivosLos Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres Vivos
karlafreire0608
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
saradocente
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Vida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.pptVida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.ppt
LinoLatella
 
1° T3 Examen Mtro JP 23-24.pdf completos
1° T3 Examen Mtro JP 23-24.pdf completos1° T3 Examen Mtro JP 23-24.pdf completos
1° T3 Examen Mtro JP 23-24.pdf completos
ROCIORUIZQUEZADA
 
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBALMATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
Ana Fernandez
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
JorgeVillota6
 
La vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primariaLa vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primaria
EricaCouly1
 
Este documento contiene, el programa completo de un acto para realizar la pro...
Este documento contiene, el programa completo de un acto para realizar la pro...Este documento contiene, el programa completo de un acto para realizar la pro...
Este documento contiene, el programa completo de un acto para realizar la pro...
romina395894
 
Mapa Mental documentos que rigen el sistema de evaluación
Mapa Mental documentos que rigen el sistema de evaluaciónMapa Mental documentos que rigen el sistema de evaluación
Mapa Mental documentos que rigen el sistema de evaluación
ruthmatiel1
 
Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
Ruth Noemí Soto Villegas
 
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Juan Martín Martín
 
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdfAPUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
VeronicaCabrera50
 
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBALMATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
Ana Fernandez
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
https://gramadal.wordpress.com/
 

Último (20)

200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural200. Efemerides junio para trabajar en periodico mural
200. Efemerides junio para trabajar en periodico mural
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdfPOESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
POESÍA POR EL DIA DEL PADREEEEEEEEEE.pdf
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
 
Los Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres VivosLos Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres Vivos
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
 
Vida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.pptVida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.ppt
 
1° T3 Examen Mtro JP 23-24.pdf completos
1° T3 Examen Mtro JP 23-24.pdf completos1° T3 Examen Mtro JP 23-24.pdf completos
1° T3 Examen Mtro JP 23-24.pdf completos
 
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBALMATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
MATERIAL ESCOLAR 2024-2025 3 AÑOS CEIP SAN CRISTÓBAL
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
 
La vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primariaLa vida de Martin Miguel de Güemes para niños de primaria
La vida de Martin Miguel de Güemes para niños de primaria
 
Este documento contiene, el programa completo de un acto para realizar la pro...
Este documento contiene, el programa completo de un acto para realizar la pro...Este documento contiene, el programa completo de un acto para realizar la pro...
Este documento contiene, el programa completo de un acto para realizar la pro...
 
Mapa Mental documentos que rigen el sistema de evaluación
Mapa Mental documentos que rigen el sistema de evaluaciónMapa Mental documentos que rigen el sistema de evaluación
Mapa Mental documentos que rigen el sistema de evaluación
 
Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
 
A VISITA DO SENHOR BISPO .
A VISITA DO SENHOR BISPO                .A VISITA DO SENHOR BISPO                .
A VISITA DO SENHOR BISPO .
 
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
 
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdfAPUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
 
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBALMATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
MATERIAL ESCOLAR 2024-2025. 4 AÑOS CEIP SAN CRISTOBAL
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
 

Cálculo de áreas sombreadas

  • 1. CÁLCULO DE ÁREAS SOMBREADAS EJEMPLOS ILUSTRATIVOS Pregunta 8 Si ABCD es un cuadrado de 4 m de lado y "O" es centro, entonces el área de la región sombreada es: Entonces el área de la región sombreada es un triángulo, que es igual a la cuarta parte del cuadrado. A = 42 /4 = 4 m2 Pregunta 9 Sabiendo que ABCD es un rectángulo, calcular el área de la región sombreada: Solución: Dividimos los triángulos en áreas más simples tal como se muestra en la siguiente figura:
  • 2. Pregunta 10 Sabiendo que el lado del cuadrado ABCD mide 4 m y que M y N son puntos medios, calcular el área de la región sombreada. Solución: En el siguiente gráfico indicamos las distancias deacuerdo a los datos del problema: Calculamos el área sombreada restando al área del cuadrado menos dos veces el área del triángulo menos la cuarta parte del área del círculo.
  • 3. 1) En la figura se tiene un cuadrado de lado ℓ = 4 cm. En las esquinas se tiene 4 cuadrados de lado ℓ/3. Calcular el área de la región sombreada Solución: a) Cálculo del área del cuadrado de ℓ = 4 cm : A = ℓ2 = (4cm)2 = 16 cm2 b) Cálculo del área del cuadrado de lado ℓ/3: A = c) Cálculo del área de la región sombreada Área Sombreada = A - 4A = Área Sombreada = 2) Calcular el área de la región sombreada Solución: a) Cálculo del área del círculo b) Cálculo del área del cuadrado 22 2 78,1 9 16 3 4 cmcmcm       )78,1(416 22 cmcm  222 88,812,716 cmcmcm  22222 24,501614,316)4( cmcmcmcmArA  
  • 4. Si el radio de la circunferencia es 4cm, entonces el lado del cuadrado es 8 cm, es decir, Si = 4 cm  ℓ = 8cm Entonces el área del cuadrado es: A = ℓ2 = (8cm)2 = 64 cm2 c) Cálculo del área de la región sombreada Se obtiene al restar el área del círculo de la del cuadrado 3) Calcular el área de la región sombreada (sector circular) en donde cm y el  tiene un tercio de 3600 Solución: a) Cálculo del radio r: Si  b) Cálculo del ángulo  c) Cálculo del área del sector circular: 4) Calcular el área de la región sombreada (corona circular) en donde cm. Solución: r 3 1 27 1        r cmr 3 1 27 1           cmr 32727 1 27 3 3 13 1        00 120360 3 1  4 2 2 4r
  • 5. a) Cálculo del radio sub dos: Si cm  b) Cálculo del radio sub uno: Si c) Cálculo del área del círculo de radio sub dos: d) Cálculo del área del círculo de radio sub uno: e) Cálculo del área de la corona circular 5) Calcular el área de la región sombreada (trapecio circular) en donde cm . Solución: a) Cálculo del radio sub uno: Si cm  cm = cm = cm  cm b) Cálculo del radio sub uno: Si  c) Cálculo del sector circular de radio sub uno: d) Cálculo del sector circular de radio sub dos: 4 2 2 4r cmcmcmcmr 2444 2 12 1 4 2 2  cmrcmrrr 4222 1121  222 2 2 56,12414,3)2(14,3 cmcmcmArA   2 1 1 16 1        r 2 1 1 16 1        r 2 1 1 1 16       r  2 1 16 2 1 16 41 r 2 1 2 r r  cm cm r 2 2 4 2 
  • 6. e) Cálculo del área del trapecio circular: 6) De una pizza se ha comido como indica la figura: La pizza cabe exactamente en una caja cuadrada que tiene 160 cm de perímetro. Calcular el área y la longitud del arco de la parte comida. Solución.- Primera forma: a) Cálculo del lado de la caja cuadrada Si el perímetro es     b) Cálculo del radio de la pizza Si Si c) Cálculo del área total de la pizza d) Cálculo del área de la parte comida Como la parte comida es = de la pizza, Entonces: 2 1 64  4P 4 P  cm cm 40 4 160  cmDDiámetrocm 40)(40  cm cm r D rradiocmD 20 2 40 2 )(40  2 1 64  8 1 64 1 64 1 2 1 2 1 
  • 7. e) Cálculo del perímetro de la pizza f) Cálculo de la longitud del arco de la parte comida Solución.- Segunda forma: a) Cálculo del lado de la caja cuadrada Si el perímetro es     b) Cálculo del radio de la pizza Si Si c) Cálculo del ángulo  d) Cálculo del área de la parte comida e) Cálculo de la longitud del arco de la parte comida Nota: Recuerde que tanto en Matemática como en la vida diaria el mismo problema tiene varias formas de solución. En este contexto, la Matemática cumple un rol estratégico, ya que esta ciencia permite ver soluciones en donde otros no observan. 7) Calcular el área de la región sombreada en donde d = cm y b = cm. cmcmPrP 6,1252014,322   cmcmaPa 7,156,125 8 1 8 1   4P 4 P  cm cm 40 4 160  cmDDiámetrocm 40)(40  cm cm r D rradiocmD 20 2 40 2 )(40  0 00 45 8 360360   n cm cm a r a 7,15 360 452014,32 ˆ 360 2 0 0 0     2 1 100 2 1 64 1       
  • 8. Solución: a) Cálculo de la diagonal: Si d = cm  b) Cálculo de la base: Si b = cm  c) Cálculo de la altura aplicando el Teorema de Pitágoras: d) Cálculo del área de la región pintada, la misma que es un triángulo: A = 9) Si d = cm. Calcular el área de la región sombreada Solución: a) Cálculo de la diagonal Si d = cm  b) Cálculo del lado del cuadrado 2 1 100 cmcmd 101002 1  2 1 64 1          cmb 86464 1 64 2 1 2 12 1        22222 bdabad  cmcmcmcmcmcma 63664100)8()10( 22222  2 2 24 2 48 2 68 2 cm cmcmcmab     2 1 26  2 1 26  cmdcmd 2626 2 1 
  • 9. Por Pitágoras c) Cálculo del área del cuadrado d) Cálculo del área del triángulo sin sombrear e) Cálculo del área sombreada EJERCICIOS DE REFUERZO 1) ¿El área de un rectángulo equilátero cuya diagonal mide 2 cm es? a) 2) El área de la figura es: 3) En la figura se tiene un cuadrado de lado 2a. En las esquinas se tiene 4 cuadrados de lado a/2, entonces el área sombreada es: 2 2 2 22222 d dd     cmcm cmcm 636 2 236 2 26 2 2 2    a) 2 cm2 b)4 cm2 c) 1 cm2 d) 3 cm2 a) 10 cm2 b) 12 cm2 c) 14 cm2 d) 16 cm2 b) a) 2 a2 b) 3 a2 c) 6 a2 d) 8 a2 b)
  • 10. 4) El centro de un cuadrado de 2 cm de lado coincide en el vértice de otro cuadrado congruente. ¿Cuál es el área en cm2, de la parte común de estos dos cuadrados? a) 1 cm2 b) 1,5 cm2 c) 2 cm2 d) 2,5 cm2 a) 5) Calcular el área sombreada de la siguiente figura a) 13/2 cm2 b) 13 cm2 c) 15/2 cm2 d) 7,5 cm2 a) 6) El lado del cuadrado es 6 cm. Calcular el área de la región sombreada a) (36-π) cm2 b) (44-π) cm2 c) 4(9-π) cm2 d) (36-4π) cm2 a) 7) El radio de la circunferencia es 2 cm. Calcular el área de la región sombreada a) (36-π) cm2 b) (44-π) cm2 c) 4(4-π) cm2 d) (5-4π) cm2 c) 8) Si r=4 cm. Calcular el área de la región sombreada
  • 11. a) 46π cm2 b) 44π cm2 c) 40π cm2 d) 32π cm2 d) 9) El lado del cuadrado es 4 cm. Calcular el área de la región sombreada a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 16 cm2 c) 10) Calcular el área de la región sombreada a) 18 cm2 b) 36 cm2 c) 16 cm2 d) 49 cm2 b) 11) Calcular el área de la región sombreada
  • 12. a) 64π cm2 b) 32π cm2 c) 16π cm2 d) 8π cm2 b) 12) El área de la región sombrea es: a) 4 cm2 b) 6 cm2 c) 8 cm2 d) 10 cm2 c) 13) Con 625 baldosas cuadradas de 20cm de lado se desea embaldosar una sala cuadrada. ¿Cuál es largo de la sala? a) 25 m b) 5 m c) 4 m d) 10 m b) 14) Se desea recortar un espejo de forma circular de radio 30 cm a partir de un cuadrado. ¿Cuál es el área del menor cuadrado? a) 3600 cm2 b) 240 cm2 c) 900 cm2 d) 1000 cm2 a) 15) Calcular el área de la región sombreada a) 16(4-π) cm2 b) 4(16-π) cm2 c) 16(5-π) cm2 d) 26(4-π) cm2 a) 16) Calcular el área de la región sombreada (corona circular) en donde 𝑟2 = 2 cm
  • 13. a) 12π cm2 b) 16π cm2 c) 5π cm2 d) 4π cm2 a) 17) Calcular el área de la región sombreada (trapecio circular) en donde r1= 4 cm a) 2π cm2 b) 4π cm2 c) 3π cm2 d) 6π cm2 c) 18) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada a) 4(4-π) cm2 b) 4(π-1) cm2 c) 4(5-π) cm2 d) 4(π-2) cm2 a) 19) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada a) 16(π-1) cm2 b) 4π cm2 c) 3π cm2 d) 8(π-2) cm2 d) 20) Si el lado del cuadrado mide 4 cm. Calcular el área de la región sombreada
  • 14. a) 16(π-2) cm2 b) 8(π-2) cm2 c) 4(π-2) cm2 d) 2π-4 cm2 b) 21) Calcular el área de la región sombreada en donde d =10 cm y b =8 cm. a) 24 cm2 b) 44 cm2 c) 48 cm2 d) 12 cm2 a) 22) El diámetro de la circunferencia es 4 cm. Calcular el área de la región sombreada a) 8 cm2 b) 16 cm2 c) 32 cm2 d) 64 cm2 a) 23) En la figura, el perímetro del cuadrado es 24 . El área sombreada es: a) 4π-2 b) 3π-2 c) 2π-1 d) π-2 d) REFERENCIAS BIBLIOGRÁFICAS AYALA, ORLANDO, (2006), Matemática Recreativa, M & V GRÁFIC. Ibarra, Ecuador SUÁREZ, MARIO
  • 15. BENALCÁZAR, Marco, (2002), Unidades para Producir Medios Instruccionales en Educación, SUÁREZ, Mario Ed. Graficolor, Ibarra, Ecuador. SUÁREZ, Mario, (2004), Interaprendizaje Holístico de Matemática, Ed. Gráficas Planeta, Ibarra, Ecuador. SUÁREZ, Mario, (2004), Hacia un Interaprendizaje Holístico de Álgebra y Geometría, Ed. Gráficas Planeta, Ibarra, Ecuador. SUAREZ IBUJÉS MARIO ORLANDO mgsmariosuarez@gmail.com mosuarez@utn.edu.ec Telf: 06 2632 166 085619601